Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (145)

Search Parameters:
Keywords = tip degradation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3854 KiB  
Article
PVC Inhibits Radish (Raphanus sativus L.) Seedling Growth by Interfering with Plant Hormone Signal Transduction and Phenylpropanoid Biosynthesis
by Lisi Jiang, Zirui Liu, Wenyuan Li, Yangwendi Yang, Zirui Yu, Jiajun Fan, Lixin Guo, Chang Guo and Wei Fu
Horticulturae 2025, 11(8), 896; https://doi.org/10.3390/horticulturae11080896 (registering DOI) - 3 Aug 2025
Abstract
Polyvinyl chloride (PVC) is commonly employed as mulch in agriculture to boost crop yields. However, its toxicity is often overlooked. Due to its chemical stability, resistance to degradation, and the inadequacy of the recycling system, PVC tends to persist in farm environments, where [...] Read more.
Polyvinyl chloride (PVC) is commonly employed as mulch in agriculture to boost crop yields. However, its toxicity is often overlooked. Due to its chemical stability, resistance to degradation, and the inadequacy of the recycling system, PVC tends to persist in farm environments, where it can decompose into microplastics (MPs) or nanoplastics (NPs). The radish (Raphanus sativus L.) was chosen as the model plant for this study to evaluate the underlying toxic mechanisms of PVC NPs on seedling growth through the integration of multi-omics approaches with oxidative stress evaluations. The results indicated that, compared with the control group, the shoot lengths in the 5 mg/L and 150 mg/L treatment groups decreased by 33.7% and 18.0%, respectively, and the root lengths decreased by 28.3% and 11.3%, respectively. However, there was no observable effect on seed germination rates. Except for the peroxidase (POD) activity in the 150 mg/L group, all antioxidant enzyme activities and malondialdehyde (MDA) levels were higher in the treated root tips than in the control group. Both transcriptome and metabolomic analysis profiles showed 2075 and 4635 differentially expressed genes (DEGs) in the high- and low-concentration groups, respectively, and 1961 metabolites under each treatment. PVC NPs predominantly influenced seedling growth by interfering with plant hormone signaling pathways and phenylpropanoid production. Notably, the reported toxicity was more evident at lower concentrations. This can be accounted for by the plant’s “growth-defense trade-off” strategy and the manner in which nanoparticles aggregate. By clarifying how PVC NPs coordinately regulate plant stress responses via hormone signaling and phenylpropanoid biosynthesis pathways, this research offers a scientific basis for assessing environmental concerns related to nanoplastics in agricultural systems. Full article
(This article belongs to the Special Issue Stress Physiology and Molecular Biology of Vegetable Crops)
Show Figures

Figure 1

20 pages, 3293 KiB  
Article
Does Beach Sand Nourishment Have a Negative Effect on Natural Recovery of a Posidonia oceanica Seagrass Fringing Reef? The Case of La Vieille Beach (Saint-Mandrier-sur-Mer) in the North-Western Mediterranean
by Dominique Calmet, Pierre Calmet and Charles-François Boudouresque
Water 2025, 17(15), 2287; https://doi.org/10.3390/w17152287 - 1 Aug 2025
Viewed by 69
Abstract
Posidonia oceanica seagrass, endemic to the Mediterranean Sea, provides ecological goods and ecosystem services of paramount importance. In shallow and sheltered bays, P. oceanica meadows can reach the sea surface, with leaf tips slightly emerging, forming fringing and barrier reefs. During the 20th [...] Read more.
Posidonia oceanica seagrass, endemic to the Mediterranean Sea, provides ecological goods and ecosystem services of paramount importance. In shallow and sheltered bays, P. oceanica meadows can reach the sea surface, with leaf tips slightly emerging, forming fringing and barrier reefs. During the 20th century, P. oceanica declined conspicuously in the vicinity of large ports and urbanized areas, particularly in the north-western Mediterranean. The main causes of decline are land reclamation, anchoring, bottom trawling, turbidity and pollution. Artificial sand nourishment of beaches has also been called into question, with sand flowing into the sea, burying and destroying neighbouring meadows. A fringing reef of P. oceanica, located at Saint-Mandrier-sur-Mer, near the port of Toulon (Provence, France), is severely degraded. Analysis of aerial photos shows that, since the beginning of the 2000s, it has remained stable in some parts or continued to decline in others. This contrasts with the trend towards recovery, observed in France, thanks to e.g., the legally protected status of P. oceanica, and the reduction of pollution and coastal developments. The sand nourishment of the study beach, renewed every year, with the sand being washed or blown very quickly (within a few months) from the beach into the sea, burying the P. oceanica meadow, seems the most likely explanation. Other factors, such as pollution, trampling by beachgoers and overgrazing, may also play a role in the decline. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

