Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,037)

Search Parameters:
Keywords = time symmetry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3407 KiB  
Article
Graph Convolutional Network with Multi-View Topology for Lightweight Skeleton-Based Action Recognition
by Liangliang Wang, Xu Zhang and Chuang Zhang
Symmetry 2025, 17(8), 1235; https://doi.org/10.3390/sym17081235 (registering DOI) - 4 Aug 2025
Abstract
Skeleton-based action recognition is an important subject in deep learning. Graph Convolutional Networks (GCNs) have demonstrated strong performance by modeling the human skeleton as a natural topological graph, representing the connections between joints. However, most existing methods rely on non-adaptive topologies or insufficiently [...] Read more.
Skeleton-based action recognition is an important subject in deep learning. Graph Convolutional Networks (GCNs) have demonstrated strong performance by modeling the human skeleton as a natural topological graph, representing the connections between joints. However, most existing methods rely on non-adaptive topologies or insufficiently expressive representations. To address these limitations, we propose a Multi-view Topology Refinement Graph Convolutional Network (MTR-GCN), which is efficient, lightweight, and delivers high performance. Specifically: (1) We propose a new spatial topology modeling approach that incorporates two views. A dynamic view fuses joint information from dual streams in a pairwise manner, while a static view encodes the shortest static paths between joints, preserving the original connectivity relationships. (2) We propose a new MultiScale Temporal Convolutional Network (MSTC), which is efficient and lightweight. (3) Furthermore, we introduce a new temporal topology strategy by modeling temporal frames as a graph, which strengthens the extraction of temporal features. By modeling the human skeleton as both a spatial and a temporal graph, we reveal a topological symmetry between space and time within the unified spatio-temporal framework. The proposed model achieves state-of-the-art performance on several benchmark datasets, including NTU RGB + D (XSub: 92.8%, XView: 96.8%), NTU RGB + D 120 (XSub: 89.6%, XSet: 90.8%), and NW-UCLA (95.7%), demonstrating the effectiveness of our GCN module, TCN module, and overall architecture. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

16 pages, 612 KiB  
Article
Examination of Step Kinematics Between Children with Different Acceleration Patterns in Short-Sprint Dash
by Ilias Keskinis, Vassilios Panoutsakopoulos, Evangelia Merkou, Savvas Lazaridis and Eleni Bassa
Biomechanics 2025, 5(3), 60; https://doi.org/10.3390/biomechanics5030060 (registering DOI) - 4 Aug 2025
Abstract
Background/Objectives: Sprinting is a fundamental locomotor skill and a key indicator of lower limb strength and anaerobic power in early childhood. The aim of the study was to examine possible differences in the step kinematic parameters and their contribution to sprint speed [...] Read more.
Background/Objectives: Sprinting is a fundamental locomotor skill and a key indicator of lower limb strength and anaerobic power in early childhood. The aim of the study was to examine possible differences in the step kinematic parameters and their contribution to sprint speed between children with different patterns of speed development. Methods: 65 prepubescent male and female track athletes (33 males and 32 females; 6.9 ± 0.8 years old) were examined in a maximal 15 m short sprint running test, where photocells measured time for each 5 m segment. At the last 5 m segment, step length, frequency, and velocity were evaluated via a video analysis method. The symmetry angle was calculated for the examined step kinematic parameters. Results: Based on the speed at the final 5 m segment of the test, two groups were identified, the maximum sprint phase (MAX) and the acceleration phase (ACC) group. Speed was significantly (p < 0.05) higher in ACC in the final 5 m segment, while there was a significant (p < 0.05) interrelationship between step length and frequency in ACC but not in MAX. No other differences were observed. Conclusions: The difference observed in the interrelationship between speed and step kinematic parameters between ACC and MAX highlights the importance of identifying the speed development pattern to apply individualized training stimuli for the optimization of training that can lead to better conditioning and wellbeing of children involved in sports with requirements for short-sprint actions. Full article
(This article belongs to the Collection Locomotion Biomechanics and Motor Control)
Show Figures

