Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (971)

Search Parameters:
Keywords = time-correlated corrections

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1047 KiB  
Article
The Effect of Obesity and General Anaesthesia Mode on the Frontal QRS-T Angle During Laparoscopic Surgery
by Harun Tolga Duran, Bülent Meriç Çam, Ahmet Salih Tüzen, Muhammet Aydın Akdoğan and Suat Evirgen
Diagnostics 2025, 15(15), 1962; https://doi.org/10.3390/diagnostics15151962 - 5 Aug 2025
Abstract
Background/Objectives: Obesity is a major cause of repolarisation defects of the heart. The frontal QRS-T angle is a new parameter used for cardiac evaluation. This study aimed to evaluate the effects of a laparoscopic cholecystectomy and anaesthetic agents on the frontal QRS-T [...] Read more.
Background/Objectives: Obesity is a major cause of repolarisation defects of the heart. The frontal QRS-T angle is a new parameter used for cardiac evaluation. This study aimed to evaluate the effects of a laparoscopic cholecystectomy and anaesthetic agents on the frontal QRS-T angle in individuals with obesity. Methods: A total of 91 patients who underwent a laparoscopic cholecystectomy surgery were included in this study. The patients were divided into two groups according to body mass index (BMI) < 30 (n = 68) and ≥30 (n = 23). The frontal QRS-T angle (FQRST), QT interval (QT), corrected QT, and other electrocardiography (ECG) findings were recorded at different time points. Results: In the BMI ≥ 30 group, the frontal QRS-T angle and QT interval measured during the intraoperative period were statistically higher than those of the BMI < 30 group (p < 0.001, p < 0.001). Additionally, the frontal QRS-T angle value was statistically higher in all patients postoperatively compared with the preoperative and intraoperative periods (p < 0.001). Furthermore, there was a positive correlation between the BMI and the frontal QRS-T angle. Our study found that the QRS-T angle and the QT interval duration measured during surgery in the BMI ≥ 30 group who underwent a laparoscopic cholecystectomy were significantly higher than in the BMI < 30 group. Conclusions: We recommend close haemodynamic monitoring during and after surgery for patients with obesity undergoing a laparoscopic cholecystectomy. Full article
(This article belongs to the Section Clinical Diagnosis and Prognosis)
Show Figures

Figure 1

30 pages, 15717 KiB  
Article
Channel Amplitude and Phase Error Estimation of Fully Polarimetric Airborne SAR with 0.1 m Resolution
by Jianmin Hu, Yanfei Wang, Jinting Xie, Guangyou Fang, Huanjun Chen, Yan Shen, Zhenyu Yang and Xinwen Zhang
Remote Sens. 2025, 17(15), 2699; https://doi.org/10.3390/rs17152699 - 4 Aug 2025
Abstract
In order to achieve 0.1 m resolution and fully polarimetric observation capabilities for airborne SAR systems, the adoption of stepped-frequency modulation waveform combined with the polarization time-division transmit/receive (T/R) technique proves to be an effective technical approach. Considering the issue of range resolution [...] Read more.
In order to achieve 0.1 m resolution and fully polarimetric observation capabilities for airborne SAR systems, the adoption of stepped-frequency modulation waveform combined with the polarization time-division transmit/receive (T/R) technique proves to be an effective technical approach. Considering the issue of range resolution degradation and paired echoes caused by multichannel amplitude–phase mismatch in fully polarimetric airborne SAR with 0.1 m resolution, an amplitude–phase error estimation algorithm based on echo data is proposed in this paper. Firstly, the subband amplitude spectrum correction curve is obtained by the statistical average of the subband amplitude spectrum. Secondly, the paired-echo broadening function is obtained by selecting high-quality sample points after single-band imaging and the nonlinear phase error within the subbands is estimated via Sinusoidal Frequency Modulation Fourier Transform (SMFT). Thirdly, based on the minimum entropy criterion of the synthesized compressed pulse image, residual linear phase errors between subbands are quickly acquired. Finally, two-dimensional cross-correlation of the image slice is utilized to estimate the positional deviation between polarization channels. This method only requires high-quality data samples from the echo data, then rapidly estimates both intra-band and inter-band amplitude/phase errors by using SMFT and the minimum entropy criterion, respectively, with the characteristics of low computational complexity and fast convergence speed. The effectiveness of this method is verified by the imaging results of the experimental data. Full article
Show Figures