34 pages, 6142 KiB  
Review
Grain Boundary Engineering for High-Mobility Organic Semiconductors
by Zhengran He, Kyeiwaa Asare-Yeboah and Sheng Bi
Electronics 2025, 14(15), 3042; https://doi.org/10.3390/electronics14153042 (registering DOI) - 30 Jul 2025
Viewed by 84
Abstract
Grain boundaries are among the most influential structural features that control the charge transport in polycrystalline organic semiconductors. Acting as both charge trapping sites and electrostatic barriers, they disrupt molecular packing and introduce energetic disorder, thereby limiting carrier mobility, increasing threshold voltage, and [...] Read more.
Grain boundaries are among the most influential structural features that control the charge transport in polycrystalline organic semiconductors. Acting as both charge trapping sites and electrostatic barriers, they disrupt molecular packing and introduce energetic disorder, thereby limiting carrier mobility, increasing threshold voltage, and degrading the stability of organic thin-film transistors (OTFTs). This review presents a detailed discussion of grain boundary formation, their impact on charge transport, and experimental strategies for engineering their structure and distribution across several high-mobility small-molecule semiconductors, including pentacene, TIPS pentacene, diF-TES-ADT, and rubrene. We explore grain boundary engineering approaches through solvent design, polymer additives, and external alignment methods that modulate crystallization dynamics and domain morphology. Then various case studies are discussed to demonstrate that optimized processing can yield larger, well-aligned grains with reduced boundary effects, leading to great mobility enhancements and improved device stability. By offering insights from structural characterization, device physics, and materials processing, this review outlines key directions for grain boundary control, which is essential for advancing the performance and stability of organic electronic devices. Full article
(This article belongs to the Special Issue Feature Papers in Electronic Materials)
Show Figures

Figure 1

20 pages, 8029 KiB  
Article
Fire-Induced Floristic and Structural Degradation Across a Vegetation Gradient in the Southern Amazon
by Loriene Gomes da Rocha, Ben Hur Marimon Junior, Amauri de Castro Barradas, Marco Antônio Camillo de Carvalho, Célia Regina Araújo Soares, Beatriz Schwantes Marimon, Gabriel H. P. de Mello Ribeiro, Edmar A. de Oliveira, Fernando Elias, Carmino Emidio Júnior, Dennis Rodrigues da Silva, Marcos Leandro Garcia, Jesulino Alves da Rocha Filho, Marcelo Zortea, Edmar Santos Moreira, Samiele Camargo de Oliveira Domingues, Eraldo A. T. Matricardi, David Galbraith, Ted R. Feldpausch, Imma Oliveras and Oliver L. Phillipsadd Show full author list remove Hide full author list
Forests 2025, 16(8), 1218; https://doi.org/10.3390/f16081218 - 24 Jul 2025
Viewed by 317
Abstract
Climate change and landscape fragmentation have made fires the primary drivers of forest degradation in Southern Amazonia. Understanding their impacts is crucial for informing public conservation policies. In this study, we assessed the effects of repeated fires on trees with a diameter ≥10 [...] Read more.
Climate change and landscape fragmentation have made fires the primary drivers of forest degradation in Southern Amazonia. Understanding their impacts is crucial for informing public conservation policies. In this study, we assessed the effects of repeated fires on trees with a diameter ≥10 cm across three distinct vegetation types in this threatened region: Amazonian successional forest (SF), transitional forest (TF), and ombrophilous forest (OF). Two anthropogenic fires affected all three vegetation types in consecutive years. We hypothesized that SF would be the least impacted due to its more open structure and the presence of fire-adapted savanna (Cerrado) species. As expected, SF experienced the lowest tree mortality rate (9.1%). However, both TF and OF were heavily affected, with mortality rates of 28.0% and 29.7%, respectively. Despite SF’s apparent fire resilience, all vegetation types experienced a significant net loss of species and individuals. These results indicate a fire-induced degradation stage in both TF and OF, characterized by reduced species diversity and structural integrity. Our findings suggest that recurrent fires may trigger irreversible vegetation shifts and broader ecosystem tipping points across the Amazonian frontier. Full article
Show Figures