Figure 1

21 pages, 7537 KiB  
Article
Variable Step-Size FxLMS Algorithm Based on Cooperative Coupling of Double Nonlinear Functions
by Jialong Wang, Jian Liao, Lin He, Xiaopeng Tan and Zongbin Chen
Symmetry 2025, 17(8), 1222; https://doi.org/10.3390/sym17081222 - 2 Aug 2025
Viewed by 126
Abstract
Based on the principle of symmetry, we propose a variable step-size FxLMS algorithm with double nonlinear functions cooperative coupling (DNVSS-FxLMS), aiming to optimize the contradiction between convergence rate and steady-state error in the active pressure pulsation control system of hydraulic systems. The algorithm [...] Read more.
Based on the principle of symmetry, we propose a variable step-size FxLMS algorithm with double nonlinear functions cooperative coupling (DNVSS-FxLMS), aiming to optimize the contradiction between convergence rate and steady-state error in the active pressure pulsation control system of hydraulic systems. The algorithm innovatively couples two types of nonlinear mechanisms (rational-fractional and exponential-function-based), constructing a refined error-step mapping relationship to achieve a balance between rapid convergence and low steady-state error. Simulation experiments were conducted considering the complex time-varying operating environment of a simulation-based hydraulic system. The results demonstrate that, when the system undergoes unstable random changes, the DNVSS-FxLMS algorithm converges at least twice as fast as traditional and existing variable step size algorithms, while reducing steady-state error by 2–5 dB. The proposed DNVSS-FxLMS algorithm exhibits significant advantages in convergence rate, steady-state error reduction, and tracking capability, providing a highly efficient and robust solution for real-time active control of hydraulic system pressure pulsation under complex operating conditions. Full article
Show Figures

Figure 1

18 pages, 8141 KiB  
Review
AI-Driven Aesthetic Rehabilitation in Edentulous Arches: Advancing Symmetry and Smile Design Through Medit SmartX and Scan Ladder
by Adam Brian Nulty
J. Aesthetic Med. 2025, 1(1), 4; https://doi.org/10.3390/jaestheticmed1010004 (registering DOI) - 1 Aug 2025
Viewed by 324
Abstract
The integration of artificial intelligence (AI) and advanced digital workflows is revolutionising full-arch implant dentistry, particularly for geriatric patients with edentulous and atrophic arches, for whom achieving both prosthetic passivity and optimal aesthetic outcomes is critical. This narrative review evaluates current challenges in [...] Read more.
The integration of artificial intelligence (AI) and advanced digital workflows is revolutionising full-arch implant dentistry, particularly for geriatric patients with edentulous and atrophic arches, for whom achieving both prosthetic passivity and optimal aesthetic outcomes is critical. This narrative review evaluates current challenges in intraoral scanning accuracy—such as scan distortion, angular deviation, and cross-arch misalignment—and presents how innovations like the Medit SmartX AI-guided workflow and the Scan Ladder system can significantly enhance precision in implant position registration. These technologies mitigate stitching errors by using real-time scan body recognition and auxiliary geometric references, yielding mean RMS trueness values as low as 11–13 µm, comparable to dedicated photogrammetry systems. AI-driven prosthetic design further aligns implant-supported restorations with facial symmetry and smile aesthetics, prioritising predictable midline and occlusal plane control. Early clinical data indicate that such tools can reduce prosthetic misfits to under 20 µm and lower complication rates related to passive fit, while shortening scan times by up to 30% compared to conventional workflows. This is especially valuable for elderly individuals who may not tolerate multiple lengthy adjustments. Additionally, emerging AI applications in design automation, scan validation, and patient-specific workflow adaptation continue to evolve, supporting more efficient and personalised digital prosthodontics. In summary, AI-enhanced scanning and prosthetic workflows do not merely meet functional demands but also elevate aesthetic standards in complex full-arch rehabilitations. The synergy of AI and digital dentistry presents a transformative opportunity to consistently deliver superior precision, passivity, and facial harmony for edentulous implant patients. Full article
Show Figures

