Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (115)

Search Parameters:
Keywords = titania nanotubes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4492 KiB  
Article
IrO2-Decorated Titania Nanotubes as Oxygen Evolution Anodes
by Aikaterini Touni, Effrosyni Mitrousi, Patricia Carvalho, Maria Nikopoulou, Eleni Pavlidou, Dimitra A. Lambropoulou and Sotiris Sotiropoulos
Molecules 2025, 30(14), 2921; https://doi.org/10.3390/molecules30142921 - 10 Jul 2025
Viewed by 327
Abstract
In this work, we have used both plain titania nanotubes, TNTs, and their reduced black analogues, bTNTs, that bear metallic conductivity (prepared by solid state reaction of TNTs with CaH2 at 500 °C for 2 h), as catalyst supports for the oxygen [...] Read more.
In this work, we have used both plain titania nanotubes, TNTs, and their reduced black analogues, bTNTs, that bear metallic conductivity (prepared by solid state reaction of TNTs with CaH2 at 500 °C for 2 h), as catalyst supports for the oxygen evolution reaction (OER). Ir was subsequently been deposited on them by the galvanic replacement of electrodeposited Ni by Ir(IV) chloro-complexes; this was followed by Ir electrochemical anodization to IrO2. By carrying out the preparation of the TNTs in either two or one anodization steps, we were able to produce close-packed or open-structure nanotubes, respectively. In the former case, larger than 100 nm Ir aggregates were finally formed on the top face of the nanotubes (leading to partial or full surface coverage); in the latter case, Ir nanoparticles smaller than 100 nm were obtained, with some of them located inside the pores of the nanotubes, which retained a porous surface structure. The electrocatalytic activity of IrO2 supported on open-structure bTNTs towards OER is superior to that supported on close-packed bTNTs and TNTs, and its performance is comparable or better than that of similar electrodes reported in the literature (overpotential of η = 240 mV at 10 mA cm−2; current density of 70 mA cm−2 and mass specific current density of 258 mA mgIr−1 at η = 300 mV). Furthermore, these electrodes demonstrated good medium-term stability, maintaining stable performance for 72 h at 10 mA cm−2 in acid. Full article
(This article belongs to the Special Issue Advances in Water Electrolysis Technology)
Show Figures

Graphical abstract

24 pages, 11397 KiB  
Article
Carbon-Rich Nanocomposites Based on Polyaniline/Titania Nanotubes Precursor: Synergistic Effect Between Surface Adsorption and Photocatalytic Activity
by Brankica Gajić, Milica Milošević, Dejan Kepić, Gordana Ćirić-Marjanović, Zoran Šaponjić and Marija Radoičić
Molecules 2025, 30(12), 2628; https://doi.org/10.3390/molecules30122628 - 17 Jun 2025
Viewed by 343
Abstract
Nowadays, there is an urgent need for efficient photocatalysts and adsorbents for environmentally relevant applications. This study investigates the effect of polyaniline (PANI) on the structure and performance of carbonized nanocomposites composed of PANI and TiO2 nanotubes (NTs), focusing on their photocatalytic [...] Read more.
Nowadays, there is an urgent need for efficient photocatalysts and adsorbents for environmentally relevant applications. This study investigates the effect of polyaniline (PANI) on the structure and performance of carbonized nanocomposites composed of PANI and TiO2 nanotubes (NTs), focusing on their photocatalytic degradation efficiency and dye adsorption capacity. The hypothesis was that PANI forms conductive carbon domains and stabilizes the anatase phase during thermal treatment, enhancing the performance of TiO2-NTs as photocatalysts. Nanocomposites based on PANI and TiO2-NTs (TTP) were synthesized through chemical oxidative polymerization of aniline (ANI) in the presence of TiO2-NTs using two TiO2/ANI molar ratios of 50 and 150 and subsequently carbonized at 650 °C, yielding CTTP-50 and CTTP-150. The novel CTTP composites and carbonized pristine TiO2-NTs (CTNT) were characterized by various techniques, including TEM, UV-Vis diffuse reflectance, Raman spectroscopy, XRD, and TGA. Their performance regarding dye adsorption and photocatalytic degradation under visible light was evaluated with Acid Orange 7, Methylene Blue, and Rhodamine B. CTTP-150 exhibited the highest adsorption capacity and photodegradation rate, attributed to the synergistic effect of PANI, which stabilizes the TiO2 phase and enhances visible-light absorption and adsorption. Full article
(This article belongs to the Special Issue Research on Heterogeneous Catalysis—2nd Edition)
Show Figures