Figure 1

25 pages, 4837 KiB  
Article
Multimodal Computational Approach for Forecasting Cardiovascular Aging Based on Immune and Clinical–Biochemical Parameters
by Madina Suleimenova, Kuat Abzaliyev, Ainur Manapova, Madina Mansurova, Symbat Abzaliyeva, Saule Doskozhayeva, Akbota Bugibayeva, Almagul Kurmanova, Diana Sundetova, Merey Abdykassymova and Ulzhas Sagalbayeva
Diagnostics 2025, 15(15), 1903; https://doi.org/10.3390/diagnostics15151903 - 29 Jul 2025
Viewed by 211
Abstract
Background: This study presents an innovative approach to cardiovascular disease (CVD) risk prediction based on a comprehensive analysis of clinical, immunological and biochemical markers using mathematical modelling and machine learning methods. Baseline data include indices of humoral and cellular immunity (CD59, CD16, [...] Read more.
Background: This study presents an innovative approach to cardiovascular disease (CVD) risk prediction based on a comprehensive analysis of clinical, immunological and biochemical markers using mathematical modelling and machine learning methods. Baseline data include indices of humoral and cellular immunity (CD59, CD16, IL-10, CD14, CD19, CD8, CD4, etc.), cytokines and markers of cardiovascular disease, inflammatory markers (TNF, GM-CSF, CRP), growth and angiogenesis factors (VEGF, PGF), proteins involved in apoptosis and cytotoxicity (perforin, CD95), as well as indices of liver function, kidney function, oxidative stress and heart failure (albumin, cystatin C, N-terminal pro B-type natriuretic peptide (NT-proBNP), superoxide dismutase (SOD), C-reactive protein (CRP), cholinesterase (ChE), cholesterol, and glomerular filtration rate (GFR)). Clinical and behavioural risk factors were also considered: arterial hypertension (AH), previous myocardial infarction (PICS), aortocoronary bypass surgery (CABG) and/or stenting, coronary heart disease (CHD), atrial fibrillation (AF), atrioventricular block (AB block), and diabetes mellitus (DM), as well as lifestyle (smoking, alcohol consumption, physical activity level), education, and body mass index (BMI). Methods: The study included 52 patients aged 65 years and older. Based on the clinical, biochemical and immunological data obtained, a model for predicting the risk of premature cardiovascular aging was developed using mathematical modelling and machine learning methods. The aim of the study was to develop a predictive model allowing for the early detection of predisposition to the development of CVDs and their complications. Numerical methods of mathematical modelling, including Runge–Kutta, Adams–Bashforth and backward-directed Euler methods, were used to solve the prediction problem, which made it possible to describe the dynamics of changes in biomarkers and patients’ condition over time with high accuracy. Results: HLA-DR (50%), CD14 (41%) and CD16 (38%) showed the highest association with aging processes. BMI was correlated with placental growth factor (37%). The glomerular filtration rate was positively associated with physical activity (47%), whereas SOD activity was negatively correlated with it (48%), reflecting a decline in antioxidant defence. Conclusions: The obtained results allow for improving the accuracy of cardiovascular risk prediction, and form personalised recommendations for the prevention and correction of its development. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