Graphical abstract

23 pages, 1178 KiB  
Article
A Qualitative Analysis and Discussion of a New Model for Optimizing Obesity and Associated Comorbidities
by Mohamed I. Youssef, Robert M. Maina, Duncan K. Gathungu and Amr Radwan
Symmetry 2025, 17(8), 1216; https://doi.org/10.3390/sym17081216 - 1 Aug 2025
Viewed by 209
Abstract
This paper addresses the problem of optimizing obesity, which has been a challenging issue in the last decade based on recent data revealed in 2024 by the World Health Organization (WHO). The current work introduces a new mathematical model of the dynamics of [...] Read more.
This paper addresses the problem of optimizing obesity, which has been a challenging issue in the last decade based on recent data revealed in 2024 by the World Health Organization (WHO). The current work introduces a new mathematical model of the dynamics of weight over time with embedded control parameters to optimize the number of obese, overweight, and comorbidity populations. The mathematical formulation of the model is developed under certain sufficient conditions that guarantee the positivity and boundedness of solutions over time. The model structure exhibits inherent symmetry in population group transitions, particularly around the equilibrium state, which allows the application of analytical tools such as the Routh–Hurwitz and Metzler criteria. Then, the analysis of local and global stability of the obesity-free equilibrium state is discussed based on these criteria. Based on the Pontryagin maximum principle (PMP), the deviation from the obesity-free equilibrium state is controlled. The model’s effectiveness is demonstrated through simulation using the Forward–Backward Sweeping algorithm with parameters derived from recent research in human health. Incorporating symmetry considerations in the model enhances the understanding of system behavior and supports balanced intervention strategies. Results suggest that the model can effectively inform strategies to mitigate obesity prevalence and associated health risks. Full article
(This article belongs to the Special Issue Mathematical Modeling of the Infectious Diseases and Their Controls)
Show Figures

Figure 1

11 pages, 420 KiB  
Article
Differences in Lower Limb Muscle Activity and Gait According to Walking Speed Variation in Chronic Stroke
by Yong Gyun Shin and Ki Hun Cho
Appl. Sci. 2025, 15(15), 8479; https://doi.org/10.3390/app15158479 - 30 Jul 2025
Viewed by 133
Abstract
In this study, the effects of walking speed on lower limb muscle activity and gait parameters during over-ground walking were investigated in individuals with chronic stroke. Twenty-four patients with chronic stroke participated in a cross-sectional repeated-measures study, walking 20 m at three different [...] Read more.
In this study, the effects of walking speed on lower limb muscle activity and gait parameters during over-ground walking were investigated in individuals with chronic stroke. Twenty-four patients with chronic stroke participated in a cross-sectional repeated-measures study, walking 20 m at three different speeds: slow (80% of self-selected speed), self-selected, and maximal speed. Surface electromyography was used to measure muscle activity in five paretic-side muscles (rectus femoris, biceps femoris, tibialis anterior, gastrocnemius, and gluteus medius), while gait parameters, including stride length, stance and swing phases, single-limb support time, and the gait asymmetry index were assessed using a triaxial accelerometer. As walking speed increased, activity in the rectus femoris, biceps femoris, and gastrocnemius muscles significantly increased during the stance and swing phases (p < 0.05), whereas the gluteus medius activity tended to decrease. Stride length on the paretic and non-paretic sides significantly increased with faster walking speed (p < 0.05); however, no significant improvements were observed in other gait parameters or gait asymmetry. These findings suggest that although increasing walking speed enhances specific muscle activities, it does not necessarily improve overall gait quality or symmetry. Therefore, rehabilitation programs should incorporate multidimensional gait training that addresses speed and neuromuscular control factors such as balance and proprioception. Full article
Show Figures

