Examination of Step Kinematics Between Children with Different Acceleration Patterns in Short-Sprint Dash
Abstract
1. Introduction
2. Materials and Methods
2.1. Design of the Study
- maximum sprint phase group (MAX): Children were placed in this group if the time difference between the last 5 m segment and the previous 5 m segment was equal to or less than 0.01 s, indicating that they had likely reached near maximum sprinting speed, and
- acceleration phase group (ACC): Children were classified in this group if the time difference between the last and the previous 5 m segment was greater than 0.01 s, suggesting that they were still accelerating during the final portion of the sprint.
2.2. Participants
2.3. Experimental Design
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACC | acceleration phase group |
MAX | maximum sprint phase group |
References
- Venetsanou, F.; Emmanouilidou, K.; Kouli, O.; Bebetsos, E.; Comoutos, N.; Kambas, A. Physical activity and sedentary behaviors of young children: Trends from 2009 to 2018. Int. J. Environ. Res. Public Health 2020, 17, 1645. [Google Scholar] [CrossRef]
- Greule, C.; Sudeck, G.; Thiel, A.; Kastner, L.; Janssen, P.; Niess, A.; Rapp, F.; Junne, F.; Krauss, I. Correlates of physical activity enjoyment in children and adolescents for a new perspective on the treatment of overweight: A systematic literature review. Obes. Rev. 2024, 25, e13655. [Google Scholar] [CrossRef]
- Ghanamah, R. The Impact of Physical Activity and Screen Time on Motor Creativity in Kindergarteners. Children 2025, 12, 116. [Google Scholar] [CrossRef] [PubMed]
- Criado, E.G.; Giménez-Meseguer, J.; Ferriz-Valero, A.; Baena-Morales, S. Influence of physical activity on cognitive and emotional development in preschool children. A review of the literature. Education 2025, 53, 366–377. [Google Scholar] [CrossRef]
- Logan, S.W.; Webster, E.K.; Getchell, N.; Pfeiffer, K.A.; Robinson, L.E. Relationship Between Fundamental Motor Skill Competence and Physical Activity During Childhood and Adolescence: A Systematic Review. Kinesiol. Rev. 2015, 4, 416–426. [Google Scholar] [CrossRef]
- Sudlow, A.; Galantine, P.; Del Sordo, G.; Raymond, J.J.; Dalleau, G.; Peyrot, N.; Duché, P. Influence of growth, maturation, and sex on maximal power, force, and velocity during overground sprinting. J. Strength Cond. Res. 2024, 38, 491–500. [Google Scholar] [CrossRef]
- Logan, S.W.; Robinson, L.E.; Wilson, A.E.; Lucas, W.A. Getting the fundamentals of movement: A meta-analysis of the effectiveness of motor skill interventions in children. Child Care Health Dev. 2012, 38, 305–315. [Google Scholar] [CrossRef]
- Miguel-Etayo, D.; Gracia-Marco, L.; Ortega, F.B.; Intemann, T.; Foraita, R.; Lissner, L.; Oja, L.; Barba, G.; Michels, N.; Tornaritis, M.; et al. Physical fitness reference standards in European children: The IDEFICS study. Int. J. Obes. 2014, 38, S57–S66. [Google Scholar] [CrossRef]
- Trivers, R.; Palestis, B.G.; Manning, J.T. The symmetry of children’s knees is linked to their adult sprinting speed and their willingness to sprint in a long-term Jamaican study. PLoS ONE 2013, 8, e72244. [Google Scholar] [CrossRef]
- Chaitidou, V.; Panoutsakopoulos, V. Long jump performance is not related to inter-limb asymmetry in force application in isometric and vertical jump tests. Biomechanics 2023, 3, 389–400. [Google Scholar] [CrossRef]
