Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,331)

Search Parameters:
Keywords = tissue in situ

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 9368 KB  
Article
Development of Cells Repository of Betta Species: A Tool for Genetic Conservation and Biotechnological Advancement
by Sukumal Prukudom, Yanika Piyasanti, Santi Poungcharean, Suparat Chaipipat, Kornkanok Sritabtim, Juthathip Jurutha, Chonphoom Phan-poe, Rungthiwa Sinsiri, Soranuth Sirisuay and Kannika Siripattarapravat
Animals 2026, 16(3), 408; https://doi.org/10.3390/ani16030408 (registering DOI) - 28 Jan 2026
Abstract
Thailand harbors a remarkable diversity of betta (Siamese fighting fish); however, their wild populations are threatened by habitat loss and genetic pollution from released ornamental fish. Therefore, effective conservation strategies are needed to extend traditional in situ and ex situ methods, which are [...] Read more.
Thailand harbors a remarkable diversity of betta (Siamese fighting fish); however, their wild populations are threatened by habitat loss and genetic pollution from released ornamental fish. Therefore, effective conservation strategies are needed to extend traditional in situ and ex situ methods, which are resource-intensive and prone to external threats. This study established a practical approach for cultivating cells from ornamental bettas and applying it to 11 wild species collected from their specific type localities in Thailand. Additionally, relevant available data on water properties were collected. Cell isolation was achieved from larval caudal fin bud and adult caudal fin tissues, with larval specimens exhibiting a significantly higher isolation success rate (83.3%) and a shorter initial cultivation period (13.27 ± 3.2 days) compared to adult cells (38.8% success, 24.33 ± 7.8 days initial period). After overcoming senescence, the cell doubling time (DT) was approximately 2 days, and cryopreservation assays demonstrated post-thaw viability over 80%, ensuring the long-term viability. While larval isolation is challenging, adult fin biopsy provides a superior alternative by bypassing breeding and euthanasia. This non-lethal, repeatable sampling method allows for precise species identification via external morphology, offering a highly efficient strategy for conservation. Cell isolation was achieved for 10 of the 11 species, 9 of which resulted in established, cryopreserved cell lines, representing the first maintained cell lines from larval and adult tissues of Betta species and providing a novel, valuable resource for both biotechnology and the crucial biodiversity conservation of this important freshwater fish of Thailand. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

