A Multi-Deformable-Mirror 500 Hz Adaptive Optical System for Atmospheric Turbulence Simulation, Real-Time Reconstruction, and Wavefront Correction Using Bimorph and Tip-Tilt Correctors
Abstract
:1. Introduction
2. Materials and Methods
2.1. An Experimental Setup
2.2. A Bimorph Deformable Mirror
2.3. A Tip-Tilt Corrector
2.4. A Shack–Hartmann Wavefront Sensor
2.5. Algorithm of Phase Screens Simulation and Reconstruction
- Calculation of the wavefront derivatives in each subaperture of the wavefront sensor based on the known Zernike approximation of the simulated phase screen, as previously described above and illustrated in Figure 7.
- Calculation of the displacements of the focal spots corresponding to the wavefront derivatives calculated in Step 1.
- By knowing the focal spot shifts related to the mirror’s response functions and the focal spot displacements needed to reproduce the wavefront, we were able to solve the overdetermined system of linear equations using the least squares method [93]. This allowed us to calculate the voltage vector that needed to be applied to the mirror electrodes [94].
3. Results
- Determination of the voltage set required for the reconstruction of the phase screens [96].
- Real-time reconstruction of the simulated phase screens employing the bimorph mirror mounted in a tip-tilt mounting.
- Measurement of wavefront distortions in real time using the Shack–Hartmann wavefront sensor along with an analysis of the intensity distribution of the focal spot in the far field.
- Real-time computation of the correction voltages necessary for both the bimorph deformable mirror and the tip-tilt corrector.
- Real-time compensation of the reconstructed phase screens.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tatarsky, V.I. Waves Propagation in Turbulent Atmosphere; Nauka: Moscow, Russia, 1967. [Google Scholar]
- Andrews, L.C.; Phillips, R.L. Laser Beam Propagation Through Random Media, 2nd ed.; SPIE Press: Bellingham, WA, USA, 2005. [Google Scholar]
- Huang, Q.; Liu, D.; Chen, Y.; Wang, Y.; Tan, J.; Chen, W.; Liu, J.; Zhu, N. Secure free-space optical communication system based on data fragmentation multipath transmission technology. Opt. Express 2018, 26, 13536–13542. [Google Scholar] [CrossRef] [PubMed]
- Nafria, V.; Han, X.; Djordjevic, I. Improving free-space optical communication with adaptive optics for higher order modulation. In Proceedings of the Optics and Photonics for Information Processing XIV, Online, CA, USA, 24 August–4 September 2020. [Google Scholar]
- Vorontsov, M.; Weyrauch, T.; Carhart, G.; Beresnev, L. Adaptive Optics for Free Space Laser Communications. In Lasers, Sources and Related Photonic Devices, OSA Technical Digest Series (CD); Optica Publishing Group: Washington, DC, USA, 2010; p. LSMA1. [Google Scholar]
- Weyrauch, T.; Vorontsov, M. Free-space laser communications with adaptive optics: Atmospheric compensation experiments. J. Optic. Comm. Rep. 2004, 1, 355–379. [Google Scholar] [CrossRef]
- Lema, G. Free space optics communication system design using iterative optimization. J. Opt. Commun. 2024, 44, s1205–s1216. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Deng, Y.; Du, A.; Liu, J. Design of a Free Space Optical Communication System for an Unmanned Aerial Vehicle Command and Control Link. Photonics 2021, 8, 163. [Google Scholar] [CrossRef]
- Majumdar, A. Fundamentals of Free-Space Optical (FSO) Communication System. In Advanced Free Space Optics (FSO); Series in Optical Sciences; Springer: New York, NY, USA, 2015; Volume 186. [Google Scholar]
