Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = tin-porphyrins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5286 KiB  
Article
Synthesis and Characterization of Tetrasubstituted Porphyrin Tin(IV) Complexes and Their Adsorption Properties over Tetracycline Antibiotics
by Hanifi Yaman, Mirza Talha Baig and Asgar Kayan
Reactions 2025, 6(1), 12; https://doi.org/10.3390/reactions6010012 - 6 Feb 2025
Cited by 4 | Viewed by 1283
Abstract
New tetrasubstituted porphyrin tin complexes (514) were prepared in two different ways: In the first preparation procedure, tin porphyrin complexes were prepared by a direct reaction of butyltin trichloride and dibutyltin dichloride with tetra/tetrakis(4-X-phenyl)porphyrins (X = H, F, Cl, [...] Read more.
New tetrasubstituted porphyrin tin complexes (514) were prepared in two different ways: In the first preparation procedure, tin porphyrin complexes were prepared by a direct reaction of butyltin trichloride and dibutyltin dichloride with tetra/tetrakis(4-X-phenyl)porphyrins (X = H, F, Cl, Br, CF3, CH3O, and (CH3)2N). In the second procedure, the same tin porphyrin complexes were synthesized from the reaction of butyltin trichloride and dibutyltin dichloride with lithium porphyrinato derivatives. These novel tin complexes were characterized by elemental analysis, 1H, 13C NMR, FTIR, UV-Vis spectroscopy, and mass spectrometry. Among these complexes, tin porphyrin containing methoxy group [Bu2Sn(TMOPP)] was tested as an adsorbent to remove tetracycline antibiotics from wastewater. The TTC antibiotic removal efficiency (R%) of this complex was measured using UV-Vis spectroscopy. After 120 min of equilibration, the final R% and adsorption capacity (qt) were measured at 60.15% and 18.10 mg/g, respectively. Full article
Show Figures

Figure 1

20 pages, 3114 KiB  
Article
Tin(IV)Porphyrin-Based Porous Coordination Polymers as Efficient Visible Light Photocatalyst for Wastewater Remediation
by Nirmal Kumar Shee and Hee-Joon Kim
Nanomaterials 2025, 15(1), 59; https://doi.org/10.3390/nano15010059 - 2 Jan 2025
Viewed by 1344
Abstract
Two porphyrin-based polymeric frameworks, SnP-BTC and SnP-BTB, as visible light photocatalysts for wastewater remediation were prepared by the solvothermal reaction of trans-dihydroxo-[5,15,10,20-tetrakis(phenyl)porphyrinato]tin(IV) (SnP) with 1,3,5-benzenetricarboxylic acid (H3BTC) and 1,3,5-tris(4-carboxyphenyl)benzene (H3BTB), respectively. The strong bond between the carboxylic acid [...] Read more.
Two porphyrin-based polymeric frameworks, SnP-BTC and SnP-BTB, as visible light photocatalysts for wastewater remediation were prepared by the solvothermal reaction of trans-dihydroxo-[5,15,10,20-tetrakis(phenyl)porphyrinato]tin(IV) (SnP) with 1,3,5-benzenetricarboxylic acid (H3BTC) and 1,3,5-tris(4-carboxyphenyl)benzene (H3BTB), respectively. The strong bond between the carboxylic acid group of H3BTC and H3BTB with the axial hydroxyl moiety of SnP leads to the formation of highly stable polymeric architectures. Incorporating the carboxylic acid group onto the surface of SnP changes the conformational frameworks as well as produces rigid structural transformation that includes permanent porosity, good thermodynamic stability, interesting morphology, and excellent photocatalytic degradation activity against AM dye and TC antibiotic under visible light irradiation. The photocatalytic degradation activities of AM dye were found to be 95% by SnP-BTB and 87% by SnP-BTC within 80 min. Within 60 min of visible light exposure, the photocatalytic degradation activities of TC antibiotic were found to be 70% by SnP-BTB and 60% by SnP-BTC. The enhanced catalytic photodegradation performances of SnP-BTB and SnP-BTC were attributed to the synergistic effect between SnP and carboxylic acid groups. The carboxylic acid connectors strongly resist the separation of SnP from the surface of SnP-BTB and SnP-BTC during the photodegradation experiments. Therefore, the high degradation rate and low catalyst loading make SnP-BTB or SnP-BTC more efficient than other reported catalysts. Thus, the present investigations on the porphyrin-based photocatalysts hold great promise in tackling the treatment of dyeing wastewater. Full article
(This article belongs to the Special Issue Environmental Restoration Materials and Technologies)
Show Figures