18 pages, 2334 KB  
Article
Biofunctionalized Vascular Access Graft Improves Patency and Endothelialization in a Porcine Arteriovenous Model
by Aurora Battistella, Morgan Linger, Meredith Overton, Unimunkh Uriyanghai, Christine Wai, Gang Xi, Prabir Roy-Chaudhury and Wei Tan
J. Funct. Biomater. 2026, 17(2), 65; https://doi.org/10.3390/jfb17020065 - 27 Jan 2026
Abstract
Reliable vascular access remains a major clinical challenge for hemodialysis patients, as expanded polytetrafluoroethylene (PTFE) grafts exhibit poor patency and frequent complications driven by thrombosis and neointimal hyperplasia. Tissue-engineered vascular grafts offer a regenerative alternative but often lack the mechanical resilience required for [...] Read more.
Reliable vascular access remains a major clinical challenge for hemodialysis patients, as expanded polytetrafluoroethylene (PTFE) grafts exhibit poor patency and frequent complications driven by thrombosis and neointimal hyperplasia. Tissue-engineered vascular grafts offer a regenerative alternative but often lack the mechanical resilience required for high-flow arteriovenous (AV) environments. Here, we developed a reinforced, biofunctionalized coaxial electrospun graft comprising a poly(ε-caprolactone) mechanical core and a norbornene-functionalized poly(ethylene glycol) sheath incorporating pro-endothelialization cues. Circumferential PTFE rings were added to improve kink resistance. Grafts were implanted in a porcine AV configuration that recapitulates clinical hemodynamic conditions. Mechanical characterization included compliance, burst pressure, and kink resistance; host remodeling was assessed using histology, immunofluorescence, and multiphoton imaging at 4 weeks. Ring-reinforced electrospun grafts demonstrated a kink radius of 0.187 cm, compliance of 1.04 ± 0.29%/100 mmHg, and burst pressure of 1505 ± 565 mmHg, values all comparable to Gore-Tex PTFE and within industrial performance standards. In vivo, the electrospun grafts showed extensive host cell infiltration, collagen deposition, and formation of smooth muscle-like tissue, whereas PTFE controls remained largely acellular. Immunofluorescence confirmed intramural α-SMA+ and CD31+ cell populations, and multiphoton microscopy revealed significantly greater collagen and elastin content compared with PTFE (p < 0.05). Collectively, these findings demonstrate that the reinforced electrospun graft maintains mechanical integrity under physiological AV loading while supporting in situ endothelialization and extracellular matrix remodeling in a clinically relevant, large animal model. This work provides one of the first demonstrations of functional tissue regeneration within a fully synthetic, acellular scaffold in a porcine hemodialysis model and advances the translational development of durable, regenerative vascular access grafts that couple mechanical resilience with bioactive healing capacity. Full article
19 pages, 2360 KB  
Article
High Frequency Loss of 17q11.2 and Downregulation of the Cancer Metastasis Suppression microRNA miR-193a-3p in Prostate Cancer Bone Metastasis
by Elzbieta Stankiewicz, Sarah C. McCarley, Xueying Mao, Sakunthala Kudahetti, Tim Oliver, Jonathan Shamash, Trevor Graham, Daniel M. Berney and Yong-Jie Lu
Cancers 2026, 18(3), 403; https://doi.org/10.3390/cancers18030403 - 27 Jan 2026
Abstract
Background/Objectives: Although 90% of prostate cancer (PCa) metastasis occurs in the bone, there are limited studies and rarely available genome-wide profiles at individual sample level for genomic copy number changes in the literature. Methods: We performed Affymetrix SNP 6.0 high-density microarray analysis [...] Read more.
Background/Objectives: Although 90% of prostate cancer (PCa) metastasis occurs in the bone, there are limited studies and rarely available genome-wide profiles at individual sample level for genomic copy number changes in the literature. Methods: We performed Affymetrix SNP 6.0 high-density microarray analysis to generate the genome-wide copy number change profiles for six cases of PCa bone metastases. A common genomic loss was confirmed by fluorescence in situ hybridization (FISH) in paraffin-embedded PCa bone metastasis samples together with primary PCa and benign prostate hyperplasia samples. We overexpressed the candidate miRNA in PCa cell lines and knocked down its target genes by siRNA transfection and investigated the effect on protein expression and cell viability, migration, and invasion abilities, respectively. Protein expression in PCa tissues was analyzed by immunohistochemical staining. Results: We provided high-resolution PCa bone metastasis profiles of six cases and identified potential bone metastasis-specific common genomic alterations, including a 1.6 mb region on 17q11.2, as well as those shared by non-bone metastatic PCa. The common 17q11.2 loss was confirmed by FISH in further 14/21 PCa bone metastasis samples but was only found in 9/151 primary PCa samples. The well-established tumor-suppressing miRNA located within this small genomic region, miR-193a-3p, was downregulated in both bone metastasis and primary PCa cases, leading to overexpression of cyclin D1 and uPA to promote cancer cell migration and invasion. Cyclin D1 was highly expressed in both localized PCa and bone metastasis samples, and the expression was significantly higher in the latter group (p = 0.013). Conclusions: We generated high-resolution copy number change profiles for bone metastasis samples. This led to the identification of a common, small genomic loss and downregulation of miR-193a-3p, which suppresses PCa bone metastasis through inhibition of its target proteins, providing new insight into bone metastasis development. Full article
23 pages, 4189 KB  
Article
Comparative Effects of Cellulose- and Gelatin-Based Hemostatic Biomaterials on the Early Stage of Wound Healing—An In Vivo Study
by Helena Hae In Ströthoff, Polina Shabes, Katharina Henrika Beckamp, Markus Udo Wagenhäuser, Wiebke Ibing, Julian-Dario Rembe, Hubert Schelzig and Waseem Garabet
J. Funct. Biomater. 2026, 17(2), 64; https://doi.org/10.3390/jfb17020064 - 27 Jan 2026
Abstract
Hemostatic biomaterials are widely used in surgical and trauma settings, yet their influence on early wound healing remains incompletely understood. This in vivo study investigated the effects of cellulose- and gelatin-based hemostatic biomaterials on early wound healing using a murine skin wound model. [...] Read more.
Hemostatic biomaterials are widely used in surgical and trauma settings, yet their influence on early wound healing remains incompletely understood. This in vivo study investigated the effects of cellulose- and gelatin-based hemostatic biomaterials on early wound healing using a murine skin wound model. Oxidized non-regenerated cellulose (ONRC), oxidized regenerated cellulose (ORC), and a porcine gelatin-based matrix (GELA) were left in situ following standardized subcutaneous implantation and compared with sham-treated controls. Tissue responses were analyzed at postoperative days 3 and 7 using histology, immunohistochemistry, and quantitative real-time polymerase chain reaction (qPCR). Cellulose-based materials persisted as eosinophilic remnants, whereas fibrous matrix structures and enhanced extracellular matrix deposition were observed in the GELA group. Immunohistochemical analysis revealed increased cluster of differentiation 68 (CD68)–positive macrophage presence in the ORC group at day 3 and in the GELA group at day 7, indicating biomaterial-dependent modulation of macrophage involvement during early wound healing. Expression of Kiel 67 (Ki-67), a marker of cellular proliferation, was significantly elevated in the epidermis of the GELA group at day 7, suggesting enhanced proliferative activity during the reparative phase. In contrast, no significant differences were detected in the expression of interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), or cluster of differentiation 14 (CD14) between groups. Overall, none of the investigated biomaterials impaired early wound healing, while the gelatin-based material demonstrated features consistent with enhanced reparative cellular responses without excessive inflammation. Full article
(This article belongs to the Special Issue Biomaterials for Hemostasis and Wound Healing Applications)
Show Figures