- Lu, M.; Bagheri, M.; James, A.P.; Phung, T. Wireless Charging Techniques for UAVs: A Review, Reconceptualization, and Extension. IEEE Access 2018, 6, 29865–29884. [Google Scholar] [CrossRef]
- Geoffrey, A.; Landis, H. Laser beamed power—Satellite demonstration applications. In Proceedings of the 43rd International Astronautical Congress, Washington, DC, USA, 28 August–5 September 1992. [Google Scholar]
- Vorontsov, M.; Weyrauch, T.; Carhart, G. Lasers, Sources and Related Photonic Devices; OSA Technical Digest Series (CD); Optica Publishing Group: San Diego, USA, 2010; p. LSMA1. [Google Scholar]
- Galaktionov, I.; Kudryashov, A.; Sheldakova, J.; Nikitin, A. Laser beam focusing through the scattering medium by means of adaptive optics. In Proceedings of the Adaptive Optics and Wavefront Control for Biological Systems III, San Francisco, CA, USA, 28 January–2 February 2017. [Google Scholar]
- Wang, R.; Wang, Y.; Jin, C.; Yin, X.; Wang, S.; Yang, C.; Cao, Z.; Mu, Q.; Gao, S.; Xuan, L. Demonstration of horizontal free-space laser communication with the effect of the bandwidth of adaptive optics system. Opt. Commun. 2018, 431, 167–173. [Google Scholar] [CrossRef]
- Chittoor, P.K.; Chokkalingam, B.; Mihet-Popa, L. A Review on UAV Wireless Charging: Fundamentals, Applications, Charging Techniques and Standards. IEEE Access 2021, 9, 69235–69266. [Google Scholar] [CrossRef]
- Wang, C.; Ma, Z. Design of wireless power transfer device for UAV. In Proceedings of the 2016 IEEE International Conference on Mechatronics and Automation, Harbin, China, 7–10 August 2016; pp. 2449–2454. [Google Scholar]
- Bennet, F.; Conan, R.; D’Orgeville, C.; Dawson, M.; Paulin, N.; Price, I.; Rigaut, F.; Ritchie, I.; Smith, C.; Uhlendorf, K. Adaptive optics for laser space debris removal. In Proceedings of the Adaptive Optics Systems III, Amsterdam, The Netherlands, 1–6 July 2012. [Google Scholar]
- Phipps, C.R.; Baker, K.L.; Libby, S.B.; Liedahl, D.A.; Olivier, S.S.; Pleasance, L.D.; Rubenchik, A.; Trebes, J.E.; George, E.V.; Marcovici, B.; et al. Removing orbital debris with lasers. Adv. Space Res. 2012, 49, 1283–1300. [Google Scholar] [CrossRef]
- Shen, S.; Jin, X.; Hao, C. Cleaning space debris with a space-based laser system. Chin. J. Aeronaut. 2014, 27, 805–811. [Google Scholar] [CrossRef]
- Sheldakova, J.; Galaktionov, I.; Nikitin, A.; Rukosuev, A.; Kudryashov, A. LC phase modulator vs deformable mirror for laser beam shaping: What is better? In Proceedings of the Laser Beam Shaping XVIII, San Diego, CA, USA, 19–23 August 2018. [Google Scholar]
- Galaktionov, I.; Kudryashov, A.; Sheldakova, J.; Nikitin, A. Laser beam focusing through the scattering medium using bimorph deformable mirror and spatial light modulator. Proc. SPIE 2019, 11135, 111350B. [Google Scholar]
- Galaktionov, I.; Nikitin, A.; Sheldakova, J.; Toporovsky, V.; Kudryashov, A. Focusing of a Laser Beam Passed through a Moderately Scattering Medium Using Phase-Only Spatial Light Modulator. Photonics 2022, 9, 296. [Google Scholar] [CrossRef]
- Soloviev, A.; Kotov, A.; Martyanov, M.; Perevalov, S.; Zemskov, R.; Starodubtsev, M.; Alexandrov, A.; Galaktionov, I.; Samarkin, V.; Kudryashov, A.; et al. Improving focusability of post-compressed PW laser pulses using a deformable mirror. Opt. Express 2022, 30, 40584–40591. [Google Scholar] [CrossRef] [PubMed]
