Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (121)

Search Parameters:
Keywords = tissue inhibitor of metalloproteinases 1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7618 KiB  
Article
Collagen Remodeling of Strattice™ Firm in a Nonhuman Primate Model of Abdominal Wall Repair
by Kelly Bolden, Jared Lombardi, Nimesh Kabaria, Eric Stec and Maryellen Gardocki-Sandor
Bioengineering 2025, 12(8), 796; https://doi.org/10.3390/bioengineering12080796 - 24 Jul 2025
Viewed by 339
Abstract
This study characterized collagen remodeling in an electron-beam-sterilized porcine acellular dermal matrix (E-PADM) by evaluating host response kinetics during wound healing. E-PADM (n = 6 lots/time point) was implanted in an abdominal wall bridging defect in nonhuman primates (N = 24). [...] Read more.
This study characterized collagen remodeling in an electron-beam-sterilized porcine acellular dermal matrix (E-PADM) by evaluating host response kinetics during wound healing. E-PADM (n = 6 lots/time point) was implanted in an abdominal wall bridging defect in nonhuman primates (N = 24). Histological, immunohistochemical, and biochemical assessments were conducted. Pro-inflammatory tissue cytokines peaked 1 month post-implantation and subsided to baseline by 6 months. E-PADM-specific serum immunoglobulin G antibodies increased by 213-fold from baseline at 1 month, then decreased to <10-fold by 6–9 months. The mean percentage tissue area staining positively for matrix metalloproteinase-1 plateaued at 3 months (40.3 ± 16.9%), then subsided by 6 months (16.3 ± 11.1%); tissue inhibitor matrix metalloproteinase-1 content plateaued at 1 month (39.0 ± 14.3%), then subsided by 9 months (13.0 ± 8.8%). Mean E-PADM thickness (1.7 ± 0.2 mm pre-implant) increased at 3 months (2.9 ± 1.5 mm), then decreased by 9 months (1.9 ± 1.1; equivalent to pre-implant). Histology demonstrated mild inflammation between 1–3 months, then a peak in host tissue deposition, with ≈75%–100% E-PADM collagen turnover, and fibroblast infiltration and neovascularization between 3–6 months. Picrosirius red staining revealed that mature E-PADM collagen was replaced by host-associated neo-collagen by 6 months. E-PADM implantation induced wound healing, which drove dermal E-PADM collagen remodeling to native, functional fascia-like tissue at the implant site. Full article
(This article belongs to the Special Issue Advances and Innovations in Wound Repair and Regeneration)
Show Figures

Figure 1

19 pages, 937 KiB  
Review
Tissue Repair Mechanisms of Dental Pulp Stem Cells: A Comprehensive Review from Cutaneous Regeneration to Mucosal Healing
by Jihui He, Jiao Fu, Ruoxuan Wang, Xiaojing Liu, Juming Yao, Wenbo Xing, Xinxin Wang and Yan He
Curr. Issues Mol. Biol. 2025, 47(7), 509; https://doi.org/10.3390/cimb47070509 - 2 Jul 2025
Viewed by 674
Abstract
Repairing and regenerating tissue barriers is a key challenge in regenerative medicine. Stem cells play a crucial role in restoring the structural and functional integrity of key epithelial barrier surfaces, including the skin and mucosa. This review analyzes the role of dental pulp [...] Read more.
Repairing and regenerating tissue barriers is a key challenge in regenerative medicine. Stem cells play a crucial role in restoring the structural and functional integrity of key epithelial barrier surfaces, including the skin and mucosa. This review analyzes the role of dental pulp stem cells (DPSCs) and their derivatives, including extracellular vesicles, conditioned medium, and intracellular factors, in accelerating skin wound healing. The key mechanisms include: (1) DPSCs regulating inflammatory microenvironments by promoting anti-inflammatory M2 macrophage polarization; (2) DPSCs activating vascular endothelial growth factor (VEGF) to drive angiogenesis; (3) DPSCs optimizing extracellular matrix (ECM) spatial structure through matrix metalloproteinase/tissue inhibitor of metalloproteinase (MMP/TIMP) balance; and (4) DPSCs enhancing transforming growth factor-β (TGF-β) secretion to accelerate granulation tissue formation. Collectively, these processes promote wound healing. In addition, we explored potential factors that accelerate wound healing in DPSCs, such as oxidative stress, mechanical stimulation, hypertension, electrical stimulation, and organoid modeling. In addition to demonstrating the great potential of DPSCs for skin repair, this review explores their translational prospects in mucosal regenerative medicine. It covers the oral cavity, esophagus, colon, and fallopian tube. Some studies have found that combining DPSCs and their derivatives with drugs can significantly enhance their biological effects. By integrating insights from skin and mucosal models, this review offers novel ideas and strategies for treating chronic wounds, inflammatory bowel disease, and mucosal injuries. It also lays the foundation for connecting basic research results with clinical practice. This represents a significant step forward in tackling these complex medical challenges and lays a solid scientific foundation for developing more targeted and efficient regenerative therapies. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