Graphical abstract

11 pages, 3049 KB  
Article
Association of Single-Nucleotide Polymorphisms in Sweet Taste Perception and Intake Genes with Primary Ciliary Dyskinesia and Its Clinical Phenotypes
by Gioia Piatti, Mirko Aldè, Romina Ruberto, Aurora Santin, Giorgia Girotto and Maria Pina Concas
Int. J. Mol. Sci. 2026, 27(3), 1234; https://doi.org/10.3390/ijms27031234 - 26 Jan 2026
Viewed by 4
Abstract
Primary ciliary dyskinesia (PCD) is a congenital motile ciliopathy causing impaired mucociliary clearance and characterized by recurrent respiratory infections affecting both the upper and lower airways. Several genes involved in taste perception pathways are expressed in extraoral tissues and have recently emerged as [...] Read more.
Primary ciliary dyskinesia (PCD) is a congenital motile ciliopathy causing impaired mucociliary clearance and characterized by recurrent respiratory infections affecting both the upper and lower airways. Several genes involved in taste perception pathways are expressed in extraoral tissues and have recently emerged as regulators of airway immune responses. This study aimed to (1) analyze potential correlations between PCD clinical manifestations and (2) investigate whether genetic variants within sweet signaling genes (SweetG) could be associated with PCD features. A total of 17 SNPs in nine SweetG were tested for differences in allele frequency between patients and the gnomAD European reference population using a binomial test. Regression models were used to evaluate associations between SweetG-SNPs and clinical features of patients. A cohort of 34 patients (10–69 years, 44.1% male) was included in the study. Regarding (1), a moderate/high correlation was identified among the clinical manifestations of the pathologies. Regarding (2), the minor alleles of rs5415 (SLC2A4 gene) and rs838133 (FGF21 gene) were less frequent in patients than in the reference population (p < 0.05). In addition, rs5415 and rs838133 were associated with the presence of chronic rhinosinusitis and situs inversus, respectively (p < 0.05). This study reveals associations between SweetG-SNPs and PCD as well as its specific clinical features, suggesting a potential link between sweet signaling pathways and PCD clinical variability. Although larger multicenter studies are warranted to validate these findings, they represent a promising area of research that can enhance our understanding of PCD and elucidate the genetic basis of clinical manifestations associated with the disease. Full article
(This article belongs to the Special Issue Genetic Testing in Molecular Pathology and Diagnosis)
Show Figures