17 pages, 8549 KiB  
Article
A Fully Automated Analysis Pipeline for 4D Flow MRI in the Aorta
by Ethan M. I. Johnson, Haben Berhane, Elizabeth Weiss, Kelly Jarvis, Aparna Sodhi, Kai Yang, Joshua D. Robinson, Cynthia K. Rigsby, Bradley D. Allen and Michael Markl
Bioengineering 2025, 12(8), 807; https://doi.org/10.3390/bioengineering12080807 - 27 Jul 2025
Viewed by 341
Abstract
Four-dimensional (4D) flow MRI has shown promise for the assessment of aortic hemodynamics. However, data analysis traditionally requires manual and time-consuming human input at several stages. This limits reproducibility and affects analysis workflows, such that large-cohort 4D flow studies are lacking. Here, a [...] Read more.
Four-dimensional (4D) flow MRI has shown promise for the assessment of aortic hemodynamics. However, data analysis traditionally requires manual and time-consuming human input at several stages. This limits reproducibility and affects analysis workflows, such that large-cohort 4D flow studies are lacking. Here, a fully automated artificial intelligence (AI) 4D flow analysis pipeline was developed and evaluated in a cohort of over 350 subjects. The 4D flow MRI analysis pipeline integrated a series of previously developed and validated deep learning networks, which replaced traditionally manual processing tasks (background-phase correction, noise masking, velocity anti-aliasing, aorta 3D segmentation). Hemodynamic parameters (global aortic pulse wave velocity (PWV), peak velocity, flow energetics) were automatically quantified. The pipeline was evaluated in a heterogeneous single-center cohort of 379 subjects (age = 43.5 ± 18.6 years, 118 female) who underwent 4D flow MRI of the thoracic aorta (n = 147 healthy controls, n = 147 patients with a bicuspid aortic valve [BAV], n = 10 with mechanical valve prostheses, n = 75 pediatric patients with hereditary aortic disease). Pipeline performance with BAV and control data was evaluated by comparing to manual analysis performed by two human observers. A fully automated 4D flow pipeline analysis was successfully performed in 365 of 379 patients (96%). Pipeline-based quantification of aortic hemodynamics was closely correlated with manual analysis results (peak velocity: r = 1.00, p < 0.001; PWV: r = 0.99, p < 0.001; flow energetics: r = 0.99, p < 0.001; overall r ≥ 0.99, p < 0.001). Bland–Altman analysis showed close agreement for all hemodynamic parameters (bias 1–3%, limits of agreement 6–22%). Notably, limits of agreement between different human observers’ quantifications were moderate (4–20%). In addition, the pipeline 4D flow analysis closely reproduced hemodynamic differences between age-matched adult BAV patients and controls (median peak velocity: 1.74 m/s [automated] or 1.76 m/s [manual] BAV vs. 1.31 [auto.] vs. 1.29 [manu.] controls, p < 0.005; PWV: 6.4–6.6 m/s all groups, any processing [no significant differences]; kinetic energy: 4.9 μJ [auto.] or 5.0 μJ [manu.] BAV vs. 3.1 μJ [both] control, p < 0.005). This study presents a framework for the complete automation of quantitative 4D flow MRI data processing with a failure rate of less than 5%, offering improved measurement reliability in quantitative 4D flow MRI. Future studies are warranted to reduced failure rates and evaluate pipeline performance across multiple centers. Full article
(This article belongs to the Special Issue Recent Advances in Cardiac MRI)
Show Figures

Figure 1

19 pages, 3636 KiB  
Article
Research on Wellbore Trajectory Prediction Based on a Pi-GRU Model
by Hanlin Liu, Yule Hu and Zhenkun Wu
Appl. Sci. 2025, 15(15), 8317; https://doi.org/10.3390/app15158317 - 26 Jul 2025
Viewed by 205
Abstract
Accurate wellbore trajectory prediction is of great significance for enhancing the efficiency and safety of directional drilling in coal mines. However, traditional mechanical analysis methods have high computational complexity, and the existing data-driven models cannot fully integrate non-sequential features such as stratum lithology. [...] Read more.
Accurate wellbore trajectory prediction is of great significance for enhancing the efficiency and safety of directional drilling in coal mines. However, traditional mechanical analysis methods have high computational complexity, and the existing data-driven models cannot fully integrate non-sequential features such as stratum lithology. To solve these problems, this study proposes a parallel input gated recurrent unit (Pi-GRU) model based on the TensorFlow framework. The GRU network captures the temporal dependencies of sequence data (such as dip angle and azimuth angle), while the BP neural network extracts deep correlations from non-sequence features (such as stratum lithology), thereby achieving multi-source data fusion modeling. Orthogonal experimental design was adopted to optimize the model hyperparameters, and the ablation experiment confirmed the necessity of the parallel architecture. The experimental results obtained based on the data of a certain coal mine in Shanxi Province show that the mean square errors (MSE) of the azimuth and dip angle angles of the Pi-GRU model are 0.06° and 0.01°, respectively. Compared with the emerging CNN-BiLSTM model, they are reduced by 66.67% and 76.92%, respectively. To evaluate the generalization performance of the model, we conducted cross-scenario validation on the dataset of the Dehong Coal Mine. The results showed that even under unknown geological conditions, the Pi-GRU model could still maintain high-precision predictions. The Pi-GRU model not only outperforms existing methods in terms of prediction accuracy, with an inference delay of only 0.21 milliseconds, but also requires much less computing power for training and inference than the maximum computing power of the Jetson TX2 hardware. This proves that the model has good practicability and deployability in the engineering field. It provides a new idea for real-time wellbore trajectory correction in intelligent drilling systems and shows strong application potential in engineering applications. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

