Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (433)

Search Parameters:
Keywords = tooth imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2316 KiB  
Article
Detection of Dental Anomalies in Digital Panoramic Images Using YOLO: A Next Generation Approach Based on Single Stage Detection Models
by Uğur Şevik and Onur Mutlu
Diagnostics 2025, 15(15), 1961; https://doi.org/10.3390/diagnostics15151961 - 5 Aug 2025
Abstract
Background/Objectives: The diagnosis of pediatric dental conditions from panoramic radiographs is uniquely challenging due to the dynamic nature of the mixed dentition phase, which can lead to subjective and inconsistent interpretations. This study aims to develop and rigorously validate an advanced deep [...] Read more.
Background/Objectives: The diagnosis of pediatric dental conditions from panoramic radiographs is uniquely challenging due to the dynamic nature of the mixed dentition phase, which can lead to subjective and inconsistent interpretations. This study aims to develop and rigorously validate an advanced deep learning model to enhance diagnostic accuracy and efficiency in pediatric dentistry, providing an objective tool to support clinical decision-making. Methods: An initial comparative study of four state-of-the-art YOLO variants (YOLOv8, v9, v10, and v11) was conducted to identify the optimal architecture for detecting four common findings: Dental Caries, Deciduous Tooth, Root Canal Treatment, and Pulpotomy. A stringent two-tiered validation strategy was employed: a primary public dataset (n = 644 images) was used for training and model selection, while a completely independent external dataset (n = 150 images) was used for final testing. All annotations were validated by a dual-expert team comprising a board-certified pediatric dentist and an experienced oral and maxillofacial radiologist. Results: Based on its leading performance on the internal validation set, YOLOv11x was selected as the optimal model, achieving a mean Average Precision (mAP50) of 0.91. When evaluated on the independent external test set, the model demonstrated robust generalization, achieving an overall F1-Score of 0.81 and a mAP50 of 0.82. It yielded clinically valuable recall rates for therapeutic interventions (Root Canal Treatment: 88%; Pulpotomy: 86%) and other conditions (Deciduous Tooth: 84%; Dental Caries: 79%). Conclusions: Validated through a rigorous dual-dataset and dual-expert process, the YOLOv11x model demonstrates its potential as an accurate and reliable tool for automated detection in pediatric panoramic radiographs. This work suggests that such AI-driven systems can serve as valuable assistive tools for clinicians by supporting diagnostic workflows and contributing to the consistent detection of common dental findings in pediatric patients. Full article
Show Figures

Figure 1

23 pages, 4371 KiB  
Article
Advances in Periodontal Diagnostics: Application of MultiModal Language Models in Visual Interpretation of Panoramic Radiographs
by Albert Camlet, Aida Kusiak, Agata Ossowska and Dariusz Świetlik
Diagnostics 2025, 15(15), 1851; https://doi.org/10.3390/diagnostics15151851 - 23 Jul 2025
Viewed by 303
Abstract
Background: Periodontitis is a multifactorial disease leading to the loss of clinical attachment and alveolar bone. The diagnosis of periodontitis involves a clinical examination and radiographic evaluation, including panoramic images. Panoramic radiographs are cost-effective methods widely used in periodontitis classification. The remaining [...] Read more.
Background: Periodontitis is a multifactorial disease leading to the loss of clinical attachment and alveolar bone. The diagnosis of periodontitis involves a clinical examination and radiographic evaluation, including panoramic images. Panoramic radiographs are cost-effective methods widely used in periodontitis classification. The remaining bone height (RBH) is a parameter used to assess the alveolar bone level. Large language models are widely utilized in the medical sciences. ChatGPT, the leading conversational model, has recently been extended to process visual data. The aim of this study was to assess the effectiveness of the ChatGPT models 4.5, o1, o3 and o4-mini-high in RBH measurement and tooth counts in relation to dental professionals’ evaluations. Methods: The analysis was based on 10 panoramic images, from which 252, 251, 246 and 271 approximal sites were qualified for the RBH measurement (using the models 4.5, o1, o3 and o4-mini-high, respectively). Three examiners were asked to independently evaluate the RBH in approximal sites, while the tooth count was achieved by consensus. Subsequently, the results were compared with the ChatGPT outputs. Results: ChatGPT 4.5, ChatGPT o3 and ChatGPT o4-mini-high achieved substantial agreement with clinicians in the assessment of tooth counts (κ = 0.65, κ = 0.66, κ = 0.69, respectively), while ChatGPT o1 achieved moderate agreement (κ = 0.52). In the context of RBH values, the ChatGPT models consistently exhibited a positive mean bias compared with the clinicians. ChatGPT 4.5 was reported to provide the lowest bias (+12 percentage points (pp) for the distal surfaces, width of the 95% CI for limits of agreement (LoAs) ~60 pp; +11 pp for the mesial surfaces, LoA width ~54 pp). Conclusions: ChatGPT 4.5 and ChatGPT o3 show potential in the assessment of tooth counts on a panoramic radiograph; however, their present level of accuracy is insufficient for clinical use. In the current stage of development, the ChatGPT models substantially overestimated the RBH values; therefore, they are not applicable for classifying periodontal disease. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence to Oral Diseases)
Show Figures