Figure 1

24 pages, 4047 KiB  
Review
Fatigue Behaviour of Metallic Materials Under Hydrogen Environment: Historical Perspectives, Recent Developments, and Future Prospects
by Shiyuan Yang, Debiao Meng, Peng Nie, Abílio M. P. De Jesus and Yan Sun
Appl. Sci. 2025, 15(14), 7818; https://doi.org/10.3390/app15147818 - 11 Jul 2025
Viewed by 297
Abstract
Hydrogen has gradually become one of the indispensable sources of energy for mankind. Since the discovery of hydrogen embrittlement (hydrogen-induced degradation of material properties) more than 100 years ago, fatigue properties in hydrogen environments have been studied. Fatigue crack growth of materials in [...] Read more.
Hydrogen has gradually become one of the indispensable sources of energy for mankind. Since the discovery of hydrogen embrittlement (hydrogen-induced degradation of material properties) more than 100 years ago, fatigue properties in hydrogen environments have been studied. Fatigue crack growth of materials in a hydrogen environment is a complex process involving the interaction of multiple factors. Hydrogen binds to atoms within the material, leading to diffusion and aggregation of hydrogen atoms, which causes an increase in internal stresses. These stresses may concentrate at the crack tip, accelerating the rate of crack expansion and leading to fatigue fracture of the material. The work of current researchers has summarised a number of fatigue models to help understand this phenomenon. This paper firstly summarises the existing hydrogen embrittlement mechanisms as well as hydrogen embrittlement experiments. It then focuses on the mechanism of fatigue crack propagation in hydrogen environments and related literature. It also analyses and summarises a cluster diagram of the literature generated using CiteSpace. The fatigue life prediction methods for materials in hydrogen environment are then summarised in this paper. It aims to provide some guidance for the selection and design of materials in developing fields such as fatigue materials in hydrogen environment. Finally, challenges in the current research on the fatigue properties of materials under hydrogen embrittlement conditions are pointed out and discussed to guide future research efforts. Full article
(This article belongs to the Special Issue Data-Enhanced Engineering Structural Integrity Assessment and Design)
Show Figures

Figure 1

23 pages, 36557 KiB  
Article
Mixed-Mode Fracture Behavior of Penta-Graphene: A Molecular Dynamics Perspective on Defect Sensitivity and Crack Evolution
by Afia Aziz Kona, Aaron Lutheran and Alireza Tabarraei
Solids 2025, 6(3), 36; https://doi.org/10.3390/solids6030036 - 11 Jul 2025
Viewed by 398
Abstract
This study employs molecular dynamics (MD) simulations to investigate the mechanical response and fracture behavior of penta-graphene, a novel two-dimensional carbon allotrope composed entirely of pentagonal rings with mixed sp2–sp3 hybridization and pronounced mechanical anisotropy. Atomistic simulations are carried out [...] Read more.
This study employs molecular dynamics (MD) simulations to investigate the mechanical response and fracture behavior of penta-graphene, a novel two-dimensional carbon allotrope composed entirely of pentagonal rings with mixed sp2–sp3 hybridization and pronounced mechanical anisotropy. Atomistic simulations are carried out to evaluate the impact of structural defects on mechanical performance and to elucidate crack propagation mechanisms. The results reveal that void defects involving sp3-hybridized carbon atoms cause a more significant degradation in mechanical strength compared to those involving sp2 atoms. During fracture, local atomic rearrangements and bond reconstructions lead to the formation of energetically favorable ring structures—such as hexagons and octagons—at the crack tip, promoting enhanced energy dissipation and fracture resistance. A central focus of this work is the evaluation of the critical stress intensity factor (SIF) under mixed-mode (I/II) loading conditions. The simulations demonstrate that the critical SIF is influenced by the loading phase angle, with pure mode I exhibiting a higher SIF than pure mode II. Notably, penta-graphene shows a critical SIF significantly higher than that of graphene, indicating exceptional fracture toughness that is rare among ultra-thin two-dimensional materials. This enhanced toughness is primarily attributed to penta-graphene’s capacity for substantial out-of-plane deformation prior to failure, which redistributes stress near the crack tip, delays crack initiation, and increases energy absorption. Additionally, the study examines crack growth paths as a function of loading phase angle, revealing that branching and kinking can occur even under pure mode I loading. Full article
Show Figures