19 pages, 1307 KiB  
Article
Three-Dimensional Non-Stationary MIMO Channel Modeling for UAV-Based Terahertz Wireless Communication Systems
by Kai Zhang, Yongjun Li, Xiang Wang, Zhaohui Yang, Fenglei Zhang, Ke Wang, Zhe Zhao and Yun Wang
Entropy 2025, 27(8), 788; https://doi.org/10.3390/e27080788 - 25 Jul 2025
Viewed by 194
Abstract
Terahertz (THz) wireless communications can support ultra-high data rates and secure wireless links with miniaturized devices for unmanned aerial vehicle (UAV) communications. In this paper, a three-dimensional (3D) non-stationary geometry-based stochastic channel model (GSCM) is proposed for multiple-input multiple-output (MIMO) communication links between [...] Read more.
Terahertz (THz) wireless communications can support ultra-high data rates and secure wireless links with miniaturized devices for unmanned aerial vehicle (UAV) communications. In this paper, a three-dimensional (3D) non-stationary geometry-based stochastic channel model (GSCM) is proposed for multiple-input multiple-output (MIMO) communication links between the UAVs in the THz band. The proposed channel model considers not only the 3D scattering and reflection scenarios (i.e., reflection and scattering fading) but also the atmospheric molecule absorption attenuation, arbitrary 3D trajectory, and antenna arrays of both terminals. In addition, the statistical properties of the proposed GSCM (i.e., the time auto-correlation function (T-ACF), space cross-correlation function (S-CCF), and Doppler power spectrum density (DPSD)) are derived and analyzed under several important UAV-related parameters and different carrier frequencies, including millimeter wave (mmWave) and THz bands. Finally, the good agreement between the simulated results and corresponding theoretical ones demonstrates the correctness of the proposed GSCM, and some useful observations are provided for the system design and performance evaluation of UAV-based air-to-air (A2A) THz-MIMO wireless communications. Full article
Show Figures

Figure 1

11 pages, 669 KiB  
Article
Validation of Hemoglobin and Hematocrit Measurements from a Dialysis Machine Sensor Compared to Laboratory Analysis
by Niccolò Morisi, Marco Ferrarini, Laura Veronesi, Giovanni Manzini, Silvia Giovanella, Gaetano Alfano, Lucia Stipo, Fabio Olmeda, Giulia Ligabue, Grazia Maria Virzì, Valentina Di Pinto, Luigi Rovati and Gabriele Donati
J. Clin. Med. 2025, 14(15), 5242; https://doi.org/10.3390/jcm14155242 - 24 Jul 2025
Viewed by 299
Abstract
Background: Continuous monitoring of hemoglobin (HB) and hematocrit (HCT) during hemodialysis could improve fluid management and patient safety. The Fresenius 5008 dialysis machine includes an ultrasound-based sensor that estimates HB and HCT values, though its accuracy compared to standard laboratory measurements remains unclear. [...] Read more.
Background: Continuous monitoring of hemoglobin (HB) and hematocrit (HCT) during hemodialysis could improve fluid management and patient safety. The Fresenius 5008 dialysis machine includes an ultrasound-based sensor that estimates HB and HCT values, though its accuracy compared to standard laboratory measurements remains unclear. Methods: This exploratory observational study assessed the agreement between sensor-derived and laboratory-derived HB and HCT values in 20 patients at the start of hemodiafiltration. A total of 177 paired blood samples were collected. Results: Sensor values significantly underestimated laboratory HB (9.61 vs. 11.31 g/dL) and HCT (27% vs. 34%) (p < 8 × 10−25). Correlations were strong for both parameters (HB: r = 0.788; HCT: r = 0.876). Regression analyses revealed consistent proportional bias. Applying a fixed correction of +1.69 g/dL for HB and +7.55% for HCT eliminated the statistical differences and reduced intercepts in regression models. Bland–Altman plots confirmed improved agreement post-correction. Albumin levels correlated modestly with error magnitude. Conclusions: HB and HCT values from the Fresenius 5008 sensor are strongly correlated with laboratory data but are systematically underestimated at treatment start, likely due to hemodilution. Applying fixed correction factors improves accuracy and supports the sensor’s use for real-time monitoring. Full article
(This article belongs to the Special Issue Hemodialysis: Clinical Updates and Advances)
Show Figures