- Kotov, A.; Perevalov, S.; Starodubtsev, M.; Zemskov, R.; Alexandrov, A.; Galaktionov, I.; Kudryashov, A.; Samarkin, V.; Soloviev, A. Adaptive system for correcting optical aberrations of high-power lasers with dynamic determination of the reference wavefront. Quantum Electron. 2021, 51, 593–596. [Google Scholar] [CrossRef]
- Galaktionov, I.; Kudryashov, A.; Sheldakova, J.; Nikitin, A. The use of modified hill-climbing algorithm for laser beam focusing through the turbid medium. In Proceedings of the Laser Resonators, Microresonators, and Beam Control XIX, San Francisco, CA, USA, 28 January–2 February 2017. [Google Scholar]
- Kalinskaya, D.V.; Papkova, A.S. Optical characteristics of atmospheric aerosol from satellite and photometric measurements at the dust transfers dates. In Proceedings of the 26th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics, Moscow, Russia, 12 November 2020; Volume 11560. [Google Scholar] [CrossRef]
- Papkova, A.S.; Shukalo, D.M. CALIPSO stratification of atmospheric aerosols with environmental assessment of dust content over the Black Sea region. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 2020, 17, 234–242. [Google Scholar] [CrossRef]
- Barros, R.; Keary, S. Experimental setup for investigation of laser beam propagation along horizontal urban path. Proc. SPIE 2014, 9242, 396–404. [Google Scholar]
- Mata-Calvo, R. Transmitter diversity verification on Artemis geostationary satellite. In Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXVI, San Francisco, CA, USA, 1–6 February 2014. [Google Scholar]
- Mosavi, N.; Marks, B.; Boone, B.; Menyuk, C. Optical beam spreading in the presence of both atmospheric turbulence and quartic aberration. In Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXVI, San Francisco, CA, USA, 1–6 February 2014. [Google Scholar]
- Murty, S.S.R. Laser beam propagation in atmospheric turbulence. Proc. Indian Acad. Sci. 1979, 2, 179–195. [Google Scholar] [CrossRef]
- Kwiecień, J. The effects of atmospheric turbulence on laser beam propagation in a closed space—An analytic and experimental approach. Opt. Commun. 2019, 433, 200–208. [Google Scholar] [CrossRef]
- Searles, S.; Hart, G.; Dowling, J.; Hanley, S. Laser beam propagation in turbulent conditions. Appl. Opt. 1991, 30, 401–406. [Google Scholar] [CrossRef]
- Gareth, D.; Naven, C. Experimental analysis of a laser beam propagating in angular turbulence. Open Phys. 2022, 20, 402–415. [Google Scholar]
- Summerer, L.; Purcell, O. Concepts for wireless energy transmission via laser. J. Br. Interplanet. Soc. 2005, 58, 1–10. [Google Scholar]
- Fahey, T.; Islam, M.; Gardi, A.; Sabatini, R. Laser Beam Atmospheric Propagation Modelling for Aerospace LIDAR Applications. Atmosphere 2021, 12, 918. [Google Scholar] [CrossRef]
- Zohuri, B. Atmospheric Propagation of High-Energy Laser Beams. In Directed Energy Weapons; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Shuto, Y. Effect of Water and Aerosols Absorption on Laser Beam Propagation in Moist Atmosphere at Eye-Safe Wavelength of 1.57 µm. J. Electr. Electron. Eng. 2023, 11, 15–22. [Google Scholar]
- Rosen, L.; Ipser, J. High Energy Laser Beam Scattering by Atmospheric Aerosol Aureoles. In Proceedings of the Nonlinear Optical Beam Manipulation and High Energy Beam Propagation through the Atmosphere, Los Angeles, CA, USA, 5–20 January 1989. [Google Scholar]