Figure 1

13 pages, 2438 KiB  
Article
The Integration of Micro-CT Imaging and Finite Element Simulations for Modelling Tooth-Inlay Systems for Mechanical Stress Analysis: A Preliminary Study
by Nikoleta Nikolova, Miryana Raykovska, Nikolay Petkov, Martin Tsvetkov, Ivan Georgiev, Eugeni Koytchev, Roumen Iankov, Mariana Dimova-Gabrovska and Angela Gusiyska
J. Funct. Biomater. 2025, 16(7), 267; https://doi.org/10.3390/jfb16070267 - 21 Jul 2025
Viewed by 565
Abstract
This study presents a methodology for developing and validating digital models of tooth-inlay systems, aiming to trace the complete workflow from clinical procedures to simulation by involving dental professionals—dentists for manual cavity preparation and dental technicians for restoration modelling—while integrating micro-computed tomography (micro-CT) [...] Read more.
This study presents a methodology for developing and validating digital models of tooth-inlay systems, aiming to trace the complete workflow from clinical procedures to simulation by involving dental professionals—dentists for manual cavity preparation and dental technicians for restoration modelling—while integrating micro-computed tomography (micro-CT) imaging with finite element analysis (FEA). The proposed workflow includes (1) the acquisition of high-resolution 3D micro-CT scans of a non-restored tooth, (2) image segmentation and reconstruction to create anatomically accurate digital twins and mesh generation, (3) the selection of proper resin and the 3D printing of four typodonts, (4) the manual preparation of cavities on the typodonts, (5) the acquisition of high-resolution 3D micro-CT scans of the typodonts, (6) mesh generation, digital inlay and onlay modelling and material property assignment, and (7) nonlinear FEA simulations under representative masticatory loading. The approach enables the visualisation of stress and deformation patterns, with preliminary results indicating stress concentrations at the tooth-restoration interface integrating different cavity alternatives and restorations on the same tooth. Quantitative outputs include von Mises stress, strain energy density, and displacement distribution. This study demonstrates the feasibility of using image-based, tooth-specific digital twins for biomechanical modelling in dentistry. The developed framework lays the groundwork for future investigations into the optimisation of restoration design and material selection in clinical applications. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

14 pages, 2822 KiB  
Article
Accuracy and Reliability of Smartphone Versus Mirrorless Camera Images-Assisted Digital Shade Guides: An In Vitro Study
by Soo Teng Chew, Suet Yeo Soo, Mohd Zulkifli Kassim, Khai Yin Lim and In Meei Tew
Appl. Sci. 2025, 15(14), 8070; https://doi.org/10.3390/app15148070 - 20 Jul 2025
Viewed by 346
Abstract
Image-assisted digital shade guides are increasingly popular for shade matching; however, research on their accuracy remains limited. This study aimed to compare the accuracy and reliability of color coordination in image-assisted digital shade guides constructed using calibrated images of their shade tabs captured [...] Read more.
Image-assisted digital shade guides are increasingly popular for shade matching; however, research on their accuracy remains limited. This study aimed to compare the accuracy and reliability of color coordination in image-assisted digital shade guides constructed using calibrated images of their shade tabs captured by a mirrorless camera (Canon, Tokyo, Japan) (MC-DSG) and a smartphone camera (Samsung, Seoul, Korea) (SC-DSG), using a spectrophotometer as the reference standard. Twenty-nine VITA Linearguide 3D-Master shade tabs were photographed under controlled settings with both cameras equipped with cross-polarizing filters. Images were calibrated using Adobe Photoshop (Adobe Inc., San Jose, CA, USA). The L* (lightness), a* (red-green chromaticity), and b* (yellow-blue chromaticity) values, which represent the color attributes in the CIELAB color space, were computed at the middle third of each shade tab using Adobe Photoshop. Specifically, L* indicates the brightness of a color (ranging from black [0] to white [100]), a* denotes the position between red (+a*) and green (–a*), and b* represents the position between yellow (+b*) and blue (–b*). These values were used to quantify tooth shade and compare them to reference measurements obtained from a spectrophotometer (VITA Easyshade V, VITA Zahnfabrik, Bad Säckingen, Germany). Mean color differences (∆E00) between MC-DSG and SC-DSG, relative to the spectrophotometer, were compared using a independent t-test. The ∆E00 values were also evaluated against perceptibility (PT = 0.8) and acceptability (AT = 1.8) thresholds. Reliability was evaluated using intraclass correlation coefficients (ICC), and group differences were analyzed via one-way ANOVA and Bonferroni post hoc tests (α = 0.05). SC-DSG showed significantly lower ΔE00 deviations than MC-DSG (p < 0.001), falling within acceptable clinical AT. The L* values from MC-DSG were significantly higher than SC-DSG (p = 0.024). All methods showed excellent reliability (ICC > 0.9). The findings support the potential of smartphone image-assisted digital shade guides for accurate and reliable tooth shade assessment. Full article
(This article belongs to the Special Issue Advances in Dental Materials, Instruments, and Their New Applications)
Show Figures