Figure 1

20 pages, 7468 KB  
Article
Evaluation of Phytoremediation Effectiveness Using Laser-Induced Breakdown Spectroscopy with Integrated Transfer Learning and Spectral Indices
by Yi Lu, Zhengyu Tao, Xinyu Guo, Tingqiang Li, Wenwen Kong and Fei Liu
Chemosensors 2026, 14(2), 29; https://doi.org/10.3390/chemosensors14020029 - 24 Jan 2026
Viewed by 153
Abstract
Phytoremediation is an eco-friendly and in situ solution for remediating heavy metal-contaminated soils, yet practical application requires timely and accurate effectiveness evaluation. However, conventional chemical analysis of plant parts and soils is labor-intensive, time-consuming and limited for large-scale monitoring. This study proposed a [...] Read more.
Phytoremediation is an eco-friendly and in situ solution for remediating heavy metal-contaminated soils, yet practical application requires timely and accurate effectiveness evaluation. However, conventional chemical analysis of plant parts and soils is labor-intensive, time-consuming and limited for large-scale monitoring. This study proposed a rapid sensing framework integrating laser-induced breakdown spectroscopy (LIBS) with deep transfer learning and spectral indices to assess phytoremediation effectiveness of Sedum alfredii (a Cd/Zn co-hyperaccumulator). LIBS spectra were collected from plant tissues and diverse soil matrices. To overcome strong matrix effects, fine-tuned convolutional neural networks were developed for simultaneous multi-matrix quantification, achieving high-accuracy prediction for Cd and Zn (R2test > 0.99). These predicted concentrations enabled calculating conventional phytoremediation indicators like bioconcentration factor (BCF), translocation factor (TF), plant effective number (PEN), and removal efficiency (RE), yielding recovery rates near 100% for TF and PEN. Additionally, novel spectral indices (SIs)—directly derived from characteristic wavelength combinations—were constructed to bypass intermediate quantification. SIs significantly improved the direct evaluation of Zn removal and translocation. Finally, a decision-level fusion strategy combining concentration predictions and SIs enhanced Cd removal assessment accuracy. This study validates LIBS combined with intelligent algorithms as a rapid sensor tool for monitoring phytoremediation performance, facilitating sustainable environmental management. Full article
(This article belongs to the Special Issue Application of Laser-Induced Breakdown Spectroscopy, 2nd Edition)
Show Figures

Figure 1

21 pages, 371 KB  
Review
High-Risk Benign Breast Lesions: An Ontario Health (Cancer Care Ontario) Recommendations Report
by Andrea Eisen, Anita Bane, Petrina Causer, Erin Cordeiro, Samantha Fienberg, Anat Kornecki, Ameya Kulkarni, Nicole Look Hong, Talia Mancuso, Derek Muradali, Sharon Nofech-Mozes, Amanda Roberts, Rola Shaheen, Sarah Courtney, Rachael Grove and Muriel Brackstone
Curr. Oncol. 2026, 33(2), 67; https://doi.org/10.3390/curroncol33020067 - 23 Jan 2026
Viewed by 96
Abstract
High-risk benign breast lesions are histological abnormalities that present in breast tissue, typically identified by screening or diagnostic imaging. The presence of invasive or in situ breast cancer can be confirmed or ruled out within these lesions, and the risk of developing breast [...] Read more.
High-risk benign breast lesions are histological abnormalities that present in breast tissue, typically identified by screening or diagnostic imaging. The presence of invasive or in situ breast cancer can be confirmed or ruled out within these lesions, and the risk of developing breast cancer can be reduced by their appropriate management. These potential high-risk lesions reviewed include atypical ductal hyperplasia, mucocele-like lesions, papillary lesions with or without atypia, radial scar/complex sclerosing lesion with or without atypia, atypical lobular hyperplasia, classical lobular carcinoma in situ, pleomorphic/florid lobular carcinoma in situ, flat epithelial atypia, columnar cell change, fibroepithelial lesions with stromal cellularity, spindle cell lesions/mesenchymal lesions, and microglandular adenosis. The lack of a clear consensus on the management of many of these lesions led the Ontario Health (Cancer Care Ontario) (OH-CCO) Breast Cancer Pathway Map Working Group and Breast Cancer Advisory Committee to identify the need for a recommendation document. A multidisciplinary working group was formed, with members representing surgical oncology, radiology, pathology, medical oncology, and genetic counselling. The working group developed a list of high-risk benign lesions to be included in this recommendation report. An updated literature review was completed, and these publications were reviewed by the working group, and recommendations were drafted. When evidence was lacking, the expert opinion was included. These draft recommendations were subjected to an extensive review by experts both within Cancer Care Ontario and across Canada. The recommendations included in this report are relevant to clinicians, primary care physicians, oncologists, radiologists, and pathologists who treat breast cancer and manage breast conditions. Full article
(This article belongs to the Section Breast Cancer)
Show Figures