Figure 1

12 pages, 1408 KiB  
Article
Association of Lipoprotein A rs10455872 Polymorphism with Childhood Obesity and Obesity-Related Outcomes
by Ayşen Haksayar, Mustafa Metin Donma, Bahadır Batar, Buse Tepe, Birol Topçu and Orkide Donma
Diagnostics 2025, 15(14), 1809; https://doi.org/10.3390/diagnostics15141809 - 18 Jul 2025
Viewed by 366
Abstract
Background/Objectives: Obesity is associated with cardiovascular disease worldwide. An increased lipoprotein A (LpA) level is an independent risk factor for cardiovascular disease in children. Genetic polymorphisms of the LPA gene may play an important role in susceptibility to obesity. The aim of this [...] Read more.
Background/Objectives: Obesity is associated with cardiovascular disease worldwide. An increased lipoprotein A (LpA) level is an independent risk factor for cardiovascular disease in children. Genetic polymorphisms of the LPA gene may play an important role in susceptibility to obesity. The aim of this study was to investigate the association of LPA rs10455872 polymorphism with the risk and clinical phenotypes of childhood obesity. Methods: This study included 103 children with obesity and 77 healthy controls. Genotyping of the LPA rs10455872 polymorphism was performed using real-time PCR. Results: The genotype distributions of the LPA rs10455872 polymorphism did not differ significantly between children with obesity and healthy children (p = 0.563). A marked difference in insulin levels was observed between children with obesity carrying the AG (16.90 IU/mL) and AA (25.57 IU/mL) genotypes. A marked difference was also observed in CRP levels between children with obesity with the AG (2.31 mg/L) and AA (4.25 mg/L) genotypes. After correcting for multiple comparisons using the false discovery rate (FDR), significant differences were found between AG and AA genotypes in vitamin B12 (adjusted p = 0.024). Serum iron showed a borderline association (adjusted p = 0.072). A statistically significant correlation was found between the metabolic syndrome index and body fat ratio among children with obesity with the AA genotype (p = 0.028). Conclusions: Although limited by the small number of children with obesity with the AG genotype, some differences were noted between the AG and AA genotypes. These exploratory findings require further investigation in adequately powered studies. In children with obesity with the AA genotype, the metabolic syndrome index increases as the body fat ratio increases. Full article
(This article belongs to the Special Issue Advances in Laboratory Markers of Human Disease)
Show Figures

Graphical abstract

13 pages, 2051 KiB  
Article
Near-Infrared Spectroscopy and Machine Learning for Fast Quality Prediction of Bottle Gourd
by Xiao Guo, Hongyu Huang, Haiyan Wang, Chang Cai, Ying Wang, Xiaohua Wu, Jian Wang, Baogen Wang, Biao Zhu and Yun Xiang
Foods 2025, 14(14), 2503; https://doi.org/10.3390/foods14142503 - 17 Jul 2025
Viewed by 266
Abstract
Protein and amino acid content are the crucial quality parameters in bottle gourd, and traditional measurement methods for detecting those parameters are complicated, time-consuming, and costly. In this study, we employed NIRS along with machine learning and neural network-based methods to model and [...] Read more.
Protein and amino acid content are the crucial quality parameters in bottle gourd, and traditional measurement methods for detecting those parameters are complicated, time-consuming, and costly. In this study, we employed NIRS along with machine learning and neural network-based methods to model and predict protein and free amino acids (FAAs) of bottle gourd. Specifically, the content of protein and FAAs were measured through conventional methods. Then a near-infrared analyzer was utilized to obtain the spectral data, which were processed using multiple scattering correction (MSC) and standard normalized variate (SNV). The processed spectral data were further processed using feature importance selection to select the feature bands that had the highest correlation with protein and FAAs, respectively. The models for protein and FAAs estimation were developed using support vector regression (SVR), ridge regression (RR), random forest regression (RFR), and fully connected neural networks (FCNNs). Among them, ridge regression achieved the optimal performance, with determination coefficients (R2) of 0.96 and 0.77 on the protein and FAAs test sets, respectively, and root mean square error (RMSE) values of 0.23 and 0.5, respectively. Based on this, we developed a precise and rapid prediction model for the important quality indices of bottle gourd. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