Figure 1

15 pages, 857 KiB  
Article
Evaluation of Morphology and Prevalence of Palatoradicular Grooves on Affected Maxillary Anterior Teeth Using Cone-Beam Computed Tomography: An Institutional Retrospective Study
by Dilara Baştuğ and Leyla Benan Ayrancı
Appl. Sci. 2025, 15(14), 8031; https://doi.org/10.3390/app15148031 - 18 Jul 2025
Viewed by 232
Abstract
This retrospective study aimed to evaluate the prevalence, morphological types, and distribution patterns of palatoradicular grooves (PRGs) in maxillary anterior teeth using cone-beam computed tomography (CBCT) in a Turkish population. CBCT images of 1553 patients from the radiology archive of Ordu University Faculty [...] Read more.
This retrospective study aimed to evaluate the prevalence, morphological types, and distribution patterns of palatoradicular grooves (PRGs) in maxillary anterior teeth using cone-beam computed tomography (CBCT) in a Turkish population. CBCT images of 1553 patients from the radiology archive of Ordu University Faculty of Dentistry (2021–2022) were reviewed. A total of 920 patients (4012 teeth) met the inclusion criteria. The presence, type, and localization of PRGs were assessed. Groove types were classified as Type 1, 2, 3A, or 3B; localization was recorded as mesial, distal, or midpalatal. Bilateral and unilateral occurrences were also analyzed. Statistical analysis involved chi-square tests, Tukey’s HSD, and Cohen’s kappa for intra-observer reliability. PRGs were detected in 23.6% of patients and 10.42% of teeth. Lateral incisors were most affected (87.56%). Type 1 grooves were most common (71.53%), with midpalatal localization being most frequent (54.07%). Bilateral grooves were significantly more prevalent than unilateral ones (p < 0.001). No significant association was found between groove type and tooth type or between gender and bilaterality. This study revealed a high prevalence of PRGs, especially in maxillary lateral incisors, with a significant tendency toward bilateral and midpalatal presentation. CBCT proved essential for detecting palatoradicular grooves, aiding diagnosis and treatment. Full article
Show Figures