- Haugen, T.A.; Tønnessen, E.; Hisdal, J.; Seiler, S. The role and development of sprinting speed in soccer. Int. J. Sports Physiol. Perform. 2014, 9, 432–441. [Google Scholar] [CrossRef]
- Branta, C.; Haubenstricker, J.; Seefeldt, V. Age changes in motor skills during childhood and adolescence. Exerc. Sport Sci. Rev. 1984, 12, 467–520. [Google Scholar] [CrossRef]
- Loko, J.; Aule, R.; Sikkut, T. Dynamics of Estonian adolescents physical abilities. Acta Acad. Olymp. Est. 1994, 2, 102–114. [Google Scholar]
- Viru, A.; Loko, J.; Harro, M.; Volver, A.; Laaneotsm, L.; Viru, M. Critical periods in the development of performance capacity during childhood and adolescence. Eur. J. Phys. Educ. 1999, 4, 75–119. [Google Scholar] [CrossRef]
- Meyers, R.W.; Oliver, J.L.; Hughes, M.G.; Cronin, J.B.; Lloyd, R.S. Maximal sprint speed in boys of increasing maturity. Pediatr. Exerc. Sci. 2015, 27, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Talukdar, K.; Harrison, C.; McGuigan, M. Natural development of sprint speed in girls and boys: A narrative review. J. Sport Exerc. Sci. 2022, 6, 153–161. [Google Scholar] [CrossRef]
- Papaiakovou, G.; Giannakos, A.; Michailidis, C.; Patikas, D.; Bassa, E.; Kalopisis, V.; Anthrakidis, N.; Kotzamanidis, C. The effect of chronological age and gender on the development of sprint performance during childhood and puberty. J. Strength Cond. Res. 2009, 23, 2568–2573. [Google Scholar] [CrossRef] [PubMed]
- Jakovljević, V.; Ljubojević, A.; Karalić, T.; Gerdijan, N.; Vukić, Ž.; Pašić, G. Sprinting speed of prepubertal girls and boys. Exerc. Qual. Life 2013, 5, 20–27. [Google Scholar] [CrossRef]
- Colyer, S.L.; Nagahara, R.; Takai, Y.; Salo, A.I.T. The effect of biological maturity status on ground reaction force production during sprinting. Scand. J. Med. Sci. Sports 2020, 30, 1387–1397. [Google Scholar] [CrossRef]
- Rumpf, M.C.; Cronin, J.B.; Oliver, J.L.; Hughes, M.G. Vertical and leg stiffness and stretch-shortening cycle changes across maturation during maximal sprint running. Hum. Mov. Sci. 2013, 32, 668–676. [Google Scholar] [CrossRef]
- Sudlow, A.; Galantine, P.; Vercruyssen, F.; Peyrot, N.; Raymond, J.J.; Duché, P. Which factors influence running gait in children and adolescents? A narrative review. Int. J. Environ. Res. Public Health 2023, 20, 4621. [Google Scholar] [CrossRef]
- Chatzilazaridis, I.; Panoutsakopoulos, V.; Bassa, E.; Kotzamanidou, M.C.; Papaiakovou, G.I. Effects of Age and Sex on the Kinematics of the Sprinting Technique in the Maximum Velocity Phase. Appl. Sci. 2024, 14, 6057. [Google Scholar] [CrossRef]
- Mero, A.; Komi, P.V.; Gregor, R.J. Biomechanics of sprinting running. Sports Med. 1992, 13, 376–392. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.; Leveritt, M.; Riek, S. Neural influences on sprint running: Training adaptations and acute responses. Sports Med. 2001, 31, 409–425. [Google Scholar] [CrossRef] [PubMed]
- Martín-Fuentes, I.; Van den Tillaar, R. Relationship between step-by-step foot kinematics and sprint performance. Int. J. Environ. Res. Public Health 2022, 19, 6786. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.X.; Chan, Z.Y.; Zhang, J.H.; Shum, G.L.; Chen, C.Y.; Cheung, R.T. Difference in the running biomechanics between preschoolers and adults. Braz. J. Phys. Ther. 2021, 25, 162–167. [Google Scholar] [CrossRef]