- Oosterwijk, A.; Heikamp, S.; Manders-Groot, A.; Lex, A.; Eijk, J. Comparison of modelled atmospheric aerosol content and its influence on high-energy laser propagation. In Proceedings of the Laser Communication and Propagation through the Atmosphere and Oceans VIII, San Diego, CA, USA, 11–15 August 2019. [Google Scholar]
- Kudryashov, A.; Rukosuev, A.; Samarkin, V.; Galaktionov, I.; Kopylov, E. Fast adaptive optical system for 1.5 km horizontal beam propagation. In Proceedings of the Unconventional and Indirect Imaging, Image Reconstruction, and Wavefront Sensing 2018, San Diego, CA, USA, 19–23 August 2018. [Google Scholar]
- Soloviev, A.; Kotov, A.; Perevalov, S.; Esyunin, M.; Starodubtsev, M.; Alexandrov, A.; Galaktionov, I.; Samarkin, V.; Kudryashov, A.; Ginzburg, V.; et al. Adaptive system for wavefront correction of the PEARL laser facility. Quantum Electron. 2022, 50, 1115–1122. [Google Scholar] [CrossRef]
- Samarkin, V.; Alexandrov, A.; Galaktionov, I.; Kudryashov, A.; Nikitin, A.; Rukosuev, A.; Toporovsky, V.; Sheldakova, Y. Large-aperture adaptive optical system for correcting wavefront distortions of a petawatt Ti:sapphire laser beam. Quantum Electron. 2022, 52, 187–194. [Google Scholar] [CrossRef]
- Buck, A.L. Effects of the Atmosphere on Laser Beam Propagation. Appl. Opt. 1967, 6, 703–708. [Google Scholar] [CrossRef] [PubMed]
- Galaktionov, I.; Kudryashov, A.; Sheldakova, J.; Nikitin, A.; Samarkin, V. Laser beam focusing through the atmosphere aerosol. In Proceedings of the Unconventional and Indirect Imaging, Image Reconstruction, and Wavefront Sensing 2017, San Diego, CA, USA, 6–10 August 2017. [Google Scholar]
- Lylova, A.; Kudryashov, A.; Sheldakova, J.; Borsoni, G. The real-time atmospheric turbulence modeling and compensation with the use of adaptive optics. In Proceedings of the Optics in Atmospheric Propagation and Adaptive Systems XVIII, Toulouse, France, 21–24 September 2015. [Google Scholar]
- Gonglewski, J.; Highland, R.; Dayton, D.; Sandven, S.; Rogers, S.; Browne, S. ADONIS: Daylight Imaging through Atmospheric Turbulence. In Proceedings of the Digital Image Recovery and Synthesis III, Denver, CO, USA, 4–9 August 1996. [Google Scholar]
- Marchi, G.; Weiß, R. Evaluations and Progress in the Development of an Adaptive Optics System for Ground Object Observation. In Proceedings of the Optics in Atmospheric Propagation and Adaptive Systems X, Florence, Italy, 17–20 September 2007. [Google Scholar]
- Marchi, G.; Scheifling, C. Adaptive optics concepts and systems for multipurpose applications at near horizontal line of sight: Developments and results. In Proceedings of the Optics in Atmospheric Propagation and Adaptive Systems XII, Berlin, Germany, 31 August–3 September 2009. [Google Scholar]
- Segel, M.; Gladysz, S.; Stein, K. Optimal modal compensation in gradient-based wavefront sensorless adaptive optics. In Proceedings of the Laser Communication and Propagation through the Atmosphere and Oceans VIII, San Diego, CA, USA, 11–15 August 2019. [Google Scholar]
- Segel, M.; Zepp, A.; Anzuola, E.; Gladysz, S.; Stein, K. Optimization of wavefront-sensorless adaptive optics for horizontal laser beam propagation in a realistic turbulence environment. In Proceedings of the Laser Communication and Propagation through the Atmosphere and Oceans VI, San Diego, CA, USA, 6–10 August 2017. [Google Scholar]
- Gonglewski, J.; Dayton, D. Least squares blind deconvolution of air to ground imaging. In Proceedings of the Optics in Atmospheric Propagation and Adaptive Systems VIII, Bruges, Belgium, 19–22 September 2005. [Google Scholar]