Figure 1

10 pages, 207 KiB  
Review
Orthodontic Mini-Implants for Interim Tooth Replacement in Growing Patients with Hypodontia: A Narrative Review
by Oskar Komisarek, Jacek Kwiatkowski, Natalia Szczypkowska, Łukasz Banasiak and Paweł Burduk
J. Clin. Med. 2025, 14(14), 4963; https://doi.org/10.3390/jcm14144963 - 14 Jul 2025
Viewed by 332
Abstract
Background: Tooth agenesis, particularly hypodontia, poses a clinical and esthetic challenge in growing patients due to limitations in definitive implant placement before skeletal maturity. Traditional solutions such as removable prostheses or orthodontic space closure often fail to provide adequate long-term stability, function, [...] Read more.
Background: Tooth agenesis, particularly hypodontia, poses a clinical and esthetic challenge in growing patients due to limitations in definitive implant placement before skeletal maturity. Traditional solutions such as removable prostheses or orthodontic space closure often fail to provide adequate long-term stability, function, and tissue preservation. In recent years, orthodontic mini-implants have emerged as a promising interim solution. This narrative review aims to synthesize current clinical evidence on the use of orthodontic mini-implants as temporary prosthetic abutments in children and adolescents with hypodontia or post-traumatic tooth loss. Methods: A literature search was conducted using PubMed and Google Scholar databases, covering studies published between January 2004 and March 2025. Inclusion criteria were clinical reports involving skeletally immature patients with congenital or traumatic tooth loss treated with mini-implants, with mandatory radiographic diagnostics and outcome data. Data extracted included patient demographics, etiology, implant site, imaging, follow-up, complications, and outcomes. A total of 17 studies comprising 42 cases were analyzed and summarized in tabular form. Results: Patients aged 6 to 16 years were treated primarily for agenesis of maxillary lateral or central incisors. The mean follow-up duration was 36.9 months. CBCT was used in 28.6% of cases. Mini-implants demonstrated high clinical success with stable soft tissue contours and preservation of alveolar volume. Complications were reported in 21.4% of cases and included crown debonding, minor infraocclusion, soft tissue irritation, and rare instances of osseointegration. Conclusions: Orthodontic mini-implants may provide a minimally invasive and reversible approach to interim tooth replacement in growing patients. Preliminary evidence suggests favorable outcomes in terms of stability, esthetics, and tissue preservation, but further prospective research is needed to validate their long-term effectiveness and standardize clinical application. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
12 pages, 1153 KiB  
Article
Estimating Molar Root Volume from Panoramic Radiographs Using a Geometric Approach—An Experimental Method Comparison
by Katharina Hartmann, Markus Tröltzsch, Sven Otto and Matthias Tröltzsch
Medicina 2025, 61(7), 1261; https://doi.org/10.3390/medicina61071261 - 11 Jul 2025
Viewed by 302
Abstract
Background and Objectives: Evaluating jaw augmentation procedures usually necessitates pre- and postoperative tomographic imaging. Ethical considerations emphasize minimizing radiation exposure. Given that panoramic radiographs (PR, 2D) offer a lower radiation dose compared to cone-beam CT (CBCT, 3D), this study explores the feasibility [...] Read more.
Background and Objectives: Evaluating jaw augmentation procedures usually necessitates pre- and postoperative tomographic imaging. Ethical considerations emphasize minimizing radiation exposure. Given that panoramic radiographs (PR, 2D) offer a lower radiation dose compared to cone-beam CT (CBCT, 3D), this study explores the feasibility of estimating tooth root volume from PR, potentially allowing safer clinical assessments with reduced radiation exposure. Materials and Methods: To develop a mathematical approximation method, the 2D tooth root surface in PR was defined as an elliptical model and a cuboid (3D). The true root volume (mm3) was gathered from CBCTs. The missing link for tooth root volume assessment in 2D radiographs is the depth of the root (vestibulo-oral dimension). It was hypothesized that the tooth root surface and its volume are related. A correlation factor “r” corresponding to the tooth roots’ depths was then calculated. Descriptive and inferential statistics were computed (p < 0.05). Results: The mathematical model was performed on 27 molars with an average volume of 472.83 mm3 (±130.25–CBCT). The factor “r” (obtained by dividing the true root volume from CBCT by the total root surface from PR) was computed as 8.04 (±1.90). Using “r” for the volume calculation in the cuboid model, an average volume of 472.37 (±152.92) for the 27 molars was computed. These volumes did not differ significantly. Conclusions: This study demonstrates that a mathematical model using elliptical projections from panoramic radiographs reliably estimates molar root volume, yielding comparable results to CBCT while reducing radiation exposure. Full article
Show Figures