Figure 1

19 pages, 8882 KiB  
Article
Synthesis and Characterization of Titanium and Vanadium Nitride–Carbon Composites
by Helia M. Morales, David A. Sanchez, Elizabeth M. Fletes, Michael Odlyzko, Victoria Padilla-Gainza, Mataz Alcoutlabi and Jason G. Parsons
J. Compos. Sci. 2024, 8(12), 485; https://doi.org/10.3390/jcs8120485 - 21 Nov 2024
Viewed by 1532
Abstract
Titanium nitride and vanadium nitride–carbon-based composite systems, TiN/C and VN/C, were prepared using a new synthesis method based on the thermal decomposition of titanyl tetraphenyl porphyrin (TiOTPP) and vanadyl tetraphenyl porphyrin (VOTPP), respectively. The structure of the TiN/C and VN/C composite materials, as [...] Read more.
Titanium nitride and vanadium nitride–carbon-based composite systems, TiN/C and VN/C, were prepared using a new synthesis method based on the thermal decomposition of titanyl tetraphenyl porphyrin (TiOTPP) and vanadyl tetraphenyl porphyrin (VOTPP), respectively. The structure of the TiN/C and VN/C composite materials, as well as their precursors, were characterized using Fourier Transformed Infrared Spectroscopy, X-Ray diffraction (XRD), X-Ray energy dispersive (EDS) and X-Ray photoelectron spectroscopy (XPS). Morphologies of the TiN/C and VN/C composites were examined by means of scanning electron (SEM) and transmission electron (TEM) microscopy. The synthesis of the non-metalated tetraphenyl porphyrin, the titanium, and vanadium tetraphenyl porphyrin complexes were confirmed using FTIR. The thermal decomposition of the titanium and vanadium tetraphenyl porphyrin complexes produced the respective metal nitride encapsulated in a carbon matrix; this was confirmed by XRD, SEM, TEM, and XPS. From the XRD patterns, it was determined that the TiN and VN were presented in cubic form with expected space group FM-3M and 1:1 (metal:N) stoichiometry. The XPS results confirmed the presence of both TiN and VN in the carbon matrix without metal carbides. The SEM and TEM results showed that both TiN and VN nanoparticles formed small clusters throughout the carbon matrix; the EDS results revealed a uniform composition. The synthesis method presented in this work is novel and serves as an effective means to produce TiN and VN NPs with good structure and morphology embedded in a carbon matrix. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2024)
Show Figures

Figure 1

19 pages, 4899 KiB  
Article
Self-Assembled Nanostructure of Ionic Sn(IV)porphyrin Complex Based on Multivalent Interactions for Photocatalytic Degradation of Water Contaminants
by Nirmal Kumar Shee and Hee-Joon Kim
Molecules 2024, 29(17), 4200; https://doi.org/10.3390/molecules29174200 - 4 Sep 2024
Cited by 4 | Viewed by 1201
Abstract
[Sn(H2PO4)2(TPyHP)](H2PO4)4∙6H2O (2), an ionic tin porphyrin complex, was synthesized from the reaction of [Sn(OH)2TPyP] (1) with a dilute aqueous solution of [...] Read more.
[Sn(H2PO4)2(TPyHP)](H2PO4)4∙6H2O (2), an ionic tin porphyrin complex, was synthesized from the reaction of [Sn(OH)2TPyP] (1) with a dilute aqueous solution of a polyprotic acid (H3PO4). Complex 2 was fully characterized using various spectroscopic methods, such as X-ray single-crystal crystallography, 1H NMR spectroscopy, elemental analysis, FTIR spectroscopy, UV–vis spectroscopy, emission spectroscopy, EIS mass spectrometry, PXRD, and TGA analysis. The crystal structure of 2 reveals that the intermolecular hydrogen bonds between the peripheral pyridinium groups and the axially coordinated dihydrogen phosphate ligands are the main driving force for the supramolecular assembly. Simultaneously, the overall association of these chains in 2 leads to an open framework with porous channels. The photocatalytic degradation efficiency of methyl orange dye and tetracycline antibiotic by 2 was 83% within 75 min (rate constant = 0.023 min−1) and 75% within 60 min (rate constant = 0.018 min−1), respectively. The self-assembly of 2 resulted in a nanostructure with a huge surface area, elevated thermodynamic stability, interesting surface morphology, and excellent catalytic photodegradation performance for water pollutants, making these porphyrin-based photocatalytic systems promising for wastewater treatment. Full article
Show Figures