Graphical abstract

16 pages, 3522 KB  
Article
Multi-Omics Analysis Reveals the Adaptive Responses of Lycoris aurea to Arid Stress
by Mingxin Zhu, Zhaowentao Song, Yingzan Xie, Guanghua Liu and Youwei Zuo
Biology 2026, 15(2), 195; https://doi.org/10.3390/biology15020195 - 21 Jan 2026
Viewed by 97
Abstract
Understanding how plants respond to water limitation is increasingly important under accelerating climate change. Lycoris aurea, a widely distributed ornamental and medicinal bulbous plant, frequently inhabits environments with fluctuating soil moisture, yet its molecular drought-response mechanisms remain largely unexplored. In this study, [...] Read more.
Understanding how plants respond to water limitation is increasingly important under accelerating climate change. Lycoris aurea, a widely distributed ornamental and medicinal bulbous plant, frequently inhabits environments with fluctuating soil moisture, yet its molecular drought-response mechanisms remain largely unexplored. In this study, we investigated L. aurea growing under field-based, in situ soil moisture regimes, comparing low (~20% soil water content) and high (~40% soil water content) conditions. We combined soil property assessments with high-resolution transcriptomic and untargeted metabolomic profiling to characterize the adaptive responses of bulb tissues under contrasting soil water conditions. Although total nitrogen, phosphorus, and potassium levels were comparable across treatments, soil moisture, representing the primary contrasting field condition, and soil pH, a correlated environmental factor, were significantly associated with variation in gene expression and metabolite accumulation (p < 0.05, n = 3). Transcriptome analyses identified a total of 1034 differentially expressed genes enriched in pathways related to amino acid metabolism, cuticle formation, cell wall modification, and osmotic adjustment. Metabolomic analysis identified a total of 1867 differentially expressed metabolites belonging to carboxylic acids and prenol lipids, showing alterations involved in amino acids, lipids, phenolic acids, and alkaloids associated with osmoprotection, membrane stabilization, and structural reinforcement under low soil moisture. Pathway-based integration analysis highlighted four core pathways, including “alanine, aspartate and glutamate metabolism” (p = 0.00371) and “cutin, suberine and wax biosynthesis” (p = 0.00873), as central hubs linking transcriptional regulation with metabolic reconfiguration. Gene-metabolite-soil correlation networks further demonstrated that drought adaptation arises from tightly coordinated biochemical and structural adjustments rather than shifts in nutrient acquisition. Together, this species-specific study provides a comprehensive multi-omics framework for understanding drought tolerance in L. aurea, reveals key molecular targets associated with plant resilience, and offers potential targets and insights for the conservation of drought-resilient Lycoris cultivars. Full article
(This article belongs to the Special Issue Advances in Plant Multi-Omics)
Show Figures

Figure 1

21 pages, 4383 KB  
Article
In Situ Electrosynthesis of Hyaluronic Acid Doped Polypyrrole on Polyvinyl Alcohol/Chitosan Nanofibers as a Cellular Scaffold
by R. Lizbeth Quiroz-Oregón, Alejandra Pérez-Nava, Carla García-Morales, Karla Juarez-Moreno, Bernardo A. Frontana-Uribe, Lourdes Mónica Bravo-Anaya, José María Ponce-Ortega, César Ramírez-Márquez and J. Betzabe González-Campos
J. Compos. Sci. 2026, 10(1), 57; https://doi.org/10.3390/jcs10010057 - 21 Jan 2026
Viewed by 370
Abstract
Conductive polymers (CPs), such as polypyrrole (PPy), have shown promising properties for use as electro-responsive bioactive scaffolds for tissue regeneration. PPy can be synthesized by chemical electrosynthesis and doped with biomolecules such as hyaluronic acid (HA). Taking advantage of the electrochemical synthesis versatility, [...] Read more.
Conductive polymers (CPs), such as polypyrrole (PPy), have shown promising properties for use as electro-responsive bioactive scaffolds for tissue regeneration. PPy can be synthesized by chemical electrosynthesis and doped with biomolecules such as hyaluronic acid (HA). Taking advantage of the electrochemical synthesis versatility, nanofibers for surface-modified indium tin oxide (ITO) electrodes can be used as templates to produce tridimensional HA-doped PPy scaffolds. In this study, polyvinyl alcohol/chitosan (PVA/CTS) electrospun nanofibers deposited on ITO electrodes were used as a 3D template for the in situ electrosynthesis of HA-doped PPy to produce a bioactive scaffold for tissue engineering. The final material gathers the advantages of each biopolymer, the porous morphology of the nanofiber, and the conductivity of the electrosynthetized polymer. Furthermore, the biological activity of the NF-PVA/CTS@PPy:HA composite was evaluated in NIH-3T3 fibroblasts by MTT, resulting in a cell viability of 146 ± 40% and wound-healing capacity of 97 ± 1.9% at 24 h of culture. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Graphical abstract