Graphical abstract

20 pages, 5110 KiB  
Article
Effect of Copper Modification on Charge Carrier Transport and Defect Properties in Carbon-Doped TiO2 Nanotubes
by Ekaterina V. Kytina, Elizaveta A. Konstantinova, Mikhail N. Martyshov, Timofey P. Savchuk, Vladimir B. Zaitsev, Alexander I. Kokorin, Alexander S. Ilin and German V. Trusov
Catalysts 2025, 15(6), 572; https://doi.org/10.3390/catal15060572 - 9 Jun 2025
Viewed by 621
Abstract
For the efficient operation of various TiO2-based devices, it is important to understand the patterns of electric charge transport. In the present paper TiO2-C-Cu nanocomposites were synthesized by the electrochemical method. The band gap energy Eg of all systems [...] Read more.
For the efficient operation of various TiO2-based devices, it is important to understand the patterns of electric charge transport. In the present paper TiO2-C-Cu nanocomposites were synthesized by the electrochemical method. The band gap energy Eg of all systems was found to be approximately the same, 3.2 eV. Both copper ions replacing titanium ions and copper ions within the CuO phase were detected. The modification of TiO2-C nanotubes by copper led to a significant increase in conductivity and photocurrent, which may be associated with the formation of new donor states (Ti3+ centers) creating levels in the band gap of TiO2-C-Cu. The characteristics of charge carrier transport (including photocurrent) in TiO2-C-Cu materials were revealed for the first time. The conductivity at DC and at low frequencies of AC is due to the movement of electrons along the conduction zone, whereas at high frequencies there is a hopping mechanism of conduction. The acquired original results testify to the potential usage of TiO2-C-Cu nanocomposites in the field of catalysis and photoelectrochemistry. Full article
(This article belongs to the Special Issue Catalysts and Photocatalysts Based on Mixed Metal Oxides)
Show Figures

Figure 1

23 pages, 2993 KiB  
Article
Ultra-Trace Monitoring of Methylene Blue Degradation via AgNW-Based SERS: Toward Sustainable Advanced Oxidation Water Treatment
by Isabela Horta, Nilton Francelosi Azevedo Neto, Letícia Terumi Kito, Felipe Miranda, Gilmar Thim, André Luis de Jesus Pereira and Rodrigo Pessoa
Sustainability 2025, 17(10), 4448; https://doi.org/10.3390/su17104448 - 14 May 2025
Viewed by 661
Abstract
Methylene blue (MB), a widely used industrial dye, is a persistent pollutant with documented toxicity to aquatic organisms and potential health risks to humans, even at ultra-trace levels. Conventional monitoring techniques such as UV–Vis spectroscopy and fluorescence emission suffer from limited sensitivity, typically [...] Read more.
Methylene blue (MB), a widely used industrial dye, is a persistent pollutant with documented toxicity to aquatic organisms and potential health risks to humans, even at ultra-trace levels. Conventional monitoring techniques such as UV–Vis spectroscopy and fluorescence emission suffer from limited sensitivity, typically failing to detect MB below ~10−7 M. In this study, we introduce a surface-enhanced Raman spectroscopy (SERS) platform based on silver nanowire (AgNW) substrates that enables MB detection over an unprecedented dynamic range—from 1.5 × 10−4 M down to 1.5 × 10−16 M. Raman mapping confirmed the presence of individual signal hot spots at the lowest concentration, consistent with the theoretical number of analyte molecules in the probed area, thereby demonstrating near-single-molecule detection capability. The calculated enhancement factors reached up to 1.90 × 1012, among the highest reported for SERS-based detection platforms. A semi-quantitative calibration curve was established spanning twelve orders of magnitude, and this platform was successfully applied to monitor MB degradation during two advanced oxidation processes (AOPs): TiO2 nanotube-mediated photocatalysis under UV irradiation and atmospheric-pressure dielectric barrier discharge (DBD) plasma treatment. While UV–Vis and fluorescence techniques rapidly lost sensitivity during the degradation process, the SERS platform continued to detect the characteristic MB Raman peak at ~1626 cm−1 throughout the entire treatment duration. These persistent SERS signals revealed the presence of residual MB or partially degraded aromatic intermediates that remained undetectable by conventional optical methods. The results underscore the ability of AgNW-based SERS to provide ultra-sensitive, molecular-level insights into pollutant transformation pathways, enabling time-resolved tracking of degradation kinetics and validating treatment efficiency. This work highlights the importance of integrating SERS with AOPs as a powerful complementary strategy for advanced environmental monitoring and water purification technologies. By delivering an ultra-sensitive, low-cost sensor (<USD 0.16 per test) and promoting reagent-free treatment methods, this study directly advances SDG 6 (Clean Water and Sanitation) and SDG 12 (Responsible Consumption and Production). Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