18 pages, 5903 KiB  
Article
Oxidative Stress Mediates the Dual Regulatory Effects of Bovine Uterine ECM Remodeling Through the TGF-β1/Smad3 Pathway: Molecular Mechanisms of MMPs and COL-IV Imbalances
by Jiamei Tan, Zongjie Wang, Mingmao Yang, Ruihang Zhang, Zhongqiang Xue, Dong Zhou, Aihua Wang, Pengfei Lin and Yaping Jin
Animals 2025, 15(13), 1847; https://doi.org/10.3390/ani15131847 - 23 Jun 2025
Viewed by 546
Abstract
Bovine endometritis is a common endocrine and reproductive disorder in postpartum dairy cows, closely associated with elevated systemic oxidative stress. This disease can lead to delayed uterine involution, repeated breeding failure, and significant economic losses in the dairy industry. Studies suggest that oxidative [...] Read more.
Bovine endometritis is a common endocrine and reproductive disorder in postpartum dairy cows, closely associated with elevated systemic oxidative stress. This disease can lead to delayed uterine involution, repeated breeding failure, and significant economic losses in the dairy industry. Studies suggest that oxidative stress may contribute to the pathological progression of endometritis by regulating ECM remodeling, but the specific molecular mechanisms remain unclear. ECM homeostasis relies on the coordinated action of matrix metalloproteinases (e.g., MMP2, MMP9) and collagen (e.g., type IV collagen, COL-IV), while the TGFβ1/Smad3 signaling pathway is implicated in ECM metabolic regulation. Therefore, elucidating the regulatory mechanisms of oxidative-stress-mediated TGFβ1/Smad3 signaling on ECM remodeling is crucial for understanding the pathogenesis of endometritis. This study investigates postpartum bovine uterine tissues, comparing inflammatory cytokines (IL-1β, IL-6, TNF-α) and oxidative-stress-related factors (GPx, SOD, CAT) between healthy and endometritis groups. Additionally, the differences in ECM-remodeling-associated proteins (MMP2, MMP9, COL-IV) and TGFβ1/Smad3 pathway activity are analyzed. To further validate the mechanisms, an oxidative stress model is established in vitro by treating bovine endometrial epithelial cells (bEECs) with 200 μM H2O2 for 4 h, followed by the valuation of the same indicators. Furthermore, gene silencing to downregulate Smad3 expression or inhibitor-mediated suppression of TGFβ1/Smad3 pathway activity is performed to observe their regulatory effects on MMP2, MMP9, and COL-IV. The results demonstrate that oxidative-stress-mediated endometritis significantly upregulates MMP2, MMP9, and the TGFβ1/Smad3 pathway activity, while suppressing COL-IV expression. Functional genetic experiments further reveal the dual regulatory role of the TGFβ1/Smad3 pathway in ECM remodeling: (1) pathway activation promotes MMP2/MMP9 expression, accelerating COL-IV degradation; (2) Smad3 positively regulates COL-IV synthesis. These findings provide a theoretical basis for targeting the TGFβ1/Smad3 pathway to mitigate the pathological progression of endometritis. Full article
(This article belongs to the Special Issue Physiology and Pathology of Bovine Reproduction)
Show Figures

Figure 1

27 pages, 7392 KiB  
Article
Skin-Whitening, Antiwrinkle, and Moisturizing Effects of Astilboides tabularis (Hemsl.) Engl. Root Extracts in Cell-Based Assays and Three-Dimensional Artificial Skin Models
by Nam Ho Yoo, Hyun Sook Lee, Sung Min Park, Young Sun Baek and Myong Jo Kim
Int. J. Mol. Sci. 2025, 26(12), 5725; https://doi.org/10.3390/ijms26125725 - 15 Jun 2025
Viewed by 545
Abstract
This study investigated the potential cosmetic properties of the ethyl acetate (EtOAc) fraction obtained from the roots of Astilboides tabularis (Hemsl.) Engl., focusing on skin-whitening, antiwrinkle, and moisturizing effects using cell-based assays and three-dimensional (3D) artificial skin models (Neoderm-ED and Neoderm-ME). The EtOAc [...] Read more.
This study investigated the potential cosmetic properties of the ethyl acetate (EtOAc) fraction obtained from the roots of Astilboides tabularis (Hemsl.) Engl., focusing on skin-whitening, antiwrinkle, and moisturizing effects using cell-based assays and three-dimensional (3D) artificial skin models (Neoderm-ED and Neoderm-ME). The EtOAc fraction showed significant dose-dependent inhibitory activity against tyrosinase (TYR) (72.0% inhibition at 50 µg/mL), comparable to that of kojic acid. In α-melanocyte-stimulating hormone (α-MSH)-stimulated Neoderm-ME artificial skin containing melanocytes, the EtOAc fraction reduced melanin synthesis at concentrations of 50 and 75 µg/mL and decreased melanogenesis-related gene expression, including TYR, microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1 (TRP-1) and TRP-2. In the antiwrinkle assays, the EtOAc fraction effectively inhibited elastase activity (41.5% inhibition at 10 µg/mL), exceeding the efficacy of ursolic acid. In the Neoderm-ED artificial skin model, the EtOAc fraction reversed structural damage induced by particulate matter (PM10), restoring epidermal thickness and dermal density. This improvement was supported by the increased expression of skin barrier and antiwrinkle genes, including filaggrin, hyaluronic acid synthase-1 (HAS-1), HAS-2, aquaporin-3 (AQP-3), collagen type I alpha 1 chain (COL1A1), elastin, tissue inhibitor of metalloproteinases-1 (TIMP-1), and TIMP-2, as well as decreased expression of matrix metalloproteinases (MMP-1, MMP-3, and MMP-9). Our results indicate that the EtOAc fraction from A. tabularis root has considerable potential as a multifunctional cosmetic. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Graphical abstract