17 pages, 1180 KB  
Review
Research Progress on the Application of Mass Spectrometry Imaging Technology in Cerebral Disease
by Yao Qiao, Jie Yin, Shuyu Lu and Lihui Yin
Life 2026, 16(1), 168; https://doi.org/10.3390/life16010168 - 20 Jan 2026
Viewed by 181
Abstract
Mass spectrometry imaging (MSI) is an innovative analytical technique that integrates chemical analysis with spatial localization, enabling label-free, in situ detection and visualization of diverse biomolecules within tissue sections. This review summarizes the recent advances in the application of MSI to neurological disorders, [...] Read more.
Mass spectrometry imaging (MSI) is an innovative analytical technique that integrates chemical analysis with spatial localization, enabling label-free, in situ detection and visualization of diverse biomolecules within tissue sections. This review summarizes the recent advances in the application of MSI to neurological disorders, with a focus on Parkinson’s disease, Alzheimer’s disease, schizophrenia, and traumatic brain injury. Studies have demonstrated that MSI can delineate the spatial heterogeneity of disease-related molecules—such as neurotransmitters, lipids, and metabolites—thereby providing new perspectives for understanding the pathological mechanisms of neurodegenerative and psychiatric diseases. Platforms including MALDI-MSI and DESI-MSI have been effectively employed for visualizing drug distribution, characterizing lipid metabolic pathways, and identifying spatial biomarkers. Although challenges remain in quantitative accuracy, spatial resolution, and the detection of low-abundance molecules, advances in high-resolution mass spectrometry, single-cell-level imaging, and multi-omics integration are expected to further enhance the utility of MSI in the investigation of brain diseases. Full article
(This article belongs to the Section Radiobiology and Nuclear Medicine)
Show Figures

Figure 1

27 pages, 11480 KB  
Article
Design and Characterization of Gelatin-Based Interpenetrating Polymer Networks for Biomedical Use: Rheological, Thermal, and Physicochemical Evaluation
by Roberto Grosso, Fátima Díaz-Carrasco, Elena Vidal-Nogales, M.-Violante de-Paz, M.-Jesús Díaz-Blanco and Elena Benito
Materials 2026, 19(2), 289; https://doi.org/10.3390/ma19020289 - 10 Jan 2026
Viewed by 248
Abstract
Tissue engineering is a multidisciplinary field that aims to address tissue and organ failure by integrating scientific, engineering, and medial expertise. Gelatin is valued in this field for its biocompatibility; however, it faces thermal and mechanical weaknesses that limit its biomedical utility. This [...] Read more.
Tissue engineering is a multidisciplinary field that aims to address tissue and organ failure by integrating scientific, engineering, and medial expertise. Gelatin is valued in this field for its biocompatibility; however, it faces thermal and mechanical weaknesses that limit its biomedical utility. This work proposes a strategy for improving gelatin properties by fabricating semi-interpenetrating polymer networks via in situ Diels–Alder crosslinking within gelatin colloidal solutions. Ten systems with variable polymer concentrations (2–4%) and crosslinking degrees (2–5%) were prepared and characterized. Rheological analysis revealed that elastic modulus, zero-shear viscosity, and complex viscosity were substantially enhanced, being especially dependent on the crosslinking degree, while critical strain values mostly depended on gelatin concentration. The incorporation of a synthetic Diels–Alder-crosslinked network also improved the thermal stability of gelatin hydrogels, particularly at physiological temperatures. Additionally, these systems exhibit favorable buoyancy, swelling and biodegradation profiles. Collectively, the resultant hydrogels are cytocompatible, solid-like, and mechanically robust, allowing for further tunability of their properties for specific biomedical uses, such as injectable matrices, load-bearing scaffolds for tissue repair, and 3D bioinks. Full article
Show Figures