Figure 1

21 pages, 1769 KiB  
Article
Evaluation of the Proximity of the Maxillary Teeth Root Apices to the Maxillary Sinus Floor in Romanian Subjects: A Cone-Beam Computed Tomography Study
by Vlad Ionuţ Iliescu, Vanda Roxana Nimigean, Cristina Teodora Preoteasa, Lavinia Georgescu and Victor Nimigean
Diagnostics 2025, 15(14), 1741; https://doi.org/10.3390/diagnostics15141741 - 9 Jul 2025
Viewed by 800
Abstract
Background/Objectives: Among the paranasal sinuses, the maxillary antrum holds unique clinical relevance due to its proximity to the alveolar process of the maxilla, which houses the teeth. This study aimed to evaluate the position of the root apices of the maxillary canines [...] Read more.
Background/Objectives: Among the paranasal sinuses, the maxillary antrum holds unique clinical relevance due to its proximity to the alveolar process of the maxilla, which houses the teeth. This study aimed to evaluate the position of the root apices of the maxillary canines and posterior teeth relative to the maxillary sinus floor in Romanian subjects. Methods: Data for the study were retrospectively obtained from cone-beam computed tomography (CBCT) scans. The evaluation considered the pattern of proximity to the sinus floor for each tooth type, comparisons of the sinus relationships of teeth within the same dental hemiarch, as well as those of homologous teeth, and variation in root-to-sinus distance in relation to sex and age. Nonparametric tests were used for statistical analysis, and multiple comparisons were performed using Bonferroni post hoc correction. Results: The study included 70 individuals aged 20 to 60 years. The distance to the sinus floor decreased progressively from the first premolar to the second molar, with median values of 3.68 mm (first premolar), 1.45 mm (second premolar), 0.50 mm (first molar), and 0.34 mm (second molar) (p < 0.01). Stronger correlations were observed between adjacent teeth than between non-adjacent ones. The distances to the sinus floor were greater on the right side compared to the left; however, these differences were not statistically significant (p > 0.05 for all teeth). Concordance between left and right dental hemiarches regarding the closest tooth to the sinus floor was found in 70% of cases (n = 49), most frequently involving the second molars (n = 38; 54.3%). On average, the distance from the sinus floor was smaller in males compared to females, with statistically significant differences observed only for the second molar. Increased age was associated with a greater distance to the sinus floor. Conclusions: Of all the teeth investigated, the second molar showed the highest combined prevalence of penetrating and tangential relationships with the maxillary sinus. At the dental hemiarch level, the second molar was most frequently the closest tooth to the sinus floor, and in the majority of cases, at least one posterior tooth was located within 0.3 mm. Accurate preoperative assessment of tooth position relative to the sinus floor is essential when performing non-surgical or surgical root canal therapy and extractions of maxillary molars and premolars. CBCT provides essential three-dimensional imaging that improves diagnostic precision and supports safer treatment planning for procedures involving the posterior maxilla. Full article
(This article belongs to the Special Issue Advances in Dental Diagnostics)
Show Figures

Figure 1

42 pages, 15713 KiB  
Article
A Novel Method for Determining the Contact Pattern Area in Gear Meshing Based on Computer Processing of Pressure Measurement Film Images
by Paweł Fudali, Patrycja Ewa Jagiełowicz, Adam Kalina, Piotr Połowniak, Mariusz Sobolak and Waldemar Witkowski
Materials 2025, 18(14), 3230; https://doi.org/10.3390/ma18143230 - 8 Jul 2025
Viewed by 414
Abstract
The contact pattern between gear teeth is one of the most significant indicators of proper gear operation. This paper presents an analysis of the contact pattern of gears with a sinusoidal profile. The gear geometry was obtained through direct solid simulation of the [...] Read more.
The contact pattern between gear teeth is one of the most significant indicators of proper gear operation. This paper presents an analysis of the contact pattern of gears with a sinusoidal profile. The gear geometry was obtained through direct solid simulation of the machining process. Generally, analytical, numerical, and experimental methods are used for contact pattern analysis in gearboxes. This article presents contact pattern investigations using numerical methods and a novel experimental method that utilizes pressure measurement films. A proprietary program using image analysis was used for the contact pattern analysis. The numerical studies utilized the Finite Element Method (FEM) and the CAD method. The results obtained from the presented methods show good convergence. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

23 pages, 16714 KiB  
Article
A Dual-Stream Dental Panoramic X-Ray Image Segmentation Method Based on Transformer Heterogeneous Feature Complementation
by Tian Ma, Jiahui Li, Zhenrui Dang, Yawen Li and Yuancheng Li
Technologies 2025, 13(7), 293; https://doi.org/10.3390/technologies13070293 - 8 Jul 2025
Viewed by 385
Abstract
To address the widespread challenges of significant multi-category dental morphological variations and interference from overlapping anatomical structures in panoramic dental X-ray images, this paper proposes a dual-stream dental segmentation model based on Transformer heterogeneous feature complementarity. Firstly, we construct a parallel architecture comprising [...] Read more.
To address the widespread challenges of significant multi-category dental morphological variations and interference from overlapping anatomical structures in panoramic dental X-ray images, this paper proposes a dual-stream dental segmentation model based on Transformer heterogeneous feature complementarity. Firstly, we construct a parallel architecture comprising a Transformer semantic parsing branch and a Convolutional Neural Network (CNN) detail capturing pathway, achieving collaborative optimization of global context modeling and local feature extraction. Furthermore, a Pooling-Cooperative Convolutional Module was designed, which enhances the model’s capability in detail extraction and boundary localization through weighted centroid features of dental structures and a latent edge extraction module. Finally, a Semantic Transformation Module and Interactive Fusion Module are constructed. The Semantic Transformation Module converts geometric detail features extracted from the CNN branch into high-order semantic representations compatible with Transformer sequential processing paradigms, while the Interactive Fusion Module applies attention mechanisms to progressively fuse dual-stream features, thereby enhancing the model’s capability in holistic dental feature extraction. Experimental results demonstrate that the proposed method achieves an IoU of 91.49% and a Dice coefficient of 94.54%, outperforming current segmentation methods across multiple evaluation metrics. Full article
Show Figures