14 pages, 3146 KiB  
Article
A High Performing Biomarker Signature for Detecting Early-Stage Pancreatic Ductal Adenocarcinoma in High-Risk Individuals
by Norma A. Palma, Aimee L. Lucas, Bryson W. Katona, Alcibiade Athanasiou, Natasha M. Kureshi, Lisa Ford, Thomas Keller, Stephen Weber, Ralph Schiess, Thomas King, Diane M. Simeone and Randall Brand
Cancers 2025, 17(11), 1866; https://doi.org/10.3390/cancers17111866 - 2 Jun 2025
Viewed by 1357
Abstract
Background/Objectives: Early detection of pancreatic cancer can improve patient survival, and blood-based biomarkers to aid in this are a significant need. The goal of this study was to develop and evaluate the performance of a 4- to 6-plex biomarker signature for detection of [...] Read more.
Background/Objectives: Early detection of pancreatic cancer can improve patient survival, and blood-based biomarkers to aid in this are a significant need. The goal of this study was to develop and evaluate the performance of a 4- to 6-plex biomarker signature for detection of early-stage pancreatic ductal adenocarcinoma (PDAC) that performs well in high-risk controls. Methods: Enzyme-linked immunosorbent assays were used to measure 10 previously identified serum protein biomarker candidates in Stage I and II PDAC cases (n = 128), high-risk controls (n = 465), and normal-risk controls (n = 30). Various combinations of biomarker candidates (models) were trained using machine learning and tested for robustness in differentiating cases from controls on the full cohort and in clinically relevant sub-types including those with diabetes, those ≥65 years of age, and low producers of carbohydrate antigen 19-9 (CA 19-9). Results: At 98% specificity, the top performing model, which was comprised of tissue inhibitor of metalloproteinase 1 (TIMP1), intracellular adhesion molecule 1 (ICAM1), thrombospondin 1 (THBS1), cathepsin D (CTSD), and CA 19-9, achieved 85% sensitivity in the full cohort and sensitivities of 91% in diabetics, 90% in ≥65 years of age, and 60% in low CA 19-9 producers. This model demonstrated significantly higher sensitivity in detecting PDAC in the full cohort and all sub-populations compared to CA 19-9 alone (p < 0.001). Conclusions: Our findings demonstrate the feasibility of a blood-based assay for detecting early-stage PDAC in high-risk individuals and key sub-populations, representing an important step towards improving diagnostic success for early-stage disease. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Figure 1

12 pages, 2753 KiB  
Article
Plasma Matrix Metalloproteinases Signature as Biomarkers for Pediatric Tuberculosis Diagnosis: A Prospective Case–Control Study
by Nathella Pavan Kumar, Syed Hissar, Arul Nancy, Kannan Thiruvengadam, Velayuthum V. Banurekha, Sarath Balaji, S. Elilarasi, N. S. Gomathi, J. Ganesh, M. A. Aravind, Dhanaraj Baskaran, Soumya Swaminathan and Subash Babu
Diseases 2025, 13(6), 171; https://doi.org/10.3390/diseases13060171 - 27 May 2025
Viewed by 397
Abstract
Diagnosing tuberculosis (TB) in children presents significant challenges, necessitating the identification of reliable biomarkers for accurate diagnosis. In this study, we investigated plasma matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) as potential diagnostic markers. A prospective case–control study involved 167 children [...] Read more.
Diagnosing tuberculosis (TB) in children presents significant challenges, necessitating the identification of reliable biomarkers for accurate diagnosis. In this study, we investigated plasma matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) as potential diagnostic markers. A prospective case–control study involved 167 children classified into confirmed TB, unconfirmed TB, and unlikely TB control groups. Plasma levels of MMPs (MMP 1, 2, 3, 7, 8, 9, 12, and 13) and TIMPs (TIMP 1, 2, 3, and 4) were measured using multiplex assays. Elevated baseline levels of MMP-1, MMP-2, MMP-7, MMP-9, TIMP-1, TIMP-2, TIMP-3, and TIMP-4 were observed in active TB cases compared to unlikely TB controls. Receiver operating characteristics (ROC) analysis identified MMP-1, MMP-2, MMP-9, and TIMP-1 as potential biomarkers with over 80% sensitivity and specificity. A three-MMP signature (MMP-1, MMP-2, and MMP-9) demonstrated 100% sensitivity and specificity. The findings suggest that a baseline MMP signature could serve as an accurate biomarker for diagnosing pediatric TB, enabling early intervention and effective management. Full article
Show Figures