Figure 1

13 pages, 600 KiB  
Article
Frequentist and Bayesian Estimation Under Progressive Type-II Random Censoring for a Two-Parameter Exponential Distribution
by Rajni Goel, Mahmoud M. Abdelwahab and Tejaswar Kamble
Symmetry 2025, 17(8), 1205; https://doi.org/10.3390/sym17081205 - 29 Jul 2025
Viewed by 188
Abstract
In medical research, random censoring often occurs due to unforeseen subject withdrawals, whereas progressive censoring is intentionally applied to minimize time and resource requirements during experimentation. This work focuses on estimating the parameters of a two-parameter exponential distribution under a progressive Type-II random [...] Read more.
In medical research, random censoring often occurs due to unforeseen subject withdrawals, whereas progressive censoring is intentionally applied to minimize time and resource requirements during experimentation. This work focuses on estimating the parameters of a two-parameter exponential distribution under a progressive Type-II random censoring scheme, which integrates both censoring strategies. The use of symmetric properties in failure and censoring time models, arising from a shared location parameter, facilitates a balanced and robust inferential framework. This symmetry ensures interpretational clarity and enhances the tractability of both frequentist and Bayesian methods. Maximum likelihood estimators (MLEs) are obtained, along with asymptotic confidence intervals. A Bayesian approach is also introduced, utilizing inverse gamma priors, and Gibbs sampling is implemented to derive Bayesian estimates. The effectiveness of the proposed methodologies was assessed through extensive Monte Carlo simulations and demonstrated using an actual dataset. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

23 pages, 12169 KiB  
Article
Effect of Quasi-Static Door Operation on Shear Layer Bifurcations in Supersonic Cavities
by Skyler Baugher, Datta Gaitonde, Bryce Outten, Rajan Kumar, Rachelle Speth and Scott Sherer
Aerospace 2025, 12(8), 668; https://doi.org/10.3390/aerospace12080668 - 26 Jul 2025
Viewed by 190
Abstract
Span-wise homogeneous supersonic cavity flows display complicated structures due to shear layer breakdown, flow acoustic resonance, and even non-linear hydrodynamic-acoustic interactions. In practical applications, such as aircraft bays, the cavity is of finite width and has doors, both of which introduce distinctive phenomena [...] Read more.
Span-wise homogeneous supersonic cavity flows display complicated structures due to shear layer breakdown, flow acoustic resonance, and even non-linear hydrodynamic-acoustic interactions. In practical applications, such as aircraft bays, the cavity is of finite width and has doors, both of which introduce distinctive phenomena that couple with the shear layer at the cavity lip, further modulating shear layer bifurcations and tonal mechanisms. In particular, asymmetric states manifest as ‘tornado’ vortices with significant practical consequences on the design and operation. Both inward- and outward-facing leading-wedge doors, resulting in leading edge shocks directed into and away from the cavity, are examined at select opening angles ranging from 22.5° to 90° (fully open) at Mach 1.6. The computational approach utilizes the Reynolds-Averaged Navier–Stokes equations with a one-equation model and is augmented by experimental observations of cavity floor pressure and surface oil-flow patterns. For the no-doors configuration, the asymmetric results are consistent with a long-time series DDES simulation, previously validated with two experimental databases. When fully open, outer wedge doors (OWD) yield an asymmetric flow, while inner wedge doors (IWD) display only mildly asymmetric behavior. At lower door angles (partially closed cavity), both types of doors display a successive bifurcation of the shear layer, ultimately resulting in a symmetric flow. IWD tend to promote symmetry for all angles observed, with the shear layer experiencing a pitchfork bifurcation at the ‘critical angle’ (67.5°). This is also true for the OWD at the ‘critical angle’ (45°), though an entirely different symmetric flow field is established. The first observation of pitchfork bifurcations (‘critical angle’) for the IWD is at 67.5° and for the OWD, 45°, complementing experimental observations. The back wall signature of the bifurcated shear layer (impingement preference) was found to be indicative of the 3D cavity dynamics and may be used to establish a correspondence between 3D cavity dynamics and the shear layer. Below the critical angle, the symmetric flow field is comprised of counter-rotating vortex pairs at the front and back wall corners. The existence of a critical angle and the process of door opening versus closing indicate the possibility of hysteresis, a preliminary discussion of which is presented. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