Figure 1

18 pages, 6067 KiB  
Article
Joint Transcriptomic and Metabolomic Analysis of Molecular Physiological Mechanisms of Tea Tree Roots in Response to pH Regulation
by Qi Zhang, Mingzhe Li, Miao Jia, Zewei Zhou, Yulin Wang, Yankun Liao, Xiaoli Jia, Tingting Wang, Haibin Wang and Jianghua Ye
Horticulturae 2025, 11(7), 821; https://doi.org/10.3390/horticulturae11070821 - 10 Jul 2025
Viewed by 315
Abstract
The tea tree root system is an important tissue for nutrient uptake, accumulation, and transport, and pH is an important environmental factor regulating the growth of tea tree (Camellia sinensis). However, the physiological and molecular mechanisms of how the tea tree [...] Read more.
The tea tree root system is an important tissue for nutrient uptake, accumulation, and transport, and pH is an important environmental factor regulating the growth of tea tree (Camellia sinensis). However, the physiological and molecular mechanisms of how the tea tree root system responds to pH are unclear. In this study, Tieguanyin tea tree was used as the research object, and treated with different pH values to determine the morphological indexes of the tea plant root system and systematically study the physiological and molecular mechanisms of the effect of pH on the growth of the tea plant root system using transcriptomics in combination with metabolomics. The results showed that total root length, root surface area, root volume, total root tips, root fork number, and root crossing number of root crosses of the tea plant root system increased significantly (p < 0.05) with increasing pH. Transcriptome analysis showed that a total of 2654 characteristic genes were obtained in response to pH regulation in the root system of the tea plant, which were mainly enriched in six metabolic pathways. Metabolomics analysis showed that the metabolites with the highest contribution in differentiating tea plant responses to different pH regulations were mainly heterocyclic compounds, amino acids and derivatives, alkaloids, and flavonoids. Interaction network analysis showed that pH positively regulated the metabolic intensity of the MAPK signaling pathway (plant, plant hormone signal transduction, and RNA degradation pathway), positively regulated the content of the heterocyclic compound, amino acids and derivatives, and alkaloids, and positively regulated tea plant root growth. However, it negatively regulated ribosome, protein processing in the endoplasmic reticulum, and phenylpropanoid biosynthesis pathway intensity, and negatively regulated the flavonoid content. This study reveals the physiological and molecular mechanisms of the tea plant root system in response to pH changes and provides an important theoretical basis for the cultivation and management of tea plants in acidified tea plantations. Full article
(This article belongs to the Special Issue Abiotic Stress Tolerance and Breeding Strategies in Tea Plants)
Show Figures