Figure 1

15 pages, 2656 KiB  
Article
Endothelial–Mesenchymal Transition and Possible Role of Cytokines in Streptozotocin-Induced Diabetic Heart
by Hsu Lin Kang, Ákos Várkonyi, Ákos Csonka, András Szász, Tamás Várkonyi, Anikó Pósa and Krisztina Kupai
Biomedicines 2025, 13(5), 1148; https://doi.org/10.3390/biomedicines13051148 - 9 May 2025
Viewed by 754
Abstract
Background: Although endothelial mesenchymal transition (EndMT) has been characterized as a basic process in embryogenesis, EndMT is the mechanism that accelerates the development of cardiovascular diseases, including heart failure, aging, and complications of diabetes or hypertension as well. Endothelial cells lose their distinct [...] Read more.
Background: Although endothelial mesenchymal transition (EndMT) has been characterized as a basic process in embryogenesis, EndMT is the mechanism that accelerates the development of cardiovascular diseases, including heart failure, aging, and complications of diabetes or hypertension as well. Endothelial cells lose their distinct markers and take on a mesenchymal phenotype during EndMT, expressing distinct products. Methods: In this study, type 1 Diabetes mellitus (T1DM) was induced in rats with streptozotocin (STZ) by intraperitoneal injection at a 60 mg/kg dose. Diabetic rats were randomly divided into two groups, namely, control and diabetic rats, for 4 weeks. Heart, aorta, and plasma samples were collected at the end of 4 weeks. Sequentially, biochemical parameters, cytokines, reactive oxygen species (ROS), protein expression of EndMT markers (Chemokine C-X-C motif ligand-1 (CXCL-1), vimentin, citrullinated histone H3 (H3Cit), α-smooth muscle actin (α-SMA), and transforming growth factor beta (TGF-β) and versican), components of the extracellular matrix (matrix metalloproteinase 2 (MMP-2), tissue inhibitor of metalloproteinase-1(TIMP-1), and discoidin domain tyrosine kinase receptor 2 (DDR-2)) were detected by ELISA or Western blot, respectively. Results: Cytokines and ROS were increased in diabetic hearts, which induced partial EndMT. Among EndMT markers, histone citrullination, α-SMA, and CXCL-1 were increased; vimentin was decreased in DM. The endothelial marker endothelin-1 was significantly higher in the aortas of DM rats. Interestingly, TGF-β showed a significant decrease in the diabetic heart, plasma, and aorta. Additionally, MMP-2/TIMP-1 levels also decreased in DM. Conclusions: To sum up, the identification of molecules and regulatory pathways involved in EndMT provided novel therapeutic approaches for cardiac pathophysiological conditions. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

10 pages, 1704 KiB  
Communication
Jatrorrhizine Isolated from Phellodendron amurense Improves Collagen Homeostasis in CCD-986sk Human Dermal Fibroblast Cells
by Junhyo Cho
Cosmetics 2025, 12(2), 70; https://doi.org/10.3390/cosmetics12020070 - 9 Apr 2025
Cited by 1 | Viewed by 669
Abstract
Jatrorrhizine is one of the major bioactive compounds found in Phellodendron amurense. Previous studies have reported various health benefits of jatrorrhizine, but little is known about its effect on skin health. In this study, jatrorrhizine isolated from Phellodendron amurense was used to [...] Read more.
Jatrorrhizine is one of the major bioactive compounds found in Phellodendron amurense. Previous studies have reported various health benefits of jatrorrhizine, but little is known about its effect on skin health. In this study, jatrorrhizine isolated from Phellodendron amurense was used to determine the impact on collagen homeostasis in CCD-986sk human dermal fibroblast cells. Jatrorrhizine did not show toxicity of up to 10 μM in CCD-986sk cells. Jatrorrhizine induced procollagen and hyaluronic acid synthesis by increasing the gene expression of collagen type I alpha 2, TIMP metallopeptidase inhibitor 1, transforming growth factor beta 1, and hyaluronan synthase 2. In addition, jatrorrhizine treatment inhibited the gene expression of matrix metallopeptidase 1 and matrix metallopeptidase 9 by increasing tissue inhibitors of metalloproteinase. Our results suggest that jatrorrhizine has the potential for application in therapeutic and cosmetic products to improve collagen homeostasis and prevent wrinkle formation. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