Figure 1

22 pages, 4341 KiB  
Article
Supramolecular Self-Assembled Nanostructures Derived from Amplified Structural Isomerism of Zn(II)−Sn(IV)−Zn(II) Porphyrin Triads and Their Visible Light Photocatalytic Degradation of Pollutants
by Nirmal Kumar Shee and Hee-Joon Kim
Nanomaterials 2024, 14(13), 1104; https://doi.org/10.3390/nano14131104 - 27 Jun 2024
Cited by 4 | Viewed by 1438
Abstract
Two structural isomeric porphyrin-based triads (Zn(II)porphyrin−Sn(IV)porphyrin−Zn(II)porphyrin) denoted as T1 and T2 were prepared from the reaction of meso-[5-(4-hydroxyphenyl)-10,15,20-tris(3,5-di-tert-butylphenyl)porphyrinato]zinc(II) (ZnL) with trans-dihydroxo-[5,10-bis(3-pyridyl)-15,20-bis(phenyl)porphyrinato]tin(IV) (SnP1) and trans-dihydroxo-[5,15-bis(3-pyridyl)-10,20-bis(phenyl)porphyrinato]tin(IV) (SnP2), respectively. All the compounds were characterized using UV–vis spectroscopy, [...] Read more.
Two structural isomeric porphyrin-based triads (Zn(II)porphyrin−Sn(IV)porphyrin−Zn(II)porphyrin) denoted as T1 and T2 were prepared from the reaction of meso-[5-(4-hydroxyphenyl)-10,15,20-tris(3,5-di-tert-butylphenyl)porphyrinato]zinc(II) (ZnL) with trans-dihydroxo-[5,10-bis(3-pyridyl)-15,20-bis(phenyl)porphyrinato]tin(IV) (SnP1) and trans-dihydroxo-[5,15-bis(3-pyridyl)-10,20-bis(phenyl)porphyrinato]tin(IV) (SnP2), respectively. All the compounds were characterized using UV–vis spectroscopy, emission spectroscopy, ESI−MS, 1H NMR spectroscopy, and FE-SEM. Most importantly, the two structurally isomeric porphyrin-based triads supramolecularly self-assembled into completely different nanostructures. T1 exhibits a nanosphere morphology, whereas T2 exhibits a nanofiber morphology. The amplified geometric feature in the structural isomeric porphyrin-based triads dictates the physical and chemical properties of the two triads. Both compounds showed the morphology-dependent visible light catalytic photodegradation of rhodamine B dye (74–97% within 90 min) and tetracycline antibiotic (44–71% within 45 min) in water. In both cases, the photodegradation efficiency of T2 was higher than that of T1. The present investigation can significantly contribute to the remediation of wastewater by tuning the conformational changes in porphyrin-based photocatalysts. Full article
Show Figures