20 pages, 3426 KiB  
Article
IrOx Supported on Submicron-Sized Anatase TiO2 as a Catalyst for the Oxygen Evolution Reaction
by Josep Boter-Carbonell, Carlos Calabrés-Casellas, Maria Sarret, Teresa Andreu and Pere L. Cabot
Catalysts 2025, 15(1), 79; https://doi.org/10.3390/catal15010079 - 16 Jan 2025
Cited by 1 | Viewed by 1186
Abstract
Ir-based catalysts are the best in terms of activity and stability for oxygen evolution reactions (OERs) in proton exchange water electrolysis. Due to their cost, efforts have been made to decrease their load without a loss of activity. In this paper, Ir nanoparticles [...] Read more.
Ir-based catalysts are the best in terms of activity and stability for oxygen evolution reactions (OERs) in proton exchange water electrolysis. Due to their cost, efforts have been made to decrease their load without a loss of activity. In this paper, Ir nanoparticles measuring 2–3 nm were loaded on TiO2 anatase supports of submicrometric size in different amounts using the microwave polyol method to optimize their mass activity. Using anatase particles with a diameter of about 100 nm and titania nanotubes (TNTs), Ir/TiO2 catalysts with Ir contents of 5, 10, 20, and 40 wt.% were synthesized and characterized via structural and electrochemical techniques. It was shown that the amount of Ir must be regulated to obtain continuous coverage on titania with strong Ir–TiO2 interactions which, for the 100 nm diameter anatase, is limited to about 20 wt.%. A higher percentage of Ir over 40 wt.% can be dispersed over the TNTs. Exceeding one layer of coverage leads to a decrease in the catalyst’s utilization. Ir/TiO2(10:90), Ir/TiO2(20:80), and Ir/TiO2(40:60) presented the highest pseudocapacitive currents per unit of Ir mass. The electrochemical active areas and mass activities for these later catalysts were also the highest compared to Ir/TiO2(05:95), Ir/TNT(40:60), and the unsupported catalysts and increased from 40 to 10 wt.% Ir. They also presented the lowest overpotentials of about 300 mV at 10 mA cm−2 for the OER, with Ir/TiO2(10:90) presenting the best specific activities and surface turnover frequencies, thus showing that the size of the support can be regulated to decrease the Ir content of the catalyst without a loss of activity. Full article
(This article belongs to the Special Issue Electrocatalytic Water Oxidation, 2nd Edition)
Show Figures