Figure 1

12 pages, 3803 KiB  
Article
Partial Substitution of Synthetic Nitrogen with Organic Nitrogen Enhances Soil Fertility, Photosynthesis, and Root Growth of Grapevine Seedlings
by Feng Han, Binxian Jiang, Wenyu Wang, Shuang Wu, Jinggui Wu, Yan Ma and Xiaochi Ma
Nitrogen 2025, 6(3), 49; https://doi.org/10.3390/nitrogen6030049 - 25 Jun 2025
Viewed by 435
Abstract
The overuse of synthetic nitrogen fertilizer in vineyards degrades soil quality and poses environmental risks. Partial substitution of synthetic nitrogen with organic alternatives may enhance grapevine performance and soil sustainability, depending on the substitution rate. This study evaluated the effects of replacing synthetic [...] Read more.
The overuse of synthetic nitrogen fertilizer in vineyards degrades soil quality and poses environmental risks. Partial substitution of synthetic nitrogen with organic alternatives may enhance grapevine performance and soil sustainability, depending on the substitution rate. This study evaluated the effects of replacing synthetic nitrogen with composted spent mushroom substrate at five different rates (0%, 25%, 50%, 75%, and 100%, denoted as NOS, OS-25, OS-50, OS-75, and OS-100, respectively) and a control with no nitrogen fertilization applied (CK), on soil fertility, root growth, and photosynthetic performance in grapevine seedlings. Compared to CK, nitrogen fertilization and organic substitution significantly increased soil electrical conductivity, organic matter, and macronutrient contents, but had no significant effect on soil pH. Organic substitution markedly improved leaf photosynthetic capacity in the summer, with the highest rates observed under OS-25, exceeding CK and NOS by 32.98–63.19% and 13.93–27.38%, respectively. Root growth was also significantly enhanced by organic substitution, with OS-25 exhibiting the best performance. Fine roots in the 0.0–0.5 mm diameter class were dominant, accounting for 56.88–63.06% of total root length and 96.22–97.31% of total root tip count. Increasing substitution rates beyond 25% yielded no further improvements in photosynthesis or root growth. Mantel test analysis indicated strong positive correlations between soil fertility parameters (e.g., alkali-hydrolyzable nitrogen, available phosphorous and potassium) and both photosynthetic efficiency and root growth. These findings suggest that an appropriate substitution rate (i.e., 25%) of organic nitrogen using spent mushroom substrate effectively improves soil fertility, simultaneously optimizing photosynthetic capacity and root growth of grapevine seedlings. Full article
Show Figures

Figure 1

19 pages, 4218 KiB  
Article
A Multi-Deformable-Mirror 500 Hz Adaptive Optical System for Atmospheric Turbulence Simulation, Real-Time Reconstruction, and Wavefront Correction Using Bimorph and Tip-Tilt Correctors
by Ilya Galaktionov and Vladimir Toporovsky
Photonics 2025, 12(6), 592; https://doi.org/10.3390/photonics12060592 - 9 Jun 2025
Viewed by 659
Abstract
Atmospheric turbulence introduces distortions to the wavefront of propagating optical radiation. It causes image resolution degradation in astronomical telescopes and significantly reduces the power density of radiation on the target in focusing applications. The impact of turbulence fluctuations on the wavefront can be [...] Read more.
Atmospheric turbulence introduces distortions to the wavefront of propagating optical radiation. It causes image resolution degradation in astronomical telescopes and significantly reduces the power density of radiation on the target in focusing applications. The impact of turbulence fluctuations on the wavefront can be investigated under laboratory conditions using either a fan heater (roughly tuned), a phase plate, or a deformable mirror (finely tuned) as a turbulence-generation device and a wavefront sensor as a wavefront-distortion measurement device. We designed and developed a software simulator and an experimental setup for the reconstruction of atmospheric turbulence-phase fluctuations as well as an adaptive optical system for the compensation of induced aberrations. Both systems use two 60 mm, 92-channel, bimorph deformable mirrors and two tip-tilt correctors. The wavefront is measured using a high-speed Shack–Hartmann wavefront sensor based on an industrial CMOS camera. The system was able to achieve a 500 Hz correction frame rate, and the amplitude of aberrations decreased from 2.6 μm to 0.3 μm during the correction procedure. The use of the tip-tilt corrector allowed a decrease in the focal spot centroid jitter range of 2–3 times from ±26.5 μm and ±24 μm up to ±11.5 μm and ±5.5 μm. Full article
(This article belongs to the Special Issue Optical Sensing Technologies, Devices and Their Data Applications)
Show Figures