Figure 1

15 pages, 3873 KiB  
Article
Sn(IV)porphyrin-Incorporated TiO2 Nanotubes for Visible Light-Active Photocatalysis
by Nirmal Kumar Shee, Gi-Seon Lee and Hee-Joon Kim
Molecules 2024, 29(7), 1612; https://doi.org/10.3390/molecules29071612 - 3 Apr 2024
Cited by 7 | Viewed by 1488
Abstract
In this study, two distinct photocatalysts, namely tin(IV)porphyrin-sensitized titanium dioxide nanotubes (SnP-TNTs) and titanium dioxide nanofibers (TNFs), were synthesized and characterized using various spectroscopic techniques. SnP-TNTs were formed through the hydrothermal reaction of NaOH with TiO2 (P-25) nanospheres in the presence of [...] Read more.
In this study, two distinct photocatalysts, namely tin(IV)porphyrin-sensitized titanium dioxide nanotubes (SnP-TNTs) and titanium dioxide nanofibers (TNFs), were synthesized and characterized using various spectroscopic techniques. SnP-TNTs were formed through the hydrothermal reaction of NaOH with TiO2 (P-25) nanospheres in the presence of Sn(IV)porphyrin (SnP), resulting in a transformation into Sn(IV)porphyrin-imbedded nanotubes. In contrast, under similar reaction conditions but in the absence of SnP, TiO2 (P-25) nanospheres evolved into nanofibers (TNFs). Comparative analysis revealed that SnP-TNTs exhibited a remarkable enhancement in the visible light photodegradation of model pollutants compared to SnP, TiO2 (P-25), or TNFs. The superior photodegradation activity of SnP-TNTs was primarily attributed to synergistic effects between TiO2 (P-25) and SnP, leading to altered conformational frameworks, increased surface area, enhanced thermo-chemical stability, unique morphology, and outstanding visible light photodegradation of cationic methylene blue dye (MB dye). With a rapid removal rate of 95% within 100 min (rate constant = 0.0277 min−1), SnP-TNTs demonstrated excellent dye degradation capacity, high reusability, and low catalyst loading, positioning them as more efficient than conventional catalysts. This report introduces a novel direction for porphyrin-incorporated catalytic systems, holding significance for future applications in environmental remediation. Full article
Show Figures

Figure 1

11 pages, 1787 KiB  
Article
Fabrication of Sn(IV)porphyrin-Imbedded Silica Aerogel Composite
by Min-Gyeong Jo, Nam-Gil Kim and Hee-Joon Kim
J. Compos. Sci. 2023, 7(9), 401; https://doi.org/10.3390/jcs7090401 - 20 Sep 2023
Cited by 2 | Viewed by 1442
Abstract
Optoelectronic functional composite materials with porous structures are of great importance in various fields. A hybrid composite (SnP@SiA) composed of (trans-dihydroxo)(5,10,15,20-tetraphenylporphyrinato)tin(IV) (SnP) in silica aerogel (SiA) was successfully fabricated through the reaction of SnP with silanol groups of SiA in the [...] Read more.
Optoelectronic functional composite materials with porous structures are of great importance in various fields. A hybrid composite (SnP@SiA) composed of (trans-dihydroxo)(5,10,15,20-tetraphenylporphyrinato)tin(IV) (SnP) in silica aerogel (SiA) was successfully fabricated through the reaction of SnP with silanol groups of SiA in the presence of hexamethyldisilazane (HMDS). SnP@SiA was then characterized using various instrumental techniques. The zeta potential for SnP@SiA (−11.62 mV) was found to be less negative than that for SiA (−18.26 mV), indicating that the surface of SnP@SiA is covered by hydrophobic species such as SnP and trimethylsilyl groups. The Brunauer–Emmett–Teller (BET) surface area, pore volume, and average pore size of SnP@SiA are 697.07 m2/g, 1.69 cm3/g, and 8.45 nm, respectively, making it a suitable composite for catalytic applications. SnP@SiA, a photocatalyst with high porosity and a large surface area, yields promising performance in the photodegradation of acid orange 7 (AO7) under visible light irradiation in aqueous solution. This hybrid composite exhibited the desirable properties of aerogels along with the photoelectronic features of porphyrins. Therefore, this porphyrin-imbedded mesoporous material has valuable potential in various applications such as photocatalysis, light energy conversion, biochemical sensors, and gas storage. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2023)
Show Figures