18 pages, 367 KiB  
Article
Fractional Time-Scales Noether’s Theorem for Non-Standard Birkhoffian System
by Zhenyu Wu and Chuanjing Song
Fractal Fract. 2025, 9(8), 489; https://doi.org/10.3390/fractalfract9080489 - 24 Jul 2025
Viewed by 216
Abstract
In this work, Noether symmetries and conserved quantities of a non-standard Birkhoffian system based on the Caputo Δ Pfaff–Birkhoff principle on time scales are studied. Firstly, equations of motion for Caputo Δ non-standard Birkhoffian systems are set up from Caputo Δ variational principle. [...] Read more.
In this work, Noether symmetries and conserved quantities of a non-standard Birkhoffian system based on the Caputo Δ Pfaff–Birkhoff principle on time scales are studied. Firstly, equations of motion for Caputo Δ non-standard Birkhoffian systems are set up from Caputo Δ variational principle. Secondly, invariance of Caputo non-standard Pfaff action on time scales is demonstrated, thus giving rise to Noether symmetry criterions which establish Noether’s theorems for the corresponding system. The validity of the methods and results presented in the paper is illustrated by means of examples provided at the end of the article. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

20 pages, 3978 KiB  
Article
Cotton-YOLO: A Lightweight Detection Model for Falled Cotton Impurities Based on Yolov8
by Jie Li, Zhoufan Zhong, Youran Han and Xinhou Wang
Symmetry 2025, 17(8), 1185; https://doi.org/10.3390/sym17081185 - 24 Jul 2025
Viewed by 242
Abstract
As an important pillar of the global economic system, the cotton industry faces critical challenges from non-fibrous impurities (e.g., leaves and debris) during processing, which severely degrade product quality, inflate costs, and reduce efficiency. Traditional detection methods suffer from insufficient accuracy and low [...] Read more.
As an important pillar of the global economic system, the cotton industry faces critical challenges from non-fibrous impurities (e.g., leaves and debris) during processing, which severely degrade product quality, inflate costs, and reduce efficiency. Traditional detection methods suffer from insufficient accuracy and low efficiency, failing to meet practical production needs. While deep learning models excel in general object detection, their massive parameter counts render them ill-suited for real-time industrial applications. To address these issues, this study proposes Cotton-YOLO, an optimized yolov8 model. By leveraging principles of symmetry in model design and system setup, the study integrates the CBAM attention module—with its inherent dual-path (channel-spatial) symmetry—to enhance feature capture for tiny impurities and mitigate insufficient focus on key areas. The C2f_DSConv module, exploiting functional equivalence via quantization and shift operations, reduces model complexity by 12% (to 2.71 million parameters) without sacrificing accuracy. Considering angle and shape variations in complex scenarios, the loss function is upgraded to Wise-IoU for more accurate boundary box regression. Experimental results show that Cotton-YOLO achieves 86.5% precision, 80.7% recall, 89.6% mAP50, 50.1% mAP50–95, and 50.51 fps detection speed, representing a 3.5% speed increase over the original yolov8. This work demonstrates the effective application of symmetry concepts (in algorithmic structure and performance balance) to create a model that balances lightweight design and high efficiency, providing a practical solution for industrial impurity detection and key technical support for automated cotton sorting systems. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

22 pages, 4611 KiB  
Article
MMC-YOLO: A Lightweight Model for Real-Time Detection of Geometric Symmetry-Breaking Defects in Wind Turbine Blades
by Caiye Liu, Chao Zhang, Xinyu Ge, Xunmeng An and Nan Xue
Symmetry 2025, 17(8), 1183; https://doi.org/10.3390/sym17081183 - 24 Jul 2025
Viewed by 310
Abstract
Performance degradation of wind turbine blades often stems from geometric asymmetry induced by damage. Existing methods for assessing damage face challenges in balancing accuracy and efficiency due to their limited ability to capture fine-grained geometric asymmetries associated with multi-scale damage under complex background [...] Read more.
Performance degradation of wind turbine blades often stems from geometric asymmetry induced by damage. Existing methods for assessing damage face challenges in balancing accuracy and efficiency due to their limited ability to capture fine-grained geometric asymmetries associated with multi-scale damage under complex background interference. To address this, based on the high-speed detection model YOLOv10-N, this paper proposes a novel detection model named MMC-YOLO. First, the Multi-Scale Perception Gated Convolution (MSGConv) Module was designed, which constructs a full-scale receptive field through multi-branch fusion and channel rearrangement to enhance the extraction of geometric asymmetry features. Second, the Multi-Scale Enhanced Feature Pyramid Network (MSEFPN) was developed, integrating dynamic path aggregation and an SENetv2 attention mechanism to suppress background interference and amplify damage response. Finally, the Channel-Compensated Filtering (CCF) module was constructed to preserve critical channel information using a dynamic buffering mechanism. Evaluated on a dataset of 4818 wind turbine blade damage images, MMC-YOLO achieves an 82.4% mAP [0.5:0.95], representing a 4.4% improvement over the baseline YOLOv10-N model, and a 91.1% recall rate, an 8.7% increase, while maintaining a lightweight parameter count of 4.2 million. This framework significantly enhances geometric asymmetry defect detection accuracy while ensuring real-time performance, meeting engineering requirements for high efficiency and precision. Full article
(This article belongs to the Special Issue Symmetry and Its Applications in Image Processing)
Show Figures