Graphical abstract

18 pages, 5651 KiB  
Article
Methane Decomposition over a Titanium-Alumina and Iron Catalyst Assisted by Lanthanides to Produce High-Performance COx-Free H2 and Carbon Nanotubes
by Hamid Ahmed, Anis H. Fakeeha, Fayez M. Al-Alweet, Ahmed E. Abasaeed, Ahmed A. Ibrahim, Rawesh Kumar, Alaaddin M. M. Saeed and Ahmed S. Al-Fatesh
Catalysts 2025, 15(1), 77; https://doi.org/10.3390/catal15010077 - 15 Jan 2025
Cited by 2 | Viewed by 1565
Abstract
COx-free H2, along with uniform carbon nanotubes, can be achieved together in high yield by CH4 decomposition. It only needs a proper catalyst and reaction condition. Herein, Fe-based catalyst dispersed over titania-incorporated-alumina (Fe/Ti-Al), with the promotional addition of lanthanides, like [...] Read more.
COx-free H2, along with uniform carbon nanotubes, can be achieved together in high yield by CH4 decomposition. It only needs a proper catalyst and reaction condition. Herein, Fe-based catalyst dispersed over titania-incorporated-alumina (Fe/Ti-Al), with the promotional addition of lanthanides, like CeO2 and La2O3, over it, is investigated for a methane decomposition reaction at 800 °C with GHSV 6 L/(g·h) in a fixed-bed reactor. The catalysts are characterized by temperature-programmed reduction (TPR), powder X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). The promoted catalysts are facilitated with higher surface area and enhanced dispersion and concentration of active sites, resulting in higher H2 and carbon yields than unpromoted catalysts. Ceria-promoted 20Fe/Ti-Al catalyst had the highest concentration of active sites and always attained the highest activity in the initial hours. The 20Fe-2.5Ce/Ti-Al catalyst attains >90% CH4 conversion, >80% H2-yield, and 92% carbon yield up to 480 min time on stream. The carbon nanotube over this catalyst is highly uniform, consistent, and has the highest degree of crystallinity. The supremacy of ceria-promoted catalyst attained >90% CH4 conversion even after the second cycle of regeneration studies (against 87% in lanthanum-promoted catalyst), up to 240 min time on stream. This study plots the path of achieving catalytic and carbon excellence over Fe-based catalysts through CH4 decomposition. Full article
(This article belongs to the Section Industrial Catalysis)
Show Figures

Graphical abstract

59 pages, 5944 KiB  
Review
Recent Advances in Preparation, Modification, and Application of Free-Standing and Flow-Through Anodic TiO2 Nanotube Membranes
by Ewelina Szaniawska-Białas, Anna Brudzisz, Amara Nasir and Ewa Wierzbicka
Molecules 2024, 29(23), 5638; https://doi.org/10.3390/molecules29235638 - 28 Nov 2024
Cited by 2 | Viewed by 1310
Abstract
Free-standing and flow-through anodic TiO2 nanotube (TNT) membranes are gaining attention due to their unique synergy of properties and morphology, making them valuable in diverse research areas such as (photo)catalysis, energy conversion, environmental purification, sensors, and the biomedical field. The well-organized TiO [...] Read more.
Free-standing and flow-through anodic TiO2 nanotube (TNT) membranes are gaining attention due to their unique synergy of properties and morphology, making them valuable in diverse research areas such as (photo)catalysis, energy conversion, environmental purification, sensors, and the biomedical field. The well-organized TiO2 nanotubes can be efficiently and cost-effectively produced through anodizing, while further utility of this material can be achieved by creating detached and flow-through membranes. This article reviews the latest advancements in the preparation, modification, and application of free-standing and flow-through anodic TiO2 nanotubes. It offers a comprehensive discussion of the factors influencing the morphology of the oxide and the potential mechanisms behind the electrochemical formation of TiO2 nanotubes. It examines methods for detachment and opening the bottom ends to prepare free-standing and flow-through TNT membranes and posttreatment strategies tailored to different applications. The article also provides an overview of recent applications of these materials in various fields, including hydrogen production, fuel and solar cells, batteries, pollutant diffusion and degradation, biomedical applications, micromotors, and electrochromic devices. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Electrochemistry)
Show Figures