Figure 1

12 pages, 5519 KiB  
Article
Porphyrin-Based MOF Thin Film on Transparent Conducting Oxide: Investigation of Growth, Porosity and Photoelectrochemical Properties
by Ben Gikonyo, Fangbing Liu, Saly Hawila, Aude Demessence, Herme G. Baldovi, Sergio Navalón, Catherine Marichy and Alexandra Fateeva
Molecules 2023, 28(15), 5876; https://doi.org/10.3390/molecules28155876 - 4 Aug 2023
Cited by 6 | Viewed by 2279
Abstract
Synthesizing metal-organic frameworks (MOFs) composites with a controlled morphology is an important requirement to access materials of desired patterning and composition. Since the last decade, MOF growth from sacrificial metal oxide layer is increasingly developed as it represents an efficient pathway to functionalize [...] Read more.
Synthesizing metal-organic frameworks (MOFs) composites with a controlled morphology is an important requirement to access materials of desired patterning and composition. Since the last decade, MOF growth from sacrificial metal oxide layer is increasingly developed as it represents an efficient pathway to functionalize a large number of substrates. In this study, porphyrin-based Al-PMOF thin films were grown on conductive transparent oxide substrates from sacrificial layers of ALD-deposited alumina oxide. The control of the solvent composition and the number of atomic layer deposition (ALD) cycles allow us to tune the crystallinity, morphology and thickness of the produced thin films. Photophysical studies evidence that Al-PMOF thin films present light absorption and emission properties governed by the porphyrinic linker, without any quenching upon increasing the film thickness. Al-PMOF thin films obtained through this methodology present a remarkably high optical quality both in terms of transparency and coverage. The porosity of the samples is demonstrated by ellipsometry and used for Zn(II) insertion inside the MOF thin film. The multifunctional transparent, porous and luminescent thin film grown on fluorine-doped tin oxide (FTO) is used as an electrode capable of photoinduced charge separation upon simulated sunlight irradiation. Full article
(This article belongs to the Special Issue Metal-Organic Framework-Based Composites: Synthesis and Applications)
Show Figures

Figure 1

4 pages, 384 KiB  
Short Note
(trans-Dihydroxo)Sn(IV)-[5,10,15,20-tetrakis(2-pyridyl)porphyrin]
by Nirmal Kumar Shee and Hee-Joon Kim
Molbank 2023, 2023(2), M1669; https://doi.org/10.3390/M1669 - 14 Jun 2023
Cited by 2 | Viewed by 1784
Abstract
Sn(IV)-porphyrin complex with trans-dihydroxo axial-ligands and 2-pyridyl peripheral substituents, namely (trans-dihydroxo)[5,10,15,20-tetrakis(2-pyridyl)porphyrinato]tin(IV) was synthesized and fully characterized by various techniques such as elemental analysis, 1H NMR spectroscopy, ESI-MS spectrometry, UV-visible spectroscopy, and fluorescence spectroscopy. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Scheme 1

16 pages, 3226 KiB  
Article
Molecular Characteristics of Water-Insoluble Tin-Porphyrins for Designing the One-Photon-Induced Two-Electron Oxidation of Water in Artificial Photosynthesis
by Arun Thomas, Yutaka Ohsaki, Ryosuke Nakazato, Fazalurahman Kuttassery, Siby Mathew, Sebastian Nybin Remello, Hiroshi Tachibana and Haruo Inoue
Molecules 2023, 28(4), 1882; https://doi.org/10.3390/molecules28041882 - 16 Feb 2023
Cited by 14 | Viewed by 2640
Abstract
Faced with the new stage of water oxidation by molecular catalysts (MCs) in artificial photosynthesis to overcome the bottle neck issue, the “Photon-flux density problem of sunlight,” a two-electron oxidation process forming H2O2 in place of the conventional four-electron oxidation [...] Read more.
Faced with the new stage of water oxidation by molecular catalysts (MCs) in artificial photosynthesis to overcome the bottle neck issue, the “Photon-flux density problem of sunlight,” a two-electron oxidation process forming H2O2 in place of the conventional four-electron oxidation evolving O2 has attracted much attention. The molecular characteristics of tin(IV)-tetrapyridylporphyrin (SnTPyP), as one of the most promising MCs for the two-electron water oxidation, has been studied in detail. The protolytic equilibria among nine species of SnTPyP, with eight pKa values on the axial ligands’ water molecules and peripheral pyridyl nitrogen atoms in both the ground and excited states, have been clarified through the measurements of UV-vis, fluorescence, 1H NMR, and dynamic fluorescence decay behaviour. The oxidation potentials in the Pourbaix diagram and spin densities by DFT calculation of the one-electron oxidized form of each nine species have predicted that the fully deprotonated species ([SnTPyP(O)2]2−) and the singly deprotonated one ([SnTPyP(OH)(O)]) serve as the most favourable MCs for visible light-induced two-electron water oxidation when they are adsorbed on TiO2 for H2 formation or SnO2 for Z-scheme CO2 reduction in the molecular catalyst sensitized system of artificial photosynthesis. Full article
Show Figures