- Mackey, R.; Dainty, C. Adaptive optics correction over a 3km near horizontal path. In Proceedings of the Optics in Atmospheric Propagation and Adaptive Systems XI, Cardiff, UK, 15–18 September 2008. [Google Scholar]
- Belousov, V.; Galaktionov, I.; Kudryashov, A.; Nikitin, A.; Otrubyannikova, O.; Rukosuev, A.; Samarkin, V.; Sivertceva, I.; Sheldakova, J. Adaptive optical system for correction of laser beam going through turbulent atmosphere. Proc. SPIE 2020, 11560, 1156026. [Google Scholar]
- Zakharov, V.E.; L’vov, V.S.; Falkovich, G. Kolmogorov Spectra of Turbulence I. Wave Turbulence; Springer: Berlin, Germany, 1992. [Google Scholar]
- Rampy, R.; Gavel, D.; Dillon, D.; Thomas, S. Production of phase screens for simulation of atmospheric turbulence. Appl. Opt. 2012, 51, 8769–8778. [Google Scholar] [CrossRef]
- Oh, H.-G.; Kang, P.; Lee, J.; Rhee, H.-G.; Ghim, Y.-S.; Lee, J.H. Fabrication of Phase Plate to Simulate Turbulence Effects on an Optical Imaging System in Strong Atmospheric Conditions. Curr. Opt. Photonics 2024, 8, 259–269. [Google Scholar] [CrossRef]
- Baumer. Passion for Sensors. Available online: https://www.baumer.com/int/en/product-overview/industrial-cameras-image-processing/industrial-cameras/c/331 (accessed on 16 September 2024).
- The Imaging Source. Technologies based on standards. Available online: https://www.theimagingsource.com/en-us/product/industrial/23u/dmk23ux174 (accessed on 16 September 2024).
- Skvortsov, A.A.; Koryachko, M.V.; Zuev, S.M.; Demchenkova, A.A. Melt drops movement over semiconductor surfaces controlled by electric field. Periodico Tche Quimica 2019, 16, 681–687. [Google Scholar] [CrossRef]
- Galaktionov, I.; Nikitin, A.; Samarkin, V.; Sheldakova, J.; Kudryashov, A. Laser beam focusing through the scattering medium-low order aberration correction approach. In Proceedings of the Unconventional and Indirect Imaging, Image Reconstruction, and Wavefront Sensing 2018, San Diego, CA, USA, 19–23 August 2018. [Google Scholar]
- Galaktionov, I.; Kudryashov, A.; Sheldakova, J.; Nikitin, A. Laser beam focusing through the dense multiple scattering suspension using bimorph mirror. In Proceedings of the SPIE Photonics West 2019, San Francisco, CA, USA, 2–7 February 2019; Volume 10886, p. 1088619. [Google Scholar]
- Skvortsov, A.A.; Pshonkin, D.E.; Koryachko, M.V.; Rybakova, M.R. The Effect of Constant Magnetic Fields on the Dynamics of Molten Zones in the Field of Structural Inhomogeneity of Silicon. Tech. Phys. Lett. 2018, 44, 498–501. [Google Scholar] [CrossRef]
- Skvortsov, A.A.; Zuev, S.M.; Koryachko, M.V.; Skvortsova, A.A. The effect of thin dielectric layers at silicon on interconnection heating dynamics at Thermal Shocks. Periodico Tche Quimica 2019, 16, 448–456. [Google Scholar] [CrossRef]
- Koryachko, M.V.; Pshonkin, D.E.; Skvortsov, A.A. Features of melt droplet formation during electrical destruction aluminum films on the semiconductor surface. Defect and Diffusion Forum 2021, 410, 737–741. [Google Scholar] [CrossRef]
- Skvortsov, A.A.; Koryachko, M.V.; Skvortsov, P.A.; Lukyanov, M.N. On the Issue of Crack Formation in a Thin Dielectric Layer on Silicon under Thermal Shock. J. Mater. Eng. Perform. 2020, 29, 4390–4395. [Google Scholar] [CrossRef]
- Skvortsov, A.A.; Zuev, S.M.; Koryachko, M.V. Non-stationary phase transitions in systems metallization of silicon structures. Russ Microelectron 2016, 45, 215–222. [Google Scholar] [CrossRef]