Figure 1

15 pages, 5283 KiB  
Article
An Integrated System for Detecting and Numbering Permanent and Deciduous Teeth Across Multiple Types of Dental X-Ray Images Based on YOLOv8
by Ya-Yun Huang, Chiung-An Chen, Yi-Cheng Mao, Chih-Han Li, Bo-Wei Li, Tsung-Yi Chen, Wei-Chen Tu and Patricia Angela R. Abu
Diagnostics 2025, 15(13), 1693; https://doi.org/10.3390/diagnostics15131693 - 2 Jul 2025
Viewed by 529
Abstract
Background/Objectives: In dental medicine, the integration of various types of X-ray images, such as periapical (PA), bitewing (BW), and panoramic (PANO) radiographs, is crucial for comprehensive oral health assessment. These complementary imaging modalities provide diverse diagnostic perspectives and support the early detection of [...] Read more.
Background/Objectives: In dental medicine, the integration of various types of X-ray images, such as periapical (PA), bitewing (BW), and panoramic (PANO) radiographs, is crucial for comprehensive oral health assessment. These complementary imaging modalities provide diverse diagnostic perspectives and support the early detection of oral diseases, thereby enhancing treatment outcomes. However, there is currently no existing system that integrates multiple types of dental X-rays for both adults and children to perform tooth localization and numbering. Methods: Therefore, this study aimed to propose a system based on YOLOv8 that integrates multiple dental X-ray images and automatically detects and numbers both permanent and deciduous teeth. Through image preprocessing, various types of dental X-ray images were standardized and enhanced to improve the recognition accuracy of individual teeth. Results: With the implementation of a novel image preprocessing method, the system achieved a detection precision of 98.16% for permanent and deciduous teeth, representing a 3% improvement over models without image enhancement. In addition, the system attained an average tooth numbering accuracy of 98.5% for permanent teeth and 96.3% for deciduous teeth, surpassing existing methods by 5.6%. Conclusions: These results might highlight the innovation of the proposed image processing method and show its practical value in assisting clinicians with accurate diagnosis of tooth loss and the identification of missing teeth, ultimately contributing to improved diagnosis and treatment in dental care. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

16 pages, 1012 KiB  
Article
Digital Dentistry and Imaging: Comparing the Performance of Smartphone and Professional Cameras for Clinical Use
by Omar Hasbini, Louis Hardan, Naji Kharouf, Carlos Enrique Cuevas-Suárez, Khalil Kharma, Carol Moussa, Nicolas Nassar, Aly Osman, Monika Lukomska-Szymanska, Youssef Haikel and Rim Bourgi
Prosthesis 2025, 7(4), 77; https://doi.org/10.3390/prosthesis7040077 - 2 Jul 2025
Viewed by 459
Abstract
Background: Digital dental photography is increasingly essential for documentation and smile design. This study aimed to compare the linear measurement accuracy of various smartphones and a Digital Single-Lens Reflex (DSLR) camera against digital models obtained by intraoral and desktop scanners. Methods: Tooth height [...] Read more.
Background: Digital dental photography is increasingly essential for documentation and smile design. This study aimed to compare the linear measurement accuracy of various smartphones and a Digital Single-Lens Reflex (DSLR) camera against digital models obtained by intraoral and desktop scanners. Methods: Tooth height and width from six different casts were measured and compared using images acquired with a Canon EOS 250D DSLR, six smartphone models (iPhone 13, iPhone 15, Samsung Galaxy S22 Ultra, Samsung Galaxy S23 Ultra, Samsung Galaxy S24, and Vivo T2), and digital scans obtained from the Helios 500 intraoral scanner and the Ceramill Map 600 desktop scanner. All image measurements were performed using ImageJ software (National Institutes of Health, Bethesda, MD, USA), and statistical analysis was conducted using one-way analysis of variance (ANOVA) with Tukey’s post hoc test (α = 0.05). Results: The results showed no significant differences in measurements across most imaging methods (p > 0.05), except for the Vivo T2, which showed a significant deviation (p < 0.05). The other smartphones produced measurements comparable to those of the DSLR, even at distances as close as 16 cm. Conclusions: These findings preliminary support the clinical use of smartphones for accurate dental documentation and two-dimensional smile design, including the posterior areas, and challenge the previously recommended 24 cm minimum distance for mobile dental photography (MDP). This provides clinicians with a simplified and accessible alternative for high-accuracy dental imaging, advancing the everyday use of MDP in clinical practice. Full article
Show Figures