21 pages, 6568 KiB  
Article
Effects of Oligomeric Proanthocyanidins on Cadmium-Induced Extracellular Matrix Damage via Inhibiting the ERK1/2 Signaling Pathway in Chicken Chondrocytes
by Jianhong Gu, Dan Liu, Anqing Gong, Xinrui Zhao, Jiatao Zhou, Panting Wang, Han Xia, Ruilong Song, Yonggang Ma, Hui Zou, Muhammad Azhar Memon, Yan Yuan, Xuezhong Liu, Jianchun Bian, Zongping Liu and Xishuai Tong
Vet. Sci. 2025, 12(4), 317; https://doi.org/10.3390/vetsci12040317 - 31 Mar 2025
Viewed by 671
Abstract
Cadmium (Cd) is a toxic, non-essential metal that primarily enters animal bodies through the digestive and respiratory systems, leading to damage to multiple organs and tissues. Cd can accumulate in cartilage and induce damage to chondrocytes. Procyanidins (PAs), also known as concentrated tannic [...] Read more.
Cadmium (Cd) is a toxic, non-essential metal that primarily enters animal bodies through the digestive and respiratory systems, leading to damage to multiple organs and tissues. Cd can accumulate in cartilage and induce damage to chondrocytes. Procyanidins (PAs), also known as concentrated tannic acid or oligomeric proanthocyanidins (OPCs), exhibit diverse biological and pharmacological activities. However, the mechanism of OPCs alleviates Cd-induced damage to chondrocytes in chickens remains to be further explored in vitro. Chondrocytes were isolated from both ends of the tibia of 17-day-old SPF chicken embryos, and then subsequently treated with various concentrations of Cd (0, 1, 2.5, 5, and 10 μmol/L) or OPCs (0, 5, 10, 20, and 40 μmol/L) to investigate the mechanism underlying extracellular matrix (ECM) degradation and damage. Cd reduced cell viability, glycosaminoglycan (GAG) secretion, and ECM degradation in chondrocytes by decreasing the expression of type II collagen alpha 1 (COL2A1) and aggrecan (ACAN) while increasing the release of cartilage oligomeric matrix protein (COMP), along with elevated levels of matrix-degrading enzymes, such as matrix metalloproteinases 1 (MMP1), MMP10, and MMP13, and a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) and ADAMTS5. Cd induced phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) and the expression of matrix-degrading enzymes, impairing ECM synthesis, an effect that could be alleviated by ERK1/2 inhibitor U0126. Chondrocytes were treated with 5 μmol/L Cd and 10 μmol/L OPCs, and it was found that OPCs inhibited the activation of the ERK1/2 signaling pathway and the expression of matrix-degrading enzymes, while promoting ECM synthesis and alleviating Cd-induced ECM damage in chickens. This study provides a theoretical basis for clinical research on OPCs with respect to the prevention and treatment of Cd-induced chondrogenic diseases in poultry. Full article
Show Figures

Graphical abstract

16 pages, 2140 KiB  
Article
Anticancer Activity of Melittin-Containing Bee Venom Fraction Against Glioblastoma Cells In Vitro
by Agata Małek, Maciej Strzemski, Lucyna Kapka-Skrzypczak and Jacek Kurzepa
Int. J. Mol. Sci. 2025, 26(6), 2376; https://doi.org/10.3390/ijms26062376 - 7 Mar 2025
Cited by 1 | Viewed by 2158
Abstract
Previous observations indicating a lower incidence of various types of cancer in beekeepers suggest that greater exposure to stings reduces the risk of cancer development. However, it is not known which of the active compounds of the bee venom (BV) may be responsible [...] Read more.
Previous observations indicating a lower incidence of various types of cancer in beekeepers suggest that greater exposure to stings reduces the risk of cancer development. However, it is not known which of the active compounds of the bee venom (BV) may be responsible for the observed properties. The aim of this study is to evaluate the anti-glioblastoma effect of the main BV fractions. In addition, the effect of BV fractions on the activity of matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9) was assessed. Commercially available BV was divided into three fractions containing one of the main BV components: apamin (fraction #1), phospholipase A2 (fraction #2), or melittin (fraction #3). The viability of glioblastoma lines (LN18 and LN229) compared to a physiological line (human MO3.13) was assessed using the MTT. MMP-2 and MMP-9 activity was assessed using gelatin zymography. Tissue inhibitors of metalloproteinases 1 and 2 (TIMP-1 and TIMP-2) levels in cell culture media were measured with the ELISA method. The fraction containing apamin did not show cytotoxic activity up to a concentration of 100 µg/mL. The fraction containing phospholipase A2 partially reduced the cells’ viability at a concentration of 100 µg/mL. The greatest activity was demonstrated by the melittin-containing fraction which completely reduced the viability of glioma cells from a concentration of 2.5 μg/mL and inhibited the activity of the assessed metalloproteinases in a dose-dependent manner. After 72 h of incubation, the highest concentrations of TIMP-1 and TIMP-2 (approximately 150 ng/mL and 100 ng/mL, respectively) were observed in the LN229 line. In all tested lines, fraction #3, crude BV, and melittin reduced the secretion of both inhibitors into the medium in a dose-dependent manner. The melittin-containing fraction possessed anti-glioma properties in vitro, suggesting that melittin may be the main anticancer compound of BV. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