18 pages, 2946 KiB  
Article
Feasibility of Observing Glymphatic System Activity During Sleep Using Diffusion Tensor Imaging Analysis Along the Perivascular Space (DTI-ALPS) Index
by Chang-Soo Yun, Chul-Ho Sohn, Jehyeong Yeon, Kun-Jin Chung, Byong-Ji Min, Chang-Ho Yun and Bong Soo Han
Diagnostics 2025, 15(14), 1798; https://doi.org/10.3390/diagnostics15141798 - 16 Jul 2025
Viewed by 402
Abstract
Background/Objectives: The glymphatic system plays a crucial role in clearing brain metabolic waste, and its dysfunction has been correlated to various neurological disorders. The Diffusion Tensor Imaging Analysis Along the Perivascular Space (DTI-ALPS) index has been proposed as a non-invasive marker of [...] Read more.
Background/Objectives: The glymphatic system plays a crucial role in clearing brain metabolic waste, and its dysfunction has been correlated to various neurological disorders. The Diffusion Tensor Imaging Analysis Along the Perivascular Space (DTI-ALPS) index has been proposed as a non-invasive marker of glymphatic function by measuring diffusivity along perivascular spaces; however, its sensitivity to sleep-related changes in glymphatic activity has not yet been validated. This study aimed to evaluate the feasibility of using the DTI-ALPS index as a quantitative marker of dynamic glymphatic activity during sleep. Methods: Diffusion tensor imaging (DTI) data were obtained from 12 healthy male participants (age = 24.44 ± 2.5 years; Pittsburgh Sleep Quality Index (PSQI) < 5), once while awake and 16 times during sleep, following 24 h sleep deprivation and administration of 10 mg zolpidem. Simultaneous MR-compatible electroencephalography was used to determine whether the subject was asleep or awake. DTI preprocessing included eddy current correction and tensor fitting. The DTI-ALPS index was calculated from nine regions of interest in projection and association areas aligned to standard space. The final analysis included nine participants (age = 24.56 ± 2.74 years; PSQI < 5) who maintained a continuous sleep state for 1 h without awakening. Results: Among nine ROI pairs, three showed significant increases in the DTI-ALPS index during sleep compared to wakefulness (Friedman test; p = 0.027, 0.029, 0.034). These ROIs showed changes at 14, 19, and 25 min after sleep induction, with FDR-corrected p-values of 0.024, 0.018, and 0.018, respectively. Conclusions: This study demonstrated a statistically significant increase in the DTI-ALPS index within 30 min after sleep induction through time-series DTI analysis during wakefulness and sleep, supporting its potential as a biomarker reflecting glymphatic activity. Full article
(This article belongs to the Section Clinical Diagnosis and Prognosis)
Show Figures

Figure 1

17 pages, 2032 KiB  
Article
Measurement Techniques for Highly Dynamic and Weak Space Targets Using Event Cameras
by Haonan Liu, Ting Sun, Ye Tian, Siyao Wu, Fei Xing, Haijun Wang, Xi Wang, Zongyu Zhang, Kang Yang and Guoteng Ren
Sensors 2025, 25(14), 4366; https://doi.org/10.3390/s25144366 - 12 Jul 2025
Viewed by 358
Abstract
Star sensors, as the most precise attitude measurement devices currently available, play a crucial role in spacecraft attitude estimation. However, traditional frame-based cameras tend to suffer from target blur and loss under high-dynamic maneuvers, which severely limit the applicability of conventional star sensors [...] Read more.
Star sensors, as the most precise attitude measurement devices currently available, play a crucial role in spacecraft attitude estimation. However, traditional frame-based cameras tend to suffer from target blur and loss under high-dynamic maneuvers, which severely limit the applicability of conventional star sensors in complex space environments. In contrast, event cameras—drawing inspiration from biological vision—can capture brightness changes at ultrahigh speeds and output a series of asynchronous events, thereby demonstrating enormous potential for space detection applications. Based on this, this paper proposes an event data extraction method for weak, high-dynamic space targets to enhance the performance of event cameras in detecting space targets under high-dynamic maneuvers. In the target denoising phase, we fully consider the characteristics of space targets’ motion trajectories and optimize a classical spatiotemporal correlation filter, thereby significantly improving the signal-to-noise ratio for weak targets. During the target extraction stage, we introduce the DBSCAN clustering algorithm to achieve the subpixel-level extraction of target centroids. Moreover, to address issues of target trajectory distortion and data discontinuity in certain ultrahigh-dynamic scenarios, we construct a camera motion model based on real-time motion data from an inertial measurement unit (IMU) and utilize it to effectively compensate for and correct the target’s trajectory. Finally, a ground-based simulation system is established to validate the applicability and superior performance of the proposed method in real-world scenarios. Full article
Show Figures