Figure 1

19 pages, 4965 KiB  
Article
From Microstructure to Shade Shift: Confocal and Spectrophotometric Evaluation of Peroxide-Induced Dental Bleaching
by Berivan Laura Rebeca Buzatu, Magda Mihaela Luca, Atena Galuscan, Adrian Ovidiu Vaduva, Aurora Doris Fratila, Ramona Dumitrescu, Ruxandra Sava-Rosianu, Octavia Balean, Roxana Buzatu and Daniela Jumanca
J. Clin. Med. 2025, 14(13), 4642; https://doi.org/10.3390/jcm14134642 - 1 Jul 2025
Viewed by 421
Abstract
Background/Objectives: Tooth bleaching is a widely requested aesthetic procedure in modern dentistry. However, the structural effects of high-concentration peroxide-based bleaching agents on enamel remain insufficiently understood. This study aims to evaluate and compare the effects of three in-office bleaching agents—Opalescence Boost (40% [...] Read more.
Background/Objectives: Tooth bleaching is a widely requested aesthetic procedure in modern dentistry. However, the structural effects of high-concentration peroxide-based bleaching agents on enamel remain insufficiently understood. This study aims to evaluate and compare the effects of three in-office bleaching agents—Opalescence Boost (40% hydrogen peroxide [HP]), Opalescence Quick (45% carbamide peroxide [CP]), and BlancOne Ultra + (35% hydrogen peroxide [HP])—on enamel surface characteristics and color change using confocal laser scanning microscopy (CLSM) and spectrophotometric analysis. Methods: Forty-two extracted human teeth were sectioned and divided into experimental and control halves. Each experimental specimen underwent bleaching according to the manufacturer’s protocol. Color measurements were conducted at baseline, immediately post-treatment, at 3 days, 7 days, and 6 months following treatment using the Vita Easyshade® spectrophotometer. Color differences were calculated using the CIEDE2000 (ΔE00) formula. Enamel surface morphology was assessed by CLSM. Data were analyzed using Wilcoxon and Kruskal–Wallis tests (p < 0.05), performed with SPSS v23. Results: All bleaching agents produced clinically perceptible color changes (ΔE00 > 3.3). Opalescence Boost achieved the highest and most consistent whitening effect (mean ΔE00 > 11), while Opalescence Quick showed moderate efficacy (ΔE00 ~6–8), and BlancOne Ultra+ induced milder changes (ΔE00 ~4–5). CLSM imaging revealed surface alterations in all bleached samples, with more pronounced changes observed in specimens treated with higher peroxide concentrations. Conclusions: All three bleaching systems were effective in improving enamel color, with Opalescence Boost delivering the most substantial and durable effect. CLSM analysis confirmed morphological changes in enamel without evidence of severe damage. These results underscore the importance of selecting bleaching protocols that balance efficacy with enamel safety. Further in vivo studies are recommended to validate long-term structural effects and support clinical decision-making. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