- Higgins, C.W.; Froidevaux, M.; Simeonov, V.; Vercauteren, N.; Barry, C.; Parlange, M.B. The Effect of Scale on the Applicability of Taylor’s Frozen Turbulence Hypothesis in the Atmospheric Boundary Layer. Bound.-Layer Meteorol 2012, 143, 379–391. [Google Scholar] [CrossRef]
- Long, Y.; Mo, J.; Wei, X.; Wang, C.; Wang, S. Design of a Moving-magnet Electromagnetic Actuator for Fast Steering Mirror through Finite Element Simulation Method. J. Magn. 2014, 19, 51–56. [Google Scholar] [CrossRef]
- Guignabert, A.; Maillard, T.; Barillot, F.; Sosnicki, O.; Claeyssen, F. Point Ahead Mechanism for Deep Space Optical Communication Development of a New Piezo-based Fine Steering Mirror. In Proceedings of the 45th Aerospace Mechanisms Symposium, Houston, TX, USA, 13–15 May 2020; pp. 157–161. [Google Scholar]
- Csencsics, E.; Sitz, B.; Schitter, G. A Fast Piezo Actuated Tip/Tilt Mirror for raster scan applications. IFAC-PapersOnLine 2019, 52, 289–294. [Google Scholar] [CrossRef]
- Skvortsov, A.A.; Zuev, S.M.; Koryachko, M.V.; Voloshinov, E.B. Specific features of motion of molten zones in the field of silicon structural inhomogeneity. Tech. Phys. Lett. 2017, 43, 705–707. [Google Scholar] [CrossRef]
- Platt, B.; Shack, R.J. History and principles of Shack-Hartmann wavefront sensing. Refr. Surg. 2001, 17, 15. [Google Scholar] [CrossRef]
- Liang, J.; Grimm, B.; Goelz, S.; Bille, J.F. Objective measurement of the wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor. J. Opt. Soc. Am. A 1994, 11, 1949. [Google Scholar] [CrossRef]
- Lane, R.G. Wave-front reconstruction using a Shack–Hartmann sensor. Appl. Opt. 1992, 31, 6902. [Google Scholar] [CrossRef] [PubMed]
- Primot, J. Theoretical description of Shack–Hartmann wave-front sensor. Opt. Commun. 2003, 222, 81–92. [Google Scholar] [CrossRef]
- Konnik, M.; Doná, J. Waffle mode mitigation in adaptive optics systems: A constrained Receding Horizon Control approach. In Proceedings of the American Control Conference, Washington, DC, USA, 17–19 June 2013; pp. 3390–3396. [Google Scholar]
- Mauch, S.; Reger, J. Real-Time Spot Detection and Ordering for a Shack–Hartmann Wavefront Sensor with a Low-Cost FPGA. Proc. IEEE Trans. Instrum. Meas. 2014, 63, 2379–2386. [Google Scholar] [CrossRef]
- Galaktionov, I.; Sheldakova, J.; Nikitin, A.; Toporovsky, V.; Kudryashov, A. A Hybrid Model for Analysis of Laser Beam Distortions Using Monte Carlo and Shack–Hartmann Techniques: Numerical Study and Experimental Results. Algorithms 2023, 16, 337. [Google Scholar] [CrossRef]
- Galaktionov, I.; Kudryashov, A.; Sheldakova, J.; Byalko, A.; Borsoni, G. Laser beam propagation and wavefront correction in turbid media. In Proceedings of the Unconventional Imaging and Wavefront Sensing 2015, San Diego, CA, USA, 9–13 August 2015. [Google Scholar]
- Galaktionov, I.; Nikitin, A.; Sheldakova, J.; Kudryashov, A. B-spline approximation of a wavefront measured by Shack-Hartmann sensor. In Proceedings of the Laser Beam Shaping XXI, San Diego, CA, USA, 1–5 August 2021. [Google Scholar]
- Malacara-Hernandez, D. Wavefront fitting with discrete orthogonal polynomials in a unit radius circle. Opt. Eng. 1990, 29, 672–675. [Google Scholar] [CrossRef]
- Wyant, J.C.; Creath, K. Basic wavefront aberration theory for optical metrology. In Applied Optics and Optical Engineering; Academic Press: Cambridge, MA, USA, 1992; pp. 28–39. [Google Scholar]
- Genberg, V.; Michels, G.; Doyle, K. Orthogonality of Zernike polynomials. Proc. SPIE 2002, 4771, 276–287. [Google Scholar]