Graphical abstract

33 pages, 10437 KB  
Article
Development of Human Serum Albumin-Based Hydrogels for Potential Use as Wound Dressings
by Inna Zharkova, Irina Bauer, Oksana Gulyaeva, Evgenia Kozyreva, Zhanna Nazarkina and Elena Dmitrienko
Gels 2026, 12(1), 64; https://doi.org/10.3390/gels12010064 - 9 Jan 2026
Viewed by 248
Abstract
Protein-based materials such as human serum albumin (HSA) have demonstrated significant potential for the development of novel wound management materials. For the first time, the formation of HSA-based hydrogels was proposed using a combination of thermal- and ethanol-induced approaches. The combination of phosphate-buffered [...] Read more.
Protein-based materials such as human serum albumin (HSA) have demonstrated significant potential for the development of novel wound management materials. For the first time, the formation of HSA-based hydrogels was proposed using a combination of thermal- and ethanol-induced approaches. The combination of phosphate-buffered saline (PBS) and limited (up to 20% v/v) ethanol content offers a promising strategy for fabricating human serum albumin-based hydrogels with tunable properties. The hydrogel formation was studied using in situ dynamic light scattering (DLS) for qualitative and semi-quantitative analysis of the patterns of protein hydrogel formation through thermally induced gelation. The rheological properties of human serum albumin-based hydrogels were investigated. Hydrogels synthesized via thermally induced gelation using a denaturing agent exhibit a dynamic viscosity ranging from 100 to 10,000 mPa·s. The biocompatibility, biodegradability, and structural stability of human serum albumin-based hydrogels were comprehensively evaluated in physiologically relevant media. These human serum albumin-based hydrogels represent a promising platform for developing topical therapeutic agents for wound management and tissue engineering applications. This study investigated the kinetics of tetracycline release from human serum albumin-based hydrogels in PBS and fetal bovine serum (FBS). All tested formulations of HSA-based hydrogels loaded with tetracycline (1 mg/mL) demonstrated antibacterial activity against Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, and Corynebacterium striatum strains. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Figure 1

13 pages, 828 KB  
Perspective
Peptide-Based Therapeutics in Autoimmune Diseases: Restoring Immune Balance Through Precision
by Derek Gu and Vincent Yuan
J. Mol. Pathol. 2026, 7(1), 3; https://doi.org/10.3390/jmp7010003 - 8 Jan 2026
Viewed by 454
Abstract
Autoimmune diseases arise from the loss of antigen-specific tolerance, leading to chronic inflammation and tissue damage. Peptide-based therapeutics provide a precise strategy to restore immune balance by targeting autoreactive lymphocytes and antigen-presenting cells in tolerogenic contexts. These therapies induce regulatory T cells, modulate [...] Read more.
Autoimmune diseases arise from the loss of antigen-specific tolerance, leading to chronic inflammation and tissue damage. Peptide-based therapeutics provide a precise strategy to restore immune balance by targeting autoreactive lymphocytes and antigen-presenting cells in tolerogenic contexts. These therapies induce regulatory T cells, modulate APC phenotypes, and can interfere with proinflammatory signaling. Advances in delivery technologies, including nanoparticles, lipid nanoparticles, hydrogels, and conjugates, improve peptide stability, co-deliver tolerogenic cues, and enable targeted antigen presentation. mRNA lipid nanoparticle platforms permit in situ expression of peptides or immunomodulatory molecules. Preclinical studies in models of type 1 diabetes, multiple sclerosis, and lupus demonstrate robust antigen-specific tolerance, while early-phase clinical trials show safety and mechanistic engagement. Insights from approved peptide therapies in allergy and other fields underscore the importance of epitope selection, delivery context, and biomarker-guided development. Collectively, these strategies suggest that rationally formulated, precisely targeted peptide therapeutics hold promise for achieving durable immune tolerance in autoimmune disease. Full article
Show Figures