12 pages, 1293 KiB  
Article
Insulin-like Growth Factor-I Reduces Collagen Production by Hepatic Stellate Cells Through Stimulation of Collagen Degradation System via mTOR-Dependent Signaling Pathway
by Takako Nishikawa, Natsuko Ohtomo, Yukiko Inoue, Mami Takahashi, Hitoshi Ikeda, Kazuhiko Koike, Nobutake Yamamichi, Mitsuhiro Fujishiro and Tomoaki Tomiya
Biomedicines 2025, 13(3), 566; https://doi.org/10.3390/biomedicines13030566 - 24 Feb 2025
Viewed by 809
Abstract
Aim: The liver is the major source of circulating insulin-like growth factor (IGF)-I. Serum IGF-I levels are decreased in cirrhotic patients depending on severity. IGF-I administration was shown to improve liver function in patients and animal models of liver cirrhosis. However, controversy [...] Read more.
Aim: The liver is the major source of circulating insulin-like growth factor (IGF)-I. Serum IGF-I levels are decreased in cirrhotic patients depending on severity. IGF-I administration was shown to improve liver function in patients and animal models of liver cirrhosis. However, controversy exists as to whether IGF-I stimulates or reduces fibrosis in the liver. The effects of IGF-I on collagen accumulation by hepatic stellate cells (HSCs) and its mechanisms were studied. Methods: A moderately activated HSC clone was used to determine the effect of IGF-I administration on the collagen production system, including its degradation. The intracellular signaling system was also studied in the cells stimulated by IGF-I. Results: IGF-I treatment reduced total amounts of collagen deposition in a dose-related manner, while DNA synthesis was stimulated by IGF-I. IGF-I treatment did not affect transforming growth factor-beta levels and type I procollagen mRNA expression. Expression of matrix metalloproteinase (MMP)-2 and -9 was upregulated, and tissue inhibitor of metalloproteinase (TIMP)-1 expression was downregulated by IGF-I treatment. Rapamycin, an inhibitor of mammalian target of rapamycin (mTOR), suppressed phosphorylation of 70 kDa ribosomal protein S6 kinase and eukaryotic initiation factor 4E-binding protein 1, and abrogated IGF-I-induced increase in MMP-2 and -9 expression and decrease in TIMP-1 expression. Conclusions: IGF-I has the ability to stimulate the collagen degradation system by HSCs through an mTOR-dependent pathway independent of modulation of the activation state of HSCs. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
Show Figures

Figure 1

24 pages, 52987 KiB  
Article
Differential Remodelling of Endometrial Extracellular Matrix in the Non-Pregnant Uterus of Lagostomus maximus as a Potential Mechanism Underlying Embryonic Death
by Francisco Acuña, Gisela Soledad Gualdoni, Francisco Rivollier, Camila Barril, Enrique Leo Portiansky, Claudio Gustavo Barbeito and Elisa Cebral
Animals 2025, 15(4), 542; https://doi.org/10.3390/ani15040542 - 13 Feb 2025
Viewed by 916
Abstract
During development, the remodelling of fibrillar components of the uterine extracellular matrix (ECM), mediated by the matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), plays an essential role in embryonic survival. Previously, we observed that in the plains viscacha (Lagostomus maximus), [...] Read more.
During development, the remodelling of fibrillar components of the uterine extracellular matrix (ECM), mediated by the matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), plays an essential role in embryonic survival. Previously, we observed that in the plains viscacha (Lagostomus maximus), only caudal implantation sites (IS) contain viable embryos, whereas embryos at cranial and middle IS die and are reabsorbed. The objective of this study was to analyse the distribution and expression of key components of the endometrial ECM, including fibrillar collagens, MMPs 2 and 9, and TIMPs 1 and 2, in three uterine segments (US) of the non-pregnant adult viscachas. In sections from three US, we observed a significant craniocaudal increase in collagen fibres (Van Gieson and Picrosirius red staining) and elastic fibres (Verhoeff-Van Gieson trichrome staining), along with the immunolabelling levels of MMP-2, MMP-9, TIMP-1, and TIMP-2 (immunohistochemistry). Zymography revealed similar gelatinolytic activity of MMP-2 in the three US but higher than the MMP-9 activity. However, MMP-9 activity in the caudal segment was significantly higher than that in the cranial and middle ones. These findings suggest that uterine ECM variations along the craniocaudal axis may contribute to uterine remodelling processes that regulate embryonic survival during gestation. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Figure 1