Graphical abstract

15 pages, 5247 KiB  
Article
Glucose Oxidation Performance of Zinc Nano-Hexagons Decorated on TiO2 Nanotube Arrays
by Ke Wang and Hoda Amani Hamedani
Nanomanufacturing 2024, 4(4), 187-201; https://doi.org/10.3390/nanomanufacturing4040013 - 4 Oct 2024
Cited by 1 | Viewed by 1278
Abstract
Electrochemically anodized TiO2 nanotube arrays (NTAs) were used as a support material for the electrodeposition of zinc nanoparticles. The morphology, composition, and crystallinity of the materials were examined using scanning electron microscopy (SEM). Electrochemical impedance spectroscopy (EIS) was performed to evaluate the [...] Read more.
Electrochemically anodized TiO2 nanotube arrays (NTAs) were used as a support material for the electrodeposition of zinc nanoparticles. The morphology, composition, and crystallinity of the materials were examined using scanning electron microscopy (SEM). Electrochemical impedance spectroscopy (EIS) was performed to evaluate the electrochemical properties of TiO2 NTAs. Annealing post-anodization was shown to be effective in lowering the impedance of the TiO2 NTAs (measured at 1 kHz frequency). Zinc nanohexagons (NHexs) with a mean diameter of ~300 nm and thickness of 10–20 nm were decorated on the surface of TiO2 NTAs (with a pore diameter of ~80 nm and tube length of ~5 µm) via an electrodeposition process using a zinc-containing deep eutectic solvent. EIS and CV tests were performed to evaluate the functionality of zinc-decorated TiO2 NTAs (Zn/TiO2 NTAs) for glucose oxidation applications. The Zn/TiO2 NTA electrocatalysts obtained at 40 °C demonstrated enhanced glucose sensitivity (160.8 μA mM−1 cm−2 and 4.38 μA mM−1 cm−2) over zinc-based electrocatalysts reported previously. The Zn/TiO2 NTA electrocatalysts developed in this work could be considered as a promising biocompatible electrocatalyst material for in vivo glucose oxidation applications. Full article
Show Figures

Figure 1

29 pages, 664 KiB  
Review
Nano-Based Approaches in Surface Modifications of Dental Implants: A Literature Review
by Chrysa Marasli, Hector Katifelis, Maria Gazouli and Nefeli Lagopati
Molecules 2024, 29(13), 3061; https://doi.org/10.3390/molecules29133061 - 27 Jun 2024
Cited by 12 | Viewed by 5618
Abstract
Rehabilitation of fully or partially edentulous patients with dental implants represents one of the most frequently used surgical procedures. The work of Branemark, who observed that a piece of titanium embedded in rabbit bone became firmly attached and difficult to remove, introduced the [...] Read more.
Rehabilitation of fully or partially edentulous patients with dental implants represents one of the most frequently used surgical procedures. The work of Branemark, who observed that a piece of titanium embedded in rabbit bone became firmly attached and difficult to remove, introduced the concept of osseointegration and revolutionized modern dentistry. Since then, an ever-growing need for improved implant materials towards enhanced material–tissue integration has emerged. There is a strong belief that nanoscale materials will produce a superior generation of implants with high efficiency, low cost, and high volume. The aim of this review is to explore the contribution of nanomaterials in implantology. A variety of nanomaterials have been proposed as potential candidates for implant surface customization. They can have inherent antibacterial properties, provide enhanced conditions for osseointegration, or act as reservoirs for biomolecules and drugs. Titania nanotubes alone or in combination with biological agents or drugs are used for enhanced tissue integration in dental implants. Regarding immunomodulation and in order to avoid implant rejection, titania nanotubes, graphene, and biopolymers have successfully been utilized, sometimes loaded with anti-inflammatory agents and extracellular vesicles. Peri-implantitis prevention can be achieved through the inherent antibacterial properties of metal nanoparticles and chitosan or hybrid coatings bearing antibiotic substances. For improved corrosion resistance various materials have been explored. However, even though these modifications have shown promising results, future research is necessary to assess their clinical behavior in humans and proceed to widespread commercialization. Full article
(This article belongs to the Special Issue Synthesis of Nanomaterials and Their Applications in Biomedicine)
Show Figures