Graphical abstract

14 pages, 2788 KiB  
Article
Sn(IV)-Porphyrin-Based Nanostructures Featuring Pd(II)-Mediated Supramolecular Arrays and Their Photocatalytic Degradation of Acid Orange 7 Dye
by Nirmal Kumar Shee and Hee-Joon Kim
Int. J. Mol. Sci. 2022, 23(22), 13702; https://doi.org/10.3390/ijms232213702 - 8 Nov 2022
Cited by 22 | Viewed by 3118
Abstract
Two robust Sn(IV)-porphyrin-based supramolecular arrays (1 and 2) were synthesized via the reaction of trans-Pd(PhCN)2Cl2 with two precursor building blocks (SnP1 and SnP2). The structural patterns in these architectures vary from 2D to [...] Read more.
Two robust Sn(IV)-porphyrin-based supramolecular arrays (1 and 2) were synthesized via the reaction of trans-Pd(PhCN)2Cl2 with two precursor building blocks (SnP1 and SnP2). The structural patterns in these architectures vary from 2D to 3D depending on the axial ligation of Sn(IV)-porphyrin units. A discrete 2D tetrameric supramolecule (1) was constructed by coordination of {(trans-dihydroxo)[5,10-bis(4-pyridyl)-15,20-bis(phenyl) porphyrinato]}tin(IV) (SnP1) with trans-PdCl2 units. In contrast, the coordination between the {(trans-diisonicotinato)[5,10-bis(4-pyridyl)-15,20-bis(phenyl)porphyrinato]}tin(IV) (SnP2) and trans-PdCl2 units formed a divergent 3D array (2). Axial ligation of the Sn(IV)-porphyrin building blocks not only alters the supramolecular arrays but also significantly modifies the nanostructures, including porosity, surface area, stability, and morphology. These structural changes consequently affected the photocatalytic degradation efficiency under visible-light irradiation towards acid orange 7 (AO) dye in an aqueous solution. The degradation efficiency of the AO dye in the aqueous solution was observed to be between 86% to 91% within 90 min by these photocatalysts. Full article
(This article belongs to the Special Issue State-of-the-Art Materials Science in Korea)
Show Figures