- Lakshminarayanan, V.; Fleck, A. Zernike polynomials: A guide. J. Mod. Opt. 2011, 58, 545–561. [Google Scholar] [CrossRef]
- Linnik, J.V. Least Square Error Method and the Basics of Mathematical-Statistical Theory, 2nd ed.; Mir: Moscow, Russia, 1962. [Google Scholar]
- Kandidov, V.; Shlenov, A. Atmospheric Turbulence Simulation. Grid Representation. Technical Summary; International Laser Center: Moscow, Russia, 1995. [Google Scholar]
- Vorontsov, M.; Shmalhausen, V. Principles of Adaptive Optics; Nauka: Moscow, Russia, 1985. [Google Scholar]
- Dudorov, V.; Kolosov, V.; Filimonov, G. Algorithm for formation of an infinite random turbulent screen. In Proceedings of the Twelfth Joint International Symposium on Atmospheric and Ocean Optics/Atmospheric Physics, Tomsk, Russia, 27–30 June 2005. [Google Scholar]
- Lane, R.G.; Glindemann, A.; Dainty, J.C. Simulation of a Kolmogorov phase screen. Waves Random Media 1992, 2, 209–224. [Google Scholar] [CrossRef]
- Galaktionov, I.; Sheldakova, J.; Toporovsky, V.; Kudryashov, A. Atmospheric turbulence with Kolmogorov spectra: Software simulation and real-time reconstruction and compensation by means of adaptive optical system with bimorph and stacked-actuator mirrors. Photonics 2023, 10, 1147. [Google Scholar] [CrossRef]
- Galaktionov, I.; Sheldakova, J.; Kudryashov, A. Wavefront analysis of the laser beam propagating through a turbid medium. Quantum Electron. 2015, 45, 143–144. [Google Scholar] [CrossRef]
- Li, J.; Li, W.; Huang, R. An efficient method for solving a matrix least squares problem over a matrix inequality constraint. Comput. Opt. Appl. 2016, 63, 393–423. [Google Scholar] [CrossRef]
- Galaktionov, I.; Kudryashov, A.; Sheldakova, J.; Byalko, A.; Borsoni, G. Measurement and correction of the wavefront of the laser light in a turbid medium. Quantum Electron. 2017, 47, 32–37. [Google Scholar] [CrossRef]
- Burger, L.; Litvin, I.; Forbes, A. Simulating atmospheric turbulence using a phase-only spatial light modulator. S. Afr. J. Sci. 2008, 104, 129–137. [Google Scholar]
- Laslandes, M.; Patterson, K.; Pellegrino, S. Optimized actuators for ultrathin deformable primary mirrors. Appl. Opt. 2015, 54, 1559. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Z.; Liu, J.; Tan, J.; Yu, L.; Mei, H.; Zhou, Y.; Zhu, N. Performance analysis of 1-km free-space optical communication system over real atmospheric turbulence channels. Opt. Eng. 2017, 56, 106111. [Google Scholar] [CrossRef]
- Li, M.; Cvijetic, M. Coherent free space optics communications over the maritime atmosphere with use of adaptive optics for beam wavefront correction. Appl. Opt. 2015, 54, 1453–1462. [Google Scholar] [CrossRef]
- Wright, M.W.; Morris, J.F.; Kovalik, J.M.; Andrews, K.S.; Abrahamson, M.J.; Biswas, A. Adaptive optics correction into single mode fiber for a low Earth orbiting space to ground optical communication link using the OPALS downlink. Opt. Express 2015, 23, 33705–33712. [Google Scholar] [CrossRef]
- Thompson, C.A.; Kartz, M.W.; Flath, L.M.; Wilks, S.C.; Young, R.A.; Johnson, G.W.; Ruggiero, A.J. Free space optical communications utilizing MEMS adaptive optics correction. In Proceedings of the Free-Space Laser Communication and Laser Imaging II, Seattle, WA, USA, 7–11 July 2002. [Google Scholar]
- Cornelissen, S.; Hartzell, A.; Stewart, J.; Bifano, T.; Bierden, T. MEMS Deformable Mirrors for Astronomical Adaptive Optics. In Proceedings of the Adaptive Optics Systems II, San Diego, CA, USA, 27 June–2 July 201.