Figure 1

14 pages, 6457 KiB  
Article
Synthesis and Characterization of Iron-Doped TiO2 Nanotubes (Fe/TiNTs) with Photocatalytic Activity
by S. Mohd. Yonos Qattali, Jamal Nasir, Christian Pritzel, Torsten Kowald, Yilmaz Sakalli, S. M. Fuad Kabir Moni, Jörn Schmedt auf der Günne, Claudia Wickleder, Reinhard H. F. Trettin and Manuela S. Killian
Constr. Mater. 2024, 4(2), 315-328; https://doi.org/10.3390/constrmater4020017 - 29 Mar 2024
Cited by 5 | Viewed by 2561
Abstract
One of the most significant global challenges for humans is environmental pollution. The technology to control this problem is the utilization of semiconductors as photocatalysts. In the current study, iron-doped titania nanotubes (Fe/TiNTs) with increased photocatalytic effect were synthesized via a modified hydrothermal [...] Read more.
One of the most significant global challenges for humans is environmental pollution. The technology to control this problem is the utilization of semiconductors as photocatalysts. In the current study, iron-doped titania nanotubes (Fe/TiNTs) with increased photocatalytic effect were synthesized via a modified hydrothermal method. The products were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy (TEM), gas adsorption, electron spin resonance (ESR) and UV–Vis diffuse reflectance spectroscopy (DRS). TEM results indicated that Fe/TiNTs have a tubular and uniform structure with an average outer diameter of 23–48 nm and length of 10–15 µm. ESR and DRS revealed that Fe3+ ions were successfully introduced into the TiNT structure by replacing Ti4+ ions. An enhanced light absorption in the range of 400–600 nm additionally indicated successful doping. The band gap was narrowed as iron wt% was increased. The photocatalytic activity was evaluated by the degradation of methyl orange (MO) in the presence of Fe/TiNTs and TiTNs by monitoring the degradation of MO under UV light irradiation. An acceleration on the hydration of Portland cement was observed in the presence of 2.0 wt% Fe/TiNTs. Fe/TiNTs can be used as a nanomaterial in cement-based building materials to provide self-cleaning properties to the surface of concrete even in indoor environments. Full article
Show Figures

Figure 1

30 pages, 3770 KiB  
Review
Recent Advances in Polymer Nanocomposites: Unveiling the Frontier of Shape Memory and Self-Healing Properties—A Comprehensive Review
by Huma Jamil, Muhammad Faizan, Muhammad Adeel, Teofil Jesionowski, Grzegorz Boczkaj and Aldona Balčiūnaitė
Molecules 2024, 29(6), 1267; https://doi.org/10.3390/molecules29061267 - 13 Mar 2024
Cited by 36 | Viewed by 8637
Abstract
Shape memory and self-healing polymer nanocomposites have attracted considerable attention due to their modifiable properties and promising applications. The incorporation of nanomaterials (polypyrrole, carboxyl methyl cellulose, carbon nanotubes, titania nanotubes, graphene, graphene oxide, mesoporous silica) into these polymers has significantly enhanced their performance, [...] Read more.
Shape memory and self-healing polymer nanocomposites have attracted considerable attention due to their modifiable properties and promising applications. The incorporation of nanomaterials (polypyrrole, carboxyl methyl cellulose, carbon nanotubes, titania nanotubes, graphene, graphene oxide, mesoporous silica) into these polymers has significantly enhanced their performance, opening up new avenues for diverse applications. The self-healing capability in polymer nanocomposites depends on several factors, including heat, quadruple hydrogen bonding, π–π stacking, Diels–Alder reactions, and metal–ligand coordination, which collectively govern the interactions within the composite materials. Among possible interactions, only quadruple hydrogen bonding between composite constituents has been shown to be effective in facilitating self-healing at approximately room temperature. Conversely, thermo-responsive self-healing and shape memory polymer nanocomposites require elevated temperatures to initiate the healing and recovery processes. Thermo-responsive (TRSMPs), light-actuated, magnetically actuated, and Electrically actuated Shape Memory Polymer Nanocomposite are discussed. This paper provides a comprehensive overview of the different types of interactions involved in SMP and SHP nanocomposites and examines their behavior at both room temperature and elevated temperature conditions, along with their biomedical applications. Among many applications of SMPs, special attention has been given to biomedical (drug delivery, orthodontics, tissue engineering, orthopedics, endovascular surgery), aerospace (hinges, space deployable structures, morphing aircrafts), textile (breathable fabrics, reinforced fabrics, self-healing electromagnetic interference shielding fabrics), sensor, electrical (triboelectric nanogenerators, information energy storage devices), electronic, paint and self-healing coating, and construction material (polymer cement composites) applications. Full article
Show Figures