Graphical abstract

15 pages, 5709 KiB  
Article
Sn(IV) Porphyrin-Based Ionic Self-Assembled Nanostructures and Their Application in Visible Light Photo-Degradation of Malachite Green
by Nirmal Kumar Shee and Hee-Joon Kim
Catalysts 2022, 12(7), 799; https://doi.org/10.3390/catal12070799 - 20 Jul 2022
Cited by 19 | Viewed by 2525
Abstract
A series of porphyrin-based ionic complexes were prepared through the reaction of two porphyrin precursors, 5,10,15,20-tetrakis(4-(2-pyridyl)phenyl)porphyrin H2TPhPyP (1) and trans-dihydroxo [5,10,15,20-tetrakis(4-(2-pyridyl)phenyl)porphyrinato]tin(IV) Sn(OH)2TPhPyP (2), with various acids (HCl, HNO3, CF3COOH, H [...] Read more.
A series of porphyrin-based ionic complexes were prepared through the reaction of two porphyrin precursors, 5,10,15,20-tetrakis(4-(2-pyridyl)phenyl)porphyrin H2TPhPyP (1) and trans-dihydroxo [5,10,15,20-tetrakis(4-(2-pyridyl)phenyl)porphyrinato]tin(IV) Sn(OH)2TPhPyP (2), with various acids (HCl, HNO3, CF3COOH, H2SO4, H2CO3, and H3PO4). The complexes were characterized via elemental analysis, 1H nuclear magnetic resonance spectroscopy, electrospray ionization mass spectrometry, Fourier transform infrared (FT-IR) spectroscopy, ultraviolet (UV)-visible spectroscopy, fluorescence spectroscopy, and field-emission scanning electron microscopy (FE-SEM). Each compound exhibited different results for UV-visible, fluorescence, FT-IR, and FE-SEM studies depending on the counter anions. The complexes possessed different self-assembled nanostructures based on electronic interactions between the cations of compounds 1 and 2 with different counter anions. These aggregated species are stabilized by electrostatic forces and the π-π stacking interactions between the two porphyrin rings, in which the counter anions play an important bridging role. The counter anions also play an important role in controlling the morphology and photocatalytic properties of the as-developed materials. The complexes were then used for the photocatalytic degradation of the malachite green (MG) dye in aqueous media under visible light irradiation for up to 70 min. A morphology-dependent photocatalytic degradation of the MG dye was observed for all the ionic complexes, with efficiencies ranging from 50% to 95%. Full article
Show Figures

Figure 1

9 pages, 2751 KiB  
Article
Photocatalytic Hydrogen Production by the Sensitization of Sn(IV)-Porphyrin Embedded in a Nafion Matrix Coated on TiO2
by Sung-Hyun Kim and Hee-Joon Kim
Molecules 2022, 27(12), 3770; https://doi.org/10.3390/molecules27123770 - 11 Jun 2022
Cited by 9 | Viewed by 2043
Abstract
Efficient utilization of visible light for photocatalytic hydrogen production is one of the most important issues to address. This report describes a facile approach to immobilize visible-light sensitizers on TiO2 surfaces. To effectively utilize the sensitization of Sn(IV) porphyrin species for photocatalytic [...] Read more.
Efficient utilization of visible light for photocatalytic hydrogen production is one of the most important issues to address. This report describes a facile approach to immobilize visible-light sensitizers on TiO2 surfaces. To effectively utilize the sensitization of Sn(IV) porphyrin species for photocatalytic hydrogen production, perfluorosulfonate polymer (Nafion) matrix coated-TiO2 was fabricated. Nafion coated-TiO2 readily adsorbed trans-diaqua[meso-tetrakis(4-pyridinium)porphyrinato]tin(IV) cation [(TPyHP)Sn(OH2)2]6+ via an ion-exchange process. The uptake of [(TPyHP)Sn(OH2)2]6+ in an aqueous solution completed within 30 min, as determined by UV-vis spectroscopy. The existence of Sn(IV) porphyrin species embedded in the Nafion matrix coated on TiO2 was confirmed by zeta potential measurements, UV-vis absorption spectroscopy, TEM combined with energy dispersive X-ray spectroscopy, and thermogravimetric analysis. Sn(IV)-porphyrin cationic species embedded in the Nafion matrix were successfully used as visible-light sensitizer for photochemical hydrogen generation. This photocatalytic system performed 45% better than the uncoated TiO2 system. In addition, the performance at pH 7 was superior to that at pH 3 or 9. This work revealed that Nafion matrix coated-TiO2 can efficiently produce hydrogen with a consistent performance by utilizing a freshly supplied cationic Sn(IV)-porphyrin sensitizer in a neutral solution. Full article
(This article belongs to the Special Issue Catalytic Nanomaterials: Energy and Environment)
Show Figures