Figure 1

18 pages, 2798 KiB  
Article
A Terrain-Constrained Cross-Correlation Matching Method for Laser Footprint Geolocation
by Sihan Zhou, Pufan Zhao, Jian Yang, Qijin Han, Yue Ma, Hui Zhou and Song Li
Remote Sens. 2025, 17(14), 2381; https://doi.org/10.3390/rs17142381 - 10 Jul 2025
Viewed by 238
Abstract
The full-waveform spaceborne laser altimeter improves footprint geolocation accuracy through waveform matching, providing critical data for on-orbit calibration. However, in areas with significant topographic variations or complex surface characteristics, traditional waveform matching methods based on the Pearson correlation coefficient (PCC-Match) are susceptible to [...] Read more.
The full-waveform spaceborne laser altimeter improves footprint geolocation accuracy through waveform matching, providing critical data for on-orbit calibration. However, in areas with significant topographic variations or complex surface characteristics, traditional waveform matching methods based on the Pearson correlation coefficient (PCC-Match) are susceptible to errors from laser ranging inaccuracies and discrepancies in surface structures, resulting in reduced footprint geolocation stability. This study proposes a terrain-constrained cross-correlation matching (TC-Match) method. By integrating the terrain characteristics of the laser footprint area with spaceborne altimetry data, a sliding “time-shift” constraint range is constructed. Within this constraint range, an optimal matching search based on waveform structural characteristics is conducted to enhance the robustness and accuracy of footprint geolocation. Using GaoFen-7 (GF-7) satellite laser footprint data, experiments were conducted in regions of Utah and Arizona, USA, for validation. The results show that TC-Match outperforms PCC-Match regarding footprint geolocation accuracy, stability, elevation correction, and systematic bias correction. This study demonstrates that TC-Match significantly improves the geolocation quality of spaceborne laser altimeters under complex terrain conditions, offering good practical engineering adaptability. It provides an effective technical pathway for subsequent on-orbit calibration and precision model optimization of spaceborne laser data. Full article
(This article belongs to the Section Remote Sensing for Geospatial Science)
Show Figures

Figure 1

22 pages, 23032 KiB  
Article
Statistical Approach to Research on the Relationship Between Kp/Dst Geomagnetic Indices and Total GPS Position Error
by Mario Bakota, Igor Jelaska, Serdjo Kos and David Brčić
Remote Sens. 2025, 17(14), 2374; https://doi.org/10.3390/rs17142374 - 10 Jul 2025
Viewed by 336
Abstract
This study examines the impact of geomagnetic disturbances quantified by the Kp and Dst indices on the accuracy of single-frequency GPS positioning across mid-latitudes and the equatorial zone, with a focus on temporal and spatial positioning errors variability. GNSS data from a globally [...] Read more.
This study examines the impact of geomagnetic disturbances quantified by the Kp and Dst indices on the accuracy of single-frequency GPS positioning across mid-latitudes and the equatorial zone, with a focus on temporal and spatial positioning errors variability. GNSS data from a globally distributed network of 14 IGS stations were analyzed for September 2017, featuring significant geomagnetic activity. The selection of stations encompassed equatorial and mid-latitude regions (approximately ±45°), strategically aligned with the distribution of the Dst index during geomagnetic storms. Satellite navigation data were processed using RTKLIB software in standalone mode with standardized atmospheric and orbital corrections. The GPS was chosen over GLONASS following preliminary testing, which revealed a higher sensitivity of GPS positional accuracy to variations in geomagnetic indices such as Kp and Dst, despite generally lower total error magnitudes. The ECEF coordinate system calculates the total GPS error as the vector sum of deviations in the X, Y, and Z axes. Statistical evaluation was performed using One-Way Repeated Measures ANOVA to determine whether positional error variances across geomagnetic activity phases were significant. The results of the variance analysis confirm that the variation in the total GPS positioning error is non-random and can be attributed to the influence of geomagnetic storms. However, regression analysis reveals that the impact of geomagnetic storms (quantified by Kp and Dst) displays spatiotemporal variability, with no consistent correlation to GPS positioning error dynamics. The findings, as well as the developed methodology, have qualitative implications for GNSS-dependent operations in sensitive sectors such as navigation, timing services, and geospatial monitoring. Full article
Show Figures