Graphical abstract

17 pages, 5423 KiB  
Article
Vitamin C Affinity to TiO2 Nanotubes: A Computational Study by Hybrid Density Functional Theory Calculations
by Aldo Ugolotti, Mirko Dolce and Cristiana Di Valentin
Nanomaterials 2024, 14(3), 261; https://doi.org/10.3390/nano14030261 - 25 Jan 2024
Cited by 3 | Viewed by 1626
Abstract
Titanium dioxide nanotubes (TNT) have been extensively studied because of their unique properties, which make such systems ideal candidates for biomedical application, especially for the targeted release of drugs. However, knowledge about the properties of TiO2 nanotubes with typical dimensions of the [...] Read more.
Titanium dioxide nanotubes (TNT) have been extensively studied because of their unique properties, which make such systems ideal candidates for biomedical application, especially for the targeted release of drugs. However, knowledge about the properties of TiO2 nanotubes with typical dimensions of the order of the nanometer is limited, especially concerning the adsorption of molecules that can be potentially loaded in actual devices. In this work, we investigate, by means of simulations based on hybrid density functional theory, the adsorption of Vitamin C molecules on different nanotubes through a comparative analysis of the properties of different structures. We consider two different anatase TiO2 surfaces, the most stable (101) and the more reactive (001)A; we evaluate the role of the curvature, the thickness and of the diameter as well as of the rolling direction of the nanotube. Different orientations of the molecule with respect to the surface are studied in order to identify any trends in the adsorption mechanism. Our results show that there is no preferential functional group of the molecule interacting with the substrate, nor any definite spatial dependency, like a rolling orientation or the concavity of the nanotube. Instead, the adsorption is driven by geometrical factors only, i.e., the favorable matching of the position and the alignment of any functional groups with undercoordinated Ti atoms of the surface, through the interplay between chemical and hydrogen bonds. Differently from flat slabs, thicker nanotubes do not improve the stability of the adsorption, but rather develop weaker interactions, due to the enhanced curvature of the substrate layers. Full article
Show Figures

Figure 1

16 pages, 9021 KiB  
Article
Asymmetry of Structural and Electrophysical Properties of Symmetrical Titania Nanotubes as a Result of Modification with Barium Titanate
by Elizaveta Konstantinova, Vladimir Zaitsev, Ekaterina Kytina, Mikhail Martyshov, Timofey Savchuk, Danil Butmanov, Daria Dronova, Daria Krupanova, Lidiya Volkova and Andrey Tarasov
Symmetry 2023, 15(12), 2141; https://doi.org/10.3390/sym15122141 - 1 Dec 2023
Viewed by 1689
Abstract
Anodic titania nanotubes (TiO2-NT) are very promising for use in photocatalysis and photovoltaics due to their developed surface, symmetrical structure and conductive properties, which, moreover, makes them a convenient matrix for creating various nanocomposites. Herein we propose a new facile way [...] Read more.
Anodic titania nanotubes (TiO2-NT) are very promising for use in photocatalysis and photovoltaics due to their developed surface, symmetrical structure and conductive properties, which, moreover, makes them a convenient matrix for creating various nanocomposites. Herein we propose a new facile way of synthesizing symmetrical TiO2-NT followed by a modification with barium titanate (BaTiO3) nanoparticles, combining the advantages of electrochemical oxidation and hydrothermal synthesis. The electrophysical and optoelectronic properties of the formed nanocomposites have been studied. An asymmetry of the current–voltage characteristics was revealed. It is shown that during the barium titanate deposition, a symmetry-breaking nanoheterojunction TiO2/BaTiO3 is formed. Using EPR spectroscopy, paramagnetic defects (titanium, barium and oxygen vacancies) in the samples were determined. It was observed for the first time that upon illumination of titania nanotubes modified with BaTiO3, the asymmetrical separation of photoexcited charge carriers (electrons and holes) between TiO2-NT and BaTiO3 occurs, followed by the capture of electrons and holes by defects. As a result, the photoinduced charge accumulates on the defects. Full article
(This article belongs to the Collection Feature Papers in Chemistry)
Show Figures