Figure 1

16 pages, 2549 KiB  
Article
Self-Assembled Nanomaterials Based on Complementary Sn(IV) and Zn(II)-Porphyrins, and Their Photocatalytic Degradation for Rhodamine B Dye
by Nirmal K. Shee and Hee-Joon Kim
Molecules 2021, 26(12), 3598; https://doi.org/10.3390/molecules26123598 - 11 Jun 2021
Cited by 26 | Viewed by 3448
Abstract
A series of porphyrin triads (16), based on the reaction of trans-dihydroxo-[5,15-bis(3-pyridyl)-10,20-bis(phenyl)porphyrinato]tin(IV) (SnP) with six different phenoxy Zn(II)-porphyrins (ZnLn), was synthesized. The cooperative metal–ligand coordination of 3-pyridyl nitrogens in the SnP with the [...] Read more.
A series of porphyrin triads (16), based on the reaction of trans-dihydroxo-[5,15-bis(3-pyridyl)-10,20-bis(phenyl)porphyrinato]tin(IV) (SnP) with six different phenoxy Zn(II)-porphyrins (ZnLn), was synthesized. The cooperative metal–ligand coordination of 3-pyridyl nitrogens in the SnP with the phenoxy Zn(II)-porphyrins, followed by the self-assembly process, leads to the formation of nanostructures. The red-shifts and remarkable broadening of the absorption bands in the UV–vis spectra for the triads in CHCl3 indicate that nanoaggregates may be produced in the self-assembly process of these triads. The emission intensities of the triads were also significantly reduced due to the aggregation. Microscopic analyses of the nanostructures of the triads reveal differences due to the different substituents on the axial Zn(II)-porphyrin moieties. All these nanomaterials exhibited efficient photocatalytic performances in the degradation of rhodamine B (RhB) dye under visible light irradiation, and the degradation efficiencies of RhB in aqueous solution were observed to be 72~95% within 4 h. In addition, the efficiency of the catalyst was not impaired, showing excellent recyclability even after being applied for the degradation of RhB in up to five cycles. Full article
Show Figures

Graphical abstract

8 pages, 1088 KiB  
Article
Reactivity and Stability of Metalloporphyrin Complex Formation: DFT and Experimental Study
by Rimadani Pratiwi, Slamet Ibrahim and Daryono H. Tjahjono
Molecules 2020, 25(18), 4221; https://doi.org/10.3390/molecules25184221 - 15 Sep 2020
Cited by 18 | Viewed by 3620
Abstract
The interaction of three cationic porphyrins—meso-tetrakis (N-methylpyridinium-4-yl) porphyrin (TMPyP), meso-tetrakis (1,3-dimethylimidazolium-2-yl) porphyrin (TDMImP), and meso-tetrakis (1,2-dimethylpyrazolium-4-yl) porphyrin (TDMPzP)—with five heavy metals was studied computationally, and binding constants were calculated based on data obtained by an experimental method [...] Read more.
The interaction of three cationic porphyrins—meso-tetrakis (N-methylpyridinium-4-yl) porphyrin (TMPyP), meso-tetrakis (1,3-dimethylimidazolium-2-yl) porphyrin (TDMImP), and meso-tetrakis (1,2-dimethylpyrazolium-4-yl) porphyrin (TDMPzP)—with five heavy metals was studied computationally, and binding constants were calculated based on data obtained by an experimental method and compared. The reactivity and stability of their complexes formed with lead, cadmium, mercury, tin, and arsenic ions were observed in DFT global chemical reactivity descriptors: the electronic chemical potential (µ), chemical hardness (η), and electrophilicity (ω). The results show that M-TDMPzP has higher chemical hardness and lower electrophilicity compared to M-TMPyP and M-TDMImP, indicating the reaction of TDMPzP with metals will form a more stable complex. Specifically, Cd-TDMPzP complexes can stabilize the system, with a lower energy and electronic chemical potential, higher chemical hardness, smaller electrophilicity, and higher binding constant value compared to Pb-TDMPzP and Hg-TDMPzP. This result suggests that the interaction of the Cd2+ ion with TDMPzP will produce a stable complex. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

Back to TopTop