Figure 1

13 pages, 3937 KiB  
Article
Vanillin Quantum–Classical Photodynamics and Photostatic Optical Spectra
by Vladimir Pomogaev and Olga Tchaikovskaya
ChemEngineering 2025, 9(4), 76; https://doi.org/10.3390/chemengineering9040076 - 23 Jul 2025
Viewed by 202
Abstract
Vanillin photoinduced deprotonation was evaluated and analyzed. Vibronic states and transitions were computationally investigated. Optimizations and vertical electron transitions in the gas phase and with the continuum solvation model were computed using the time-dependent density functional theory. Static absorption and emission (photostatic optical) [...] Read more.
Vanillin photoinduced deprotonation was evaluated and analyzed. Vibronic states and transitions were computationally investigated. Optimizations and vertical electron transitions in the gas phase and with the continuum solvation model were computed using the time-dependent density functional theory. Static absorption and emission (photostatic optical) spectra were statistically averaged over the excited instantaneous molecular conformers fluctuating on quantum–classical molecular dynamic trajectories. Photostatic optical spectra were generated using the hybrid quantum–classical molecular dynamics for explicit solvent models. Conical intersection searching and nonadiabatic molecular dynamics simulations defined potential energy surface propagations, intersections, dissipations, and dissociations. The procedure included mixed-reference spin–flip excitations for both procedures and trajectory surface hopping for photodynamics. Insignificant structural deformations vs. hydroxyl bond cleavage followed by deprotonation were demonstrated starting from different initial structural conditions, which included optimized, transition state, and several other important fluctuating configurations in various environments. Vanillin electronic structure changes were illustrated and analyzed at the key points on conical intersection and nonadiabatic molecular dynamics trajectories by investigating molecular orbital symmetry and electron density difference. The hydroxyl group decomposed on transition to a σ-molecular orbital localized on the elongated O–H bond. Full article
Show Figures

Figure 1

18 pages, 1843 KiB  
Article
The Compatibility of Some Integrability Methods and Related Solutions for the Variable Coefficients Geophysical KdV Model
by Rodica Cimpoiasu, Radu Constantinescu and Corina Nicoleta Babalic
Axioms 2025, 14(8), 557; https://doi.org/10.3390/axioms14080557 - 23 Jul 2025
Viewed by 134
Abstract
This paper focuses on the variable coefficients geophysical KdV (VCGKdV) equation, which involves time-dependent perturbation, nonlinearity and dispersion parameters. It is a more realistic model than its constant coefficient counterpart and can be useful to, for instance, investigate the Coriolis effect on oceanic [...] Read more.
This paper focuses on the variable coefficients geophysical KdV (VCGKdV) equation, which involves time-dependent perturbation, nonlinearity and dispersion parameters. It is a more realistic model than its constant coefficient counterpart and can be useful to, for instance, investigate the Coriolis effect on oceanic flows. Firstly, we analyzed this model using three strong methods that allow the investigation of its integrability: the Lie symmetry approach, Painlevé property and Hirota formalism. The general constraints between the involved parameters under which the complete integrability in Lie, Painlevé or Hirota sense exists, as well as the largest class of this type of equations, which admits the same class of imposed symmetries are generated. Then, some new specific families of solutions for the model endowed with either Lie symmetry properties, Lie and Painlevé constraints or with Lie, Painlevé and Hirota constraints were generated and compared with solutions derived with other techniques. By numerical simulations, the dynamical behaviors of some Lie invariant solutions and nonautonomous multiple solitons are depicted. Full article
Show Figures