Figure 1

14 pages, 5121 KiB  
Article
Porous-Wall Titania Nanotube Array Layers: Preparation and Photocatalytic Response
by Dumitru Luca, Marius Dobromir, George Stoian, Adrian Ciobanu and Mihaela Luca
Nanomaterials 2023, 13(23), 3000; https://doi.org/10.3390/nano13233000 - 22 Nov 2023
Viewed by 1635
Abstract
Electrochemical anodization is already a well-established process, owing to its multiple benefits for creating high-grade titanium dioxide nanotubes with suitable characteristics and tunable shapes. Nevertheless, more research is necessary to fully comprehend the basic phenomena at the anode-electrolyte interface during anodization. In a [...] Read more.
Electrochemical anodization is already a well-established process, owing to its multiple benefits for creating high-grade titanium dioxide nanotubes with suitable characteristics and tunable shapes. Nevertheless, more research is necessary to fully comprehend the basic phenomena at the anode-electrolyte interface during anodization. In a recent paper, we proposed the use of sawtooth-shaped voltage pulses for Ti anodization, which controls the pivoting point of the balance between the two processes that compete to create nanotubes during a self-organization process: oxide etching and oxidation. Under these conditions, pulsed anodization clearly reveals the history of nanotube growth as recorded in the nanotube morphology. We show that by selecting the suitable electrolyte and electrical discharge settings, a nanoporous structure may be generated as a repeating pattern along the nanotube wall axis. We report the findings in terms of nanotube morphology, crystallinity, surface chemistry, photocatalytic activity, and surface hydrophilicity as they relate to the electrical parameters of electrochemical anodization. Aside from their fundamental relevance, our findings could lead to the development of a novel form of TiO2 nanotube array layer. Full article
(This article belongs to the Special Issue Growth, Characterization and Applications of Nanotubes (2nd Edition))
Show Figures

Figure 1

16 pages, 7431 KiB  
Article
Antifouling Behavior of Copper-Modified Titania Nanotube Surfaces
by Aniruddha Vijay Savargaonkar, Amit H. Munshi, Paulo Soares and Ketul C. Popat
J. Funct. Biomater. 2023, 14(8), 413; https://doi.org/10.3390/jfb14080413 - 4 Aug 2023
Cited by 7 | Viewed by 2140
Abstract
Titanium and its alloys are commonly used to fabricate orthopedic implants due to their excellent mechanical properties, corrosion resistance, and biocompatibility. In recent years, orthopedic implant surgeries have considerably increased. This has also resulted in an increase in infection-associated revision surgeries for these [...] Read more.
Titanium and its alloys are commonly used to fabricate orthopedic implants due to their excellent mechanical properties, corrosion resistance, and biocompatibility. In recent years, orthopedic implant surgeries have considerably increased. This has also resulted in an increase in infection-associated revision surgeries for these implants. To combat this, various approaches are being investigated in the literature. One of the approaches is modifying the surface topography of implants and creating surfaces that are not only antifouling but also encourage osteointegration. Titania nanotube surfaces have demonstrated a moderate decrease in bacterial adhesion while encouraging mesenchymal stem cell adhesion, proliferation, and differentiation, and hence were used in this study. In this work, titania nanotube surfaces were fabricated using a simple anodization technique. These surfaces were further modified with copper using a physical vapor deposition technique, since copper is known to be potent against bacteria once in contact. In this study, scanning electron microscopy was used to evaluate surface topography; energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy were used to evaluate surface chemistry; contact angle goniometry was used to evaluate surface wettability; and X-ray diffraction was used to evaluate surface crystallinity. Antifouling behavior against a gram-positive and a gram-negative bacterium was also investigated. The results indicate that copper-modified titania nanotube surfaces display enhanced antifouling behavior when compared to other surfaces, and this may be a potential way to prevent infection in orthopedic implants. Full article
(This article belongs to the Special Issue Titanium-Based Implants: Advances in Materials and Applications)
Show Figures

Figure 1

Back to TopTop