16 pages, 2671 KiB  
Article
Matrix Metalloproteinases, Tissue Inhibitors of Metalloproteinases, and Their Ratios in Women with Polycystic Ovary Syndrome and Healthy Controls
by Alexandra E. Butler, Manjula Nandakumar, Thozhukat Sathyapalan, Edwina Brennan and Stephen L. Atkin
Int. J. Mol. Sci. 2025, 26(1), 321; https://doi.org/10.3390/ijms26010321 - 1 Jan 2025
Cited by 5 | Viewed by 1744
Abstract
Matrix metalloproteinases (MMPs) are M2 macrophage markers that are modulated by inflammation. A disintegrin and metalloproteinases (ADAMS) and those with thrombospondin motifs (ADAMTS) regulate the shedding of membrane-bound proteins, growth factors, cytokines, ligands, and receptors; MMPs, ADAMS, and ADAMTS may be regulated by [...] Read more.
Matrix metalloproteinases (MMPs) are M2 macrophage markers that are modulated by inflammation. A disintegrin and metalloproteinases (ADAMS) and those with thrombospondin motifs (ADAMTS) regulate the shedding of membrane-bound proteins, growth factors, cytokines, ligands, and receptors; MMPs, ADAMS, and ADAMTS may be regulated by tissue inhibitors of metalloproteinases (TIMPs). This study aimed to determine whether these interacting proteins were dysregulated in PCOS. A Somascan proteomic analysis of 12 MMPs, three of their inhibitors (TIMP-1, 2, 3), two ADAMS (9, 12), five ADAMTS (1, 4, 5, 13, 15), insulin-like growth factor binding protein-1 (IGFBP-1), and insulin-like growth factor-1 (IGF-1) was undertaken in a well-validated PCOS database of 143 women with PCOS and 97 controls. Women with PCOS had significantly higher levels of MMP-9 and lower levels of MMP-2, MMP-14, TIMP-2, IGFBP-1, and IGF-1 compared to the controls (p < 0.0001, p < 0.005, p < 0.04, p < 0.05, p < 0.0001, and p < 0.0001, respectively). No differences were observed for any other MMPs. The ADAMS or ADAMTS levels did not differ between groups. Body mass index (BMI) was correlated with MMP-9 (p < 0.01), MMP-1 (p < 0.05), MMP-2 (p < 0.05), MMP-10 (p < 0.005), MMP-12 (p < 0.005), ADAM-9 (p < 0.05), and IGFBP-1 (p < 0.0001), but only MMP-9 still differed after accounting for BMI. MMP-9/TIMP-1, MMP-9/TIMP-2, and MMP-9/TIMP-3 ratios were higher in the PCOS group (p < 0.01), whilst MMP-17/TIMP-1 and MMP-17/TIMP-2 were lower (p = 0.01). MMP-2/TIMP ratios showed no difference between groups. TIMP-2 was positively correlated with CRP (p < 0.01). MMP changes in PCOS are largely driven by BMI, though increased MMP-9 is BMI-independent, suggesting that any deleterious effects of MMP-9 would be potentially exacerbated by a concomitantly increased BMI. The significant increases in the MMP-9/TIMP ratios suggests MMP-9 overactivity in PCOS. Full article
(This article belongs to the Special Issue The Extracellular Matrix in Physiopathology)
Show Figures