Figure 1

31 pages, 5327 KiB  
Article
Wind Estimation Methods for Nearshore Wind Resource Assessment Using High-Resolution WRF and Coastal Onshore Measurements
by Taro Maruo and Teruo Ohsawa
Wind 2025, 5(3), 17; https://doi.org/10.3390/wind5030017 - 7 Jul 2025
Viewed by 328
Abstract
Accurate wind resource assessment is essential for offshore wind energy development, particularly in nearshore sites where atmospheric stability and internal boundary layers significantly influence the horizontal wind distribution. In this study, we investigated wind estimation methods using a high-resolution, 100 m grid Weather [...] Read more.
Accurate wind resource assessment is essential for offshore wind energy development, particularly in nearshore sites where atmospheric stability and internal boundary layers significantly influence the horizontal wind distribution. In this study, we investigated wind estimation methods using a high-resolution, 100 m grid Weather Research and Forecasting (WRF) model and coastal onshore wind measurement data. Five estimation methods were evaluated, including a control WRF simulation without on-site measurement data (CTRL), observation nudging (NDG), two offline methods—temporal correction (TC) and the directional extrapolation method (DE)—and direct application of onshore measurement data (DA). Wind speed and direction data from four nearshore sites in Japan were used for validation. The results indicated that TC provided the most accurate wind speed estimate results with minimal bias and relatively high reproducibility of temporal variations. NDG exhibited a smaller standard deviation of bias and a slightly higher correlation with the measured time series than CTRL. DE could not reproduce temporal variations in the horizontal wind speed differences between points. These findings suggest that TC is the most effective method for assessing nearshore wind resources and is thus recommended for practical use. Full article
Show Figures

Figure 1

22 pages, 2479 KiB  
Article
Principles of Correction for Long-Term Orbital Observations of Atmospheric Composition, Applied to AIRS v.6 CH4 and CO Data
by Vadim Rakitin, Eugenia Fedorova, Andrey Skorokhod, Natalia Kirillova, Natalia Pankratova and Nikolai Elansky
Remote Sens. 2025, 17(13), 2323; https://doi.org/10.3390/rs17132323 - 7 Jul 2025
Viewed by 273
Abstract
This study considers methods for assessing the quality of orbital observations, quantifying drift over time, and the application of correction methods to long-term series. AIRS v6 (IR-only) satellite methane (CH4) and carbon monoxide (CO) total column (TC) measurements were compared with [...] Read more.
This study considers methods for assessing the quality of orbital observations, quantifying drift over time, and the application of correction methods to long-term series. AIRS v6 (IR-only) satellite methane (CH4) and carbon monoxide (CO) total column (TC) measurements were compared with NDACC ground station data from 2003 to 2022. For CH4, negative trends were observed in the difference between satellite and ground measurements (AIRS-GR) at all 18 stations (mean drift: 1.69 × 1014 ± 0.31 × 1014 molecules/cm2 per day), suggesting a shift in the orbital spectrometer parameters is probable. The application of a dynamic correction based on this drift coefficient significantly improved the correlation with satellite data for both daily means and trends at all stations. In contrast, AIRS v6 CO measurements showed a strong initial correlation (R = 0.93 for the entire dataset, and R ~ 0.8–0.95 for separate stations) without systematic drift, i.e., the trends of AIRS-GR at individual sites were oppositely directed and statistically insignificant. Therefore, the AIRS v6 CO TC satellite product does not require additional correction within this method. The developed methodology for satellite data verification and correction is supposed to be universal and applicable to other long-term orbital observations. Full article
(This article belongs to the Special Issue Remote Sensing and Climate Pollutants)
Show Figures

Figure 1

Back to TopTop