18 pages, 229 KiB  
Article
Dentists’ Knowledge and Attitude Toward Tooth Autotransplantation in Saudi Arabia: A Cross-Sectional Survey
by Mohammad Assaggaf, Joweil Idrees, Maria Nassif, Shatha Bamashmous, Amal Jamjoom, Arwa A. Banjar, Arwa Badahdah and Ayman M. Abulhamael
Healthcare 2025, 13(13), 1558; https://doi.org/10.3390/healthcare13131558 - 30 Jun 2025
Viewed by 338
Abstract
Background/Objectives: Extraction and replacement of hopeless teeth is a common practice in dentistry. Tooth autotransplantation (TA) offers several advantages as a viable and biological treatment option. However, its utilization in Saudi Arabia appears limited. Understanding dentists’ knowledge and attitudes toward TA is [...] Read more.
Background/Objectives: Extraction and replacement of hopeless teeth is a common practice in dentistry. Tooth autotransplantation (TA) offers several advantages as a viable and biological treatment option. However, its utilization in Saudi Arabia appears limited. Understanding dentists’ knowledge and attitudes toward TA is crucial for promoting its adoption in clinical practice. Therefore, the aim of this study is to assess the knowledge and attitudes of dentists in Saudi Arabia toward tooth autotransplantation. Methods: A cross-sectional study was conducted using a web-based questionnaire distributed to dentists across Saudi Arabia. The questionnaire included 19 questions assessing demographic characteristics, knowledge of TA, and attitudes toward its clinical application. Data were analyzed using SPSS v23 with chi-square and Cramér’s V tests to explore associations between variables (p < 0.05). Results: 253 dentists participated in this study. All participants had heard of TA, while only 26.5% reported moderate-to-high familiarity. Female dentists showed significantly greater interest in adopting TA than males (p = 0.038, Cramér’s V = 0.183). Specialists expressed higher familiarity than general dentists and underscored the importance of clinical guidelines, evidence-based outcomes, confidence in their capacity to engage in a TA team, the total number of required appointments, and malpractice concerns (p < 0.05) in their decision-making process. Nevertheless, general dentists demonstrated significantly more interest in implementing TA (p = 0.025, Cramér’s V = 0.192). Participants with more than 5 years of clinical dental experience were significantly more familiar with TA (p = 0.015, Cramér’s V = 0.204) and were more influenced by appointment numbers in decision-making (p = 0.012, Cramér’s V = 0.225). Conclusions: The study reveals limited familiarity but notable interest among dentists in Saudi Arabia toward TA. Addressing educational gaps by integrating TA training into dental curricula and offering clinical exposure opportunities to students, along with providing evidence-based clinical guidelines, and improving access to advanced imaging technologies, may enhance the adoption of TA as a viable treatment modality for tooth replacement. Full article
22 pages, 20537 KiB  
Article
Er:YAG Laser Applications for Debonding Different Ceramic Restorations: An In Vitro Study
by Ruxandra Elena Luca, Anișoara Giumancă-Borozan, Iosif Hulka, Ioana-Roxana Munteanu, Carmen Darinca Todea and Mariana Ioana Miron
Medicina 2025, 61(7), 1189; https://doi.org/10.3390/medicina61071189 - 30 Jun 2025
Viewed by 399
Abstract
Background and Objectives: Conventional methods for removing cemented fixed prosthetic restorations (FPRs) are unreliable and lead to unsatisfactory outcomes. At their best, they allow the tooth to be saved at the expense of a laborious process that also wears down rotating tools [...] Read more.
Background and Objectives: Conventional methods for removing cemented fixed prosthetic restorations (FPRs) are unreliable and lead to unsatisfactory outcomes. At their best, they allow the tooth to be saved at the expense of a laborious process that also wears down rotating tools and handpieces and occasionally results in abutment fractures. Restorations are nearly never reusable in any of these situations. Erbium-doped yttrium-aluminum-garnet (Er:YAG) and erbium-chromium yttrium-scandium-gallium-garnet (Er,Cr:YSGG) lasers casafely and effectively remove FPRs, according to scientific studiesre. This study sets out to examine the impact of Er:YAG laser radiation on the debonding of different ceramic restorations, comparing the behavior of various ceramic prosthetic restoration types under laser radiation action and evaluating the integrity of prosthetic restorations and dental surfaces exposed to laser radiation. Materials and Methods: The study included a total of 16 removed teeth, each prepared on opposite surfaces as abutments.y. Based on the previously defined groups, four types of ceramic restorations were included in the study: feldspathic (F), lithium disilicates (LD), layered zirconia (LZ), and monolithic zirconia (MZ). The thickness of the prosthetic restorations was measured at three points, and two different materials were used for cementation. The Er:YAG Fotona StarWalker MaQX laser was used to debond the ceramic FPR at a distance of 10 mm using an R14 sapphire tip with 275 mJ, 20 Hz, 5.5 W, with air cooling (setting 1 of 9) and water. After debonding, the debonded surface was visualized under electron microscopy. Results: A total of 23 ceramic FPRs were debonded, of which 12 were intact and the others fractured into two or three pieces. The electron microscopy images showed that debonding took place without causing any harm to the tooth structure. The various restoration types had the following success rates: 100% for the LZ and F groups, 87% for the LD group, and 0% for the MZ group. In terms of cement type, debonding ceramic FPRs cemented with RELYX was successful 75% of the time, compared to Variolink DC’s 69% success rate. Conclusions: In summary, the majority of ceramic prosthetic restorations can be successfully and conservatively debonded with Er:YAG radiation. Full article
(This article belongs to the Special Issue Advancements in Dental Medicine, Oral Anesthesiology and Surgery)
Show Figures

Figure 1

Back to TopTop