Figure 1

22 pages, 6517 KiB  
Article
Study on the Impact of Cooling Air Parameter Changes on the Thermal Fatigue Life of Film Cooling Turbine Blades
by Huayang Sun, Xinlong Yang, Yingtao Chen, Yanting Ai and Wanlin Zhang
Aerospace 2025, 12(6), 512; https://doi.org/10.3390/aerospace12060512 - 6 Jun 2025
Viewed by 429
Abstract
Film cooling has been increasingly applied in turbine blade cooling design due to its excellent cooling performance. Although film-cooled blades demonstrate superior cooling effectiveness, the perforation design on blade surfaces compromises structural integrity, making fatigue failure prone to occur at cooling holes. Previous [...] Read more.
Film cooling has been increasingly applied in turbine blade cooling design due to its excellent cooling performance. Although film-cooled blades demonstrate superior cooling effectiveness, the perforation design on blade surfaces compromises structural integrity, making fatigue failure prone to occur at cooling holes. Previous studies by domestic and international scholars have extensively investigated factors influencing film cooling effectiveness, including blowing ratio and hole geometry configurations. However, most research has overlooked the investigation of fatigue life in film-cooled blades. This paper systematically investigates blade fatigue life under various cooling air parameters by analyzing the relationships among cooling effectiveness, stress distribution, and fatigue life. Results indicate that maximum stress concentrations occur at cooling hole locations and near the blade root at trailing edge regions. While cooling holes effectively reduce blade surface temperature, they simultaneously create stress concentration zones around the apertures. Both excessive and insufficient cooling air pressure and temperature reduce thermal fatigue life, with optimal parameters identified as 600 K cooling temperature and 0.75 MPa pressure, achieving a maximum thermal fatigue life of 3400 cycles for this blade configuration. A thermal shock test platform was established to conduct fatigue experiments under selected cooling conditions. Initial fatigue damage traces emerged at cooling holes after 1000 cycles, with progressive damage expansion observed. By 3000 cycles, cooling holes near blade tip regions exhibited the most severe failure, demonstrating near-complete functional degradation. These findings provide critical references for cooling parameter selection in practical aeroengine applications of film-cooled blades. Full article
Show Figures

Figure 1

20 pages, 1192 KiB  
Article
A Cascading Delphi Method-Based FMEA Risk Assessment Framework for Surgical Instrument Design: A Case Study of a Fetoscope
by Wipharat Phokee, Sunisa Chaiklieng, Pornpimon Boriwan, Thanathorn Phoka, Jeroen Vanoirbeek and Surapong Chatpun
Appl. Sci. 2025, 15(11), 6203; https://doi.org/10.3390/app15116203 - 30 May 2025
Cited by 1 | Viewed by 602
Abstract
Failure Mode and Effect Analysis (FMEA) is crucial for identifying risk reduction opportunities in design. This study aims to aid in the design of sophisticated medical devices by setting guidelines and addressing weaknesses in data collection and risk priority numbers (RPNs). This is [...] Read more.
Failure Mode and Effect Analysis (FMEA) is crucial for identifying risk reduction opportunities in design. This study aims to aid in the design of sophisticated medical devices by setting guidelines and addressing weaknesses in data collection and risk priority numbers (RPNs). This is achieved by developing an FMEA framework with potential efficiency and efficacy benefits for design engineers, surgeons and patients. The FMEA framework covered risk analysis and risk evaluation by integrating a cascading Delphi method to address data collection and Multi-Criteria Decision-Making (MCDM) technique to address RPN calculations. This study involved the design of a flexible fetoscope for minimally invasive fetal intervention, analyzing and evaluating risks. The cascading FMEA framework had two stages for data collection, namely risk identification by individual interview and risk evaluation by individual email. The cascading Delphi FMEA framework with MCDM identified the potential risks for the mother at the tip (risk score = 0.927) and subsequent risks such as debris loss (risk score = 0.896), material degradation (risk score = 0.896), and glue dislodging (risk score = 0.896) as critical issues. By identifying failure modes early, medical device designers can better mitigate risks during the initial design stages. Full article
Show Figures