Figure 1

18 pages, 3850 KiB  
Article
RHO-Associated Coiled-Coil-Containing Protein Kinase Inhibitors Significantly Modulate the Epithelial–Mesenchymal Transition Induced by TGF-β2 in the 2-D and 3-D Cultures of Human Corneal Stroma Fibroblasts
by Araya Umetsu, Yosuke Ida, Tatsuya Sato, Megumi Higashide, Nami Nishikiori, Masato Furuhashi, Hiroshi Ohguro and Megumi Watanabe
Biomedicines 2024, 12(12), 2784; https://doi.org/10.3390/biomedicines12122784 - 6 Dec 2024
Viewed by 1164
Abstract
Background/Objectives: The objective of the present study was to examine the unidentified effects that RHO-associated coiled-coil-containing protein kinase 1 and 2 antagonists exert on the transforming growth factor beta2-induced epithelial–mesenchymal transition of the human corneal stroma. Methods: In the presence or absence of [...] Read more.
Background/Objectives: The objective of the present study was to examine the unidentified effects that RHO-associated coiled-coil-containing protein kinase 1 and 2 antagonists exert on the transforming growth factor beta2-induced epithelial–mesenchymal transition of the human corneal stroma. Methods: In the presence or absence of pan-RHO-associated coiled-coil-containing protein kinase inhibitors, ripasudil or Y27632 and RHO-associated coiled-coil-containing protein kinase 2 inhibitor, KD025, we analyzed the following: (1) planar proliferation caused by trans-endothelial electrical resistance and the cellular metabolic characteristics of the two-dimensional cultures of human corneal stroma fibroblasts; (2) the physical properties of a three-dimensional human corneal stroma fibroblasts spheroid; and (3) the gene expressions and their regulators in the extracellular matrix, along with the tissue inhibitors of metalloproteinases and matrix metalloproteinases and the endoplasmic reticulum stress-related factors of the two-dimensional and three-dimensional cultures in human corneal stroma fibroblasts. Results: Exposure to 5 nM of the transforming growth factor beta2 markedly increased the trans-endothelial electrical resistance values as well as the metabolic function in two-dimensional cultures of human corneal stroma fibroblasts. With an increase in stiffening, this exposure also reduced the size of three-dimensional human corneal stroma fibroblast spheroids, which are typical cellular phenotypes of the epithelial–mesenchymal transition. Both pan-RHO-associated coiled-coil-containing protein kinase inhibitors and RHO-associated coiled-coil-containing protein kinase 2 inhibitors substantially modulated these transforming growth factor beta2-induced effects, albeit in a different manner. Gene expression analysis supported such biological alterations via either with transforming growth factor beta2 alone or with the RHO-associated coiled-coil-containing protein kinase inhibitors variants with the noted exception being the transforming growth factor beta2-induced effects toward the three-dimensional human corneal stroma fibroblast spheroid. Conclusions: The findings presented herein suggest the following: (1) the epithelial–mesenchymal transition could be spontaneously evoked in the three-dimensional human corneal stroma fibroblast spheroid, and, therefore, the epithelial–mesenchymal transition induced by transforming growth factor beta2 could differ between two-dimensional and three-dimensional cultured HCSF cells; and (2) the inhibition of ROCK1 and 2 significantly modulates the transforming growth factor beta2-induced an epithelial–mesenchymal transition in both two-dimensionally and three-dimensionally cultured human corneal stroma fibroblasts, albeit in a different manner. Full article
Show Figures

Figure 1

11 pages, 258 KiB  
Article
Effects of Acute Maximum-Intensity Exercise on Matrix Metalloproteinase-2, -9, and Tissue Inhibitor of Metalloproteinase-1 Levels in Adult Males with Type 1 Diabetes Mellitus Treated with Insulin Pumps
by Joanna Kryst, Bartłomiej Matejko, Olga Czerwińska-Ledwig, Łukasz Tota, Roxana Zuziak and Anna Piotrowska
J. Clin. Med. 2024, 13(23), 7077; https://doi.org/10.3390/jcm13237077 - 23 Nov 2024
Viewed by 1040
Abstract
Background: Dysregulation of matrix metalloproteinases (MMPs) activity is considered one of the potential causes of vascular complications in diabetic patients. Since training volume may influence MMPs levels in varying ways, the aim of our study was to evaluate changes in MMPs levels following [...] Read more.
Background: Dysregulation of matrix metalloproteinases (MMPs) activity is considered one of the potential causes of vascular complications in diabetic patients. Since training volume may influence MMPs levels in varying ways, the aim of our study was to evaluate changes in MMPs levels following acute maximum-intensity exercise in male patients with type 1 diabetes mellitus (T1DM). Methods: This study included 24 male T1DM patients and 10 healthy controls. Aerobic capacity was evaluated with a treadmill test. Levels of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of metalloproteinase-1 (TIMP-1) were measured both before the aerobic capacity test and 60 min after its completion utilizing enzyme-linked immunosorbent assay (ELISA) system kits. Results: Before the aerobic capacity test only, MMP-9 serum levels were significantly elevated in the T1DM group compared to the controls. Following maximum-intensity exercise, the levels of MMP-2, MMP-9, and TIMP-1 were significantly higher in T1DM patients than in the control group. Between-group comparisons revealed that maximum-intensity exercise induced a statistically significant increase in MMP-2 serum levels from baseline in T1DM patients compared to controls. Conclusions: Our findings suggest that high-intensity exercise in T1DM patients leads to dysregulation of MMPs, as manifested by a significant increase in MMP-2 levels. This dysregulation may play a role in the development of vascular complications in diabetic patients. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Back to TopTop