Figure 1

30 pages, 1216 KB  
Review
Bioactive Hydroxyapatite–Collagen Composite Dressings for Wound Regeneration: Advances in Fabrication, Functionalization and Antimicrobial Strategies
by Bogdan Radu Dragomir, Alina Robu, Ana-Iulia Bita and Daniel Sipu
Appl. Sci. 2026, 16(2), 576; https://doi.org/10.3390/app16020576 - 6 Jan 2026
Viewed by 522
Abstract
Chronic and complex wounds, including diabetic foot ulcers, venous leg ulcers, burns and post-surgical defects, remain difficult to manage due to persistent inflammation, impaired angiogenesis, microbial colonization and insufficient extracellular matrix (ECM) remodeling. Conventional dressings provide protection, but they do not supply the [...] Read more.
Chronic and complex wounds, including diabetic foot ulcers, venous leg ulcers, burns and post-surgical defects, remain difficult to manage due to persistent inflammation, impaired angiogenesis, microbial colonization and insufficient extracellular matrix (ECM) remodeling. Conventional dressings provide protection, but they do not supply the necessary biochemical and structural signals for effective tissue repair. This review examines recent advances in hydroxyapatite–collagen (HAp–Col) composite dressings, which combine the architecture of collagen with the mechanical reinforcement and ionic bioactivity of hydroxyapatite. Analysis of the literature indicates that in situ and biomimetic mineralization, freeze-drying, electrospinning, hydrogel and film processing, and emerging 3D printing approaches enable precise control of pore structure, mineral dispersion, and degradation behavior. Antimicrobial functionalization remains critical: metallic ions and locally delivered antibiotics offer robust early antibacterial activity, while plant-derived essential oils (EOs) provide broad-spectrum antimicrobial, antioxidant and anti-inflammatory effects with reduced risk of resistance. Preclinical studies consistently report enhanced epithelialization, improved collagen deposition and reduced bacterial burden in HAp–Col systems; however, translation is limited by formulation variability, sterilization sensitivity and the lack of standardized clinical trials. Overall, HAp–Col composites represent a versatile framework for next-generation wound dressings that can address both regenerative and antimicrobial requirements. Full article
Show Figures

Figure 1

23 pages, 4266 KB  
Article
Symbiosis Among Naematelia aurantialba, Stereum hirsutum, and Their Associated Microbiome in the Composition of a Cultivated Mushroom Complex JinEr
by Kaixuan Zhang, Yingli Cai, Xiaofei Shi, Zhuyue Yan, Qiuchen Huang, Jesus Perez-Moreno, Dong Liu, Zhenyan Yang, Chengmo Yang, Fuqiang Yu and Wei Liu
J. Fungi 2026, 12(1), 41; https://doi.org/10.3390/jof12010041 - 4 Jan 2026
Viewed by 525
Abstract
The JinEr mushroom (“Golden Ear”), a globally rare edible and medicinal macrofungus, comprises a symbiotic complex formed by the symbiotic association of Naematelia aurantialba (Tremellomycetes) and Stereum hirsutum (Agaricomycetes). However, the interactions between these fungi and their associated microbiome [...] Read more.
The JinEr mushroom (“Golden Ear”), a globally rare edible and medicinal macrofungus, comprises a symbiotic complex formed by the symbiotic association of Naematelia aurantialba (Tremellomycetes) and Stereum hirsutum (Agaricomycetes). However, the interactions between these fungi and their associated microbiome remain poorly understood. This study employed high-throughput amplicon sequencing, in situ microbial isolation and culture, and microbial confrontation assays to analyze microbial diversity, community structure, and potential functional roles of the endomycotic bacterial community within JinEr basidiomata and its cultivation substrate. Molecular analysis confirmed the heterogenous composition of the basidiomata, revealing N. aurantialba constitutes less than 20% of the fungal biomass, while S. hirsutum predominates, accounting for approximately 80%. Endomycotic fungi accounted for 0.33% (relative abundance) of the fungal community. Prokaryotic analysis identified Delftia and Sphingomonas as the dominant endomycotic bacterial genera within basidiomata, comprising 85.42% of prokaryotic sequences. Endomycotic bacterial diversity differed significantly (p < 0.05) between basidiomata and substrate, indicating host-specific selection. Cultivation-based approaches yielded 140 culturable bacterial isolates (spanning four families and seven genera) from basidiomata core tissues. In vitro co-culture experiments demonstrated that eight representative bacterial strains exhibited compatible growth with both hosts, while one Enterobacteriaceae strain displayed antagonism towards them. These findings confirm that the heterogeneous JinEr basidiomata harbor a specific prokaryotic assemblage potentially engaged in putative symbiotic or commensal associations with the host fungi. This research advances the understanding of microbial ecology in this unique fungal complex and establishes a culture repository of associated bacteria. This collection facilitates subsequent screening for beneficial bacterial strains to enhance the JinEr cultivation system through the provision of symbiotic microorganisms. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

Back to TopTop