Figure 1

16 pages, 7103 KiB  
Article
Sec61s and Sec62/Sec63 Genes Are Essential for Survival by Regulating the Gut and Cuticle Development in Locusta migratoria
by Xiaojian Liu, Mingzhu Ji and Jianzhen Zhang
Insects 2025, 16(6), 550; https://doi.org/10.3390/insects16060550 - 22 May 2025
Viewed by 654
Abstract
In eukaryotes, a lot of proteins are transported across the endoplasmic reticulum by the heterotrimeric Sec61 channel. And post-translational transport needs another Sec62/Sec63 complex. However, functions of these genes are poorly explored in insects. In this study, we first identified five Sec genes, [...] Read more.
In eukaryotes, a lot of proteins are transported across the endoplasmic reticulum by the heterotrimeric Sec61 channel. And post-translational transport needs another Sec62/Sec63 complex. However, functions of these genes are poorly explored in insects. In this study, we first identified five Sec genes, named Sec61α, Sec61β, Sec61γ, Sec62 and Sec63, in Locusta migratoria. Quantitative reverse-transcription polymerase chain reaction (RT-qPCR) analysis showed that these five genes were expressed in muti-tissues, including wing pad, leg, foregut, midgut, gastric cecum, hindgut, and highly expressed in the integument. Knockdown of LmSec61α and LmSec61γ by RNA interference (RNAi) lead to the feeding cessation with a mortality rate of 100%. However, there is only 13.4% of dsLmSec61β-injected nymphs died before molting. All nymphs injected with dsLmSec61α and dsLmSec61γ died before molting with the gut atrophy. Furthermore, hematoxylin–eosin staining indicated that the cells of the midguts and gastric caecum were defective, and the microvilli and peritrophic matrix were destroyed seriously after silencing LmSec61α and LmSec61γ. Knockdown of LmSec62 and LmSec63 resulted in high mortality before and during molting. The hematoxylin–eosin (HE) staining and transmission electron microscopy (TEM) results showed that both the formation of the new cuticle and the degradation of the old cuticle were inhibited in dsLmSec63-injected insects compared to the controls. Especially, there was no obvious plaques on microvillar tips of the epidermal cells after silencing of LmSec63. These results revealed that Sec61s and Sec62/Sec63 genes are required in the gut and cuticle development of locusts. Therefore, these genes are potential targets for the control of locusts. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

17 pages, 5196 KiB  
Article
Upregulation of an IAA-Glucosyltransferase OsIAGLU in Rice (Oryza sativa L.) Impairs Root Gravitropism by Disrupting Starch Granule Homeostasis
by Guo Chen, Xiaoyu Fu, Xinya Ruan, Xiaolu Yu, Dianyun Hou and Huawei Xu
Plants 2025, 14(10), 1557; https://doi.org/10.3390/plants14101557 - 21 May 2025
Viewed by 378
Abstract
Indole-3-acetic acid (IAA) glycosyltransferase (IAGLU) plays vital roles in modulating plant development and responses to environmental cues. Here, we elucidate the regulatory mechanism of OsIAGLU in modulating root gravitropism using OsIAGLU-overexpressing (OE) rice (Oryza sativa L.). OsIAGLU upregulation substantially decreases IAA [...] Read more.
Indole-3-acetic acid (IAA) glycosyltransferase (IAGLU) plays vital roles in modulating plant development and responses to environmental cues. Here, we elucidate the regulatory mechanism of OsIAGLU in modulating root gravitropism using OsIAGLU-overexpressing (OE) rice (Oryza sativa L.). OsIAGLU upregulation substantially decreases IAA levels, resulting in the impairment of multiple agronomic traits and root gravitropism, as well as nearly complete suppression of starch granule accumulation in rice root tips. Exogenous application of the auxin analog 1-naphthaleneacetic acid (NAA) effectively rescued both starch granule accumulation and root gravitropism. Starch synthesis genes exhibited relatively stable or slightly decreased expression following NAA treatments, whereas all starch degradation genes displayed a consistent downward trend in expression after NAA treatment. This suggests that starch degradation genes may play a more prominent role in regulating starch granule accumulation in rice roots, contrasting sharply with their roles in Arabidopsis. Moreover, decreased auxin levels perturbed the accumulation and distribution of hydrogen peroxide (H2O2) in rice root tips, while NAA treatment restored normal H2O2 distribution and accumulation in OE roots. This study clearly demonstrates that auxin not only functions in regulating agronomic traits but also plays an essential role in gravity perception by modulating starch granule accumulation in rice root tips. Full article
Show Figures