- Majumdar, A.K.; Eaton, F.D.; Jensen, M.L.; Kyrazis, D.T.; Schumm, B.; Dierking, M.P.; Shoemake, M.A.; Dexheimer, D.; Ricklin, J.C. Atmospheric Turbulence Measurements over Desert site using groundbased instruments, kite/tethered-blimp platform and aircraft relevant to optical communications and imaging systems: Preliminary Results. In Proceedings of the Free-Space Laser Communications VI, San Diego, CA, USA, 13–17 August 2006. [Google Scholar]
- Brady, A.; Berlich, R.; Leonhard, N.; Kopf, T.; Böttner, P.; Eberhardt, R.; Reinlein, C. Experimental validation of phase-only pre-compensation over 494 m free-space propagation. Opt. Lett. 2017, 42, 2679–2682. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Substrate aperture | 65 mm |
Clear aperture | 60 mm |
Substrate material | Silica |
No. of PZT | 2 |
No. of control electrodes | 92 |
Type of actuators | PZT discs |
Actuators geometry | sectorial |
Maximum input voltage | −300–+500 V |
Maximum element diameter for tip-tilt mounting | 152 mm |
Angle displacement range of tip-tilt mounting | ±35 mrad |
Parameter | Value |
---|---|
Clear aperture | 56 mm |
Substrate material | Silica |
No. of control actuators | 4 |
Angle displacement | ±0.4 mrad |
Voltages range | −0–+180 V |
Control frequency | More than 200 Hz |
Resolution | 0.02 μrad |
Unloaded resonant frequency | 1.5 kHz |
Unloaded step time | 2 ms |
Electrical capacitance | 7.2/axis μF |
Operating temperature | −20~80 °C |
Material | Aluminum |
Closed-loop linearity | 0.2% F.S. |
Closed-loop repeatability | 0.02% F.S. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galaktionov, I.; Toporovsky, V. A Multi-Deformable-Mirror 500 Hz Adaptive Optical System for Atmospheric Turbulence Simulation, Real-Time Reconstruction, and Wavefront Correction Using Bimorph and Tip-Tilt Correctors. Photonics 2025, 12, 592. https://doi.org/10.3390/photonics12060592
Galaktionov I, Toporovsky V. A Multi-Deformable-Mirror 500 Hz Adaptive Optical System for Atmospheric Turbulence Simulation, Real-Time Reconstruction, and Wavefront Correction Using Bimorph and Tip-Tilt Correctors. Photonics. 2025; 12(6):592. https://doi.org/10.3390/photonics12060592
Chicago/Turabian StyleGalaktionov, Ilya, and Vladimir Toporovsky. 2025. "A Multi-Deformable-Mirror 500 Hz Adaptive Optical System for Atmospheric Turbulence Simulation, Real-Time Reconstruction, and Wavefront Correction Using Bimorph and Tip-Tilt Correctors" Photonics 12, no. 6: 592. https://doi.org/10.3390/photonics12060592
APA StyleGalaktionov, I., & Toporovsky, V. (2025). A Multi-Deformable-Mirror 500 Hz Adaptive Optical System for Atmospheric Turbulence Simulation, Real-Time Reconstruction, and Wavefront Correction Using Bimorph and Tip-Tilt Correctors. Photonics, 12(6), 592. https://doi.org/10.3390/photonics12060592