Figure 1

36 pages, 3106 KiB  
Article
Tamed Euler–Maruyama Method of Time-Changed McKean–Vlasov Neutral Stochastic Differential Equations with Super-Linear Growth
by Jun Zhang, Liping Xu and Zhi Li
Symmetry 2025, 17(8), 1178; https://doi.org/10.3390/sym17081178 - 23 Jul 2025
Viewed by 182
Abstract
This paper examines temporal symmetry breaking and structural duality in a class of time-changed McKean–Vlasov neutral stochastic differential equations. The system features super-linear drift coefficients satisfying a one-sided local Lipschitz condition and incorporates a fundamental duality: one drift component evolves under a random [...] Read more.
This paper examines temporal symmetry breaking and structural duality in a class of time-changed McKean–Vlasov neutral stochastic differential equations. The system features super-linear drift coefficients satisfying a one-sided local Lipschitz condition and incorporates a fundamental duality: one drift component evolves under a random time change Et, while the other progresses in regular time t. Within the symmetric framework of mean-field interacting particle systems, where particles exhibit permutation invariance, we establish strong convergence of the tamed Euler–Maruyama method over finite time intervals. By replacing the one-sided local condition with a globally symmetric Lipschitz assumption, we derive an explicit convergence rate for the numerical scheme. Two numerical examples validate the theoretical results. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

20 pages, 3412 KiB  
Article
Scalable Graph Coloring Optimization Based on Spark GraphX Leveraging Partition Asymmetry
by Yihang Shen, Xiang Li, Tao Yuan and Shanshan Chen
Symmetry 2025, 17(8), 1177; https://doi.org/10.3390/sym17081177 - 23 Jul 2025
Viewed by 202
Abstract
Many challenges in solving large graph coloring through parallel strategies remain unresolved. Previous algorithms based on Pregel-like frameworks, such as Apache Giraph, encounter parallelism bottlenecks due to sequential execution and the need for a full graph traversal in certain stages. Additionally, GPU-based algorithms [...] Read more.
Many challenges in solving large graph coloring through parallel strategies remain unresolved. Previous algorithms based on Pregel-like frameworks, such as Apache Giraph, encounter parallelism bottlenecks due to sequential execution and the need for a full graph traversal in certain stages. Additionally, GPU-based algorithms face the dilemma of costly and time-consuming processing when moving complex graph applications to GPU architectures. In this study, we propose Spardex, a novel parallel and distributed graph coloring optimization algorithm designed to overcome and avoid these challenges. We design a symmetry-driven optimization approach wherein the EdgePartition1D strategy in GraphX induces partitioning asymmetry, leading to overlapping locally symmetric regions. This structure is leveraged through asymmetric partitioning and symmetric reassembly to reduce the search space. A two-stage pipeline consisting of partitioned repaint and core conflict detection is developed, enabling the precise correction of conflicts without traversing the entire graph as in previous algorithms. We also integrate symmetry principles from combinatorial optimization into a distributed computing framework, demonstrating that leveraging locally symmetric subproblems can significantly enhance the efficiency of large-scale graph coloring. Combined with Spark-specific optimizations such as AQE skew join optimization, all these techniques contribute to an efficient parallel graph coloring optimization in Spardex. We conducted experiments using the Aliyun Cloud platform. The results demonstrate that Spardex achieves a reduction of 8–72% in the number of colors and a speedup of 1.13–10.27 times over concurrent algorithms. Full article
(This article belongs to the Special Issue Symmetry in Solving NP-Hard Problems)
Show Figures

Figure 1

Back to TopTop