Figure 1

21 pages, 11060 KiB  
Article
Study on the Suppression of Tip Leakage Vortex in Axial Flow Pumps Based on Circumferential Grooving in the Rotor Chamber
by Haoran Wu, Desheng Zhang, Xi Shen, Chen Ni and Gang Yang
J. Mar. Sci. Eng. 2025, 13(5), 972; https://doi.org/10.3390/jmse13050972 - 17 May 2025
Viewed by 417
Abstract
The stability of axial flow pumps is significantly affected by the tip leakage vortex (TLV), which is generated through the entrainment of the main flow. This study explores the effects of circumferential grooving in the rotor chamber on the tip leakage vortex of [...] Read more.
The stability of axial flow pumps is significantly affected by the tip leakage vortex (TLV), which is generated through the entrainment of the main flow. This study explores the effects of circumferential grooving in the rotor chamber on the tip leakage vortex of an axial flow pump by using the SST k-ω turbulence model. Numerical results were validated with prototype pump experiments. At the design condition, circumferential grooves positioned near the blade leading edge enhance both the pump’s efficiency and head. Grooves implemented at the mid-chord to trailing-edge regions are relatively close to those of the prototype pump. The implementation of grooves at both leading and trailing regions resulted in significantly degraded performance compared to the other two cases. However, at reduced flow rates, grooving in the rotor chamber leads to a decline in performance. Grooves positioned near the blade’s leading edge interfere with the ingress of the TLV into the suction side, suppressing vortex formation. Vortex structures and low-pressure regions are closer to the blade, reducing flow instability. In contrast, grooving in the middle and rear rotor chamber induces instability in the tip region. These findings offer theoretical guidance for suppressing the TLV and enhancing the stability of axial flow pumps. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 10329 KiB  
Article
SEM and Bacteriological Evidence of Laser-Activated Irrigation Compared to Ultrasonic-Activated Irrigation: A Pilot Study
by David E. Jaramillo, Ji W. Jeong, Zhen Shen and Enrico Divito
Dent. J. 2025, 13(5), 195; https://doi.org/10.3390/dj13050195 - 29 Apr 2025
Viewed by 653
Abstract
Background: Pulp tissue debridement and the eradication of microorganisms from an infected root canal system before obturation is a primary focus of endodontic treatment and the best predictor for the long-term success of endodontic treatment. Objective: The purpose of this in vitro laboratory [...] Read more.
Background: Pulp tissue debridement and the eradication of microorganisms from an infected root canal system before obturation is a primary focus of endodontic treatment and the best predictor for the long-term success of endodontic treatment. Objective: The purpose of this in vitro laboratory study was to evaluate pulp tissue debridement and the disinfection efficacy of two different Er;Cr:YSGG laser units, with a 2790 nm wavelength, compared to ultrasonic-activated irrigation (UAI) in root canals infected with Enterococcus faecalis. Methods: Human non-infected mandibular first molars were extracted, disinfected, and cultured with Enterococcus faecalis. Different types of Er;Cr:YSGG laser irrigation and UAI were performed according to the manufacturers’ protocols. The teeth were then processed for bacteriological and SEM analyses. Results: The different laser-activated irrigation protocols showed multiple areas of remaining bacteria, biofilm, tissue, and thermal ablation. The laser fiber tips also displayed significant tip degradation after use, which might affect efficacy. Conclusions: In this in vitro study, laser-activated irrigation using Er;Cr:YSGG technology and UAI were inefficient in eliminating pulp tissue from difficult-to-reach areas and Enterococcus faecalis from infected root canals. Full article
(This article belongs to the Special Issue Endodontics: From Technique to Regeneration)
Show Figures

Graphical abstract

Back to TopTop