- Wdowski, M.M.; Noon, M.; Mundy, P.D.; Gittoes, M.J.; Duncan, M.J. The kinematic and kinetic development of sprinting and countermovement jump performance in boys. Front. Bioeng. Biotechnol. 2020, 8, 547075. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Oliver, J.L.; Radnor, J.M.; Rhodes, B.C.; Faigenbaum, A.D.; Myer, G.D. Relationships between functional movement screen scores, maturation and physical performance in young soccer players. J. Sports Sci. 2015, 33, 11–19. [Google Scholar] [CrossRef]
- Meyers, R.W.; Oliver, J.L.; Hughes, M.G.; Lloyd, R.S.; Cronin, J.B. Influence of Age, Maturity, and Body Size on the Spatiotemporal Determinants of Maximal Sprint Speed in Boys. J. Strength Cond. Res. 2017, 31, 1009–1016. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Oliver, J.L.; Faigenbaum, A.D.; Howard, R.; De Ste Croix, M.B.; Williams, C.A.; Best, T.M.; Alvar, B.A.; Micheli, L.J.; Thomas, D.P.; et al. Long-term athletic development—Part 1: A pathway for all youth. J. Strength Cond. Res. 2015, 29, 1439–1450. [Google Scholar] [CrossRef]
- Panoutsakopoulos, V. Development and Sprint Training. In Child, Training, Health, 1st ed.; Kotzamanidis, C., Ed.; Kyriakidis Bros Publishers S.A.: Thessaloniki, Greece, 2020; pp. 185–214. [Google Scholar]
- Williams, S.; Netto, K.; Kennedy, R.; Turner-Bryndzej, J.; Campbell, R.; Rosalie, S.M. Biomechanical correlates of running performance in active children. J. Sci. Med. Sport 2019, 22, 65–69. [Google Scholar] [CrossRef]
- Brown, T.D.; Vescovi, J.D.; Vanheest, J.L. Assessment of linear sprinting performance: A theoretical paradigm. J. Sports Sci. Med. 2004, 3, 203–210. [Google Scholar] [PubMed]
- Haugen, T.; Buchheit, M. Sprint running performance monitoring: Methodological and practical considerations. Sports Med. 2016, 46, 641–656. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Yeadon, M.R.; Kato, T.; Kerwin, D.G. Measuring running speed using photocells. J. Sports Sci. 1999, 17, 249–257. [Google Scholar] [CrossRef]
- Exell, T.A.; Gittoes, M.J.; Irwin, G.; Kerwin, D.G. Gait asymmetry: Composite scores for mechanical analyses of sprint running. J. Biomech. 2012, 45, 1108–1111. [Google Scholar] [CrossRef]
- Zifchock, R.A.; Davis, I.; Higginson, J.; Royer, T. The symmetry angle: A novel, robust method of quantifying asymmetry. Gait Posture 2008, 27, 622–627. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting Intraclass Correlation Coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Chatzilazaridis, I.; Panoutsakopoulos, V.; Papaiakovou, G. Stride characteristics progress in a 40-m sprinting test executed by male preadolescent, adolescent and adult athletes. J. Biol. Exerc. 2012, 8, 58–77. [Google Scholar] [CrossRef]
- Graubner, R.; Nixdorf, E. Biomechanical analysis of the sprint and hurdles events at the 2009 IAAF World Championships in Athletics. New Stud. Athl. 2011, 26, 19–53. [Google Scholar]
- Kotzamanidis, C. The effect of sprint training on running performance and vertical jumping in pre-adolescent boys. J. Hum. Mov. Stud. 2003, 44, 225–240. [Google Scholar]
- Meyers, R.W.; Oliver, J.L.; Hughes, M.G.; Lloyd, R.S.; Cronin, J.B. Asymmetry during maximal sprint performance in 11-to 16-year-old boys. Pediatr. Exerc. Sci. 2017, 29, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Hay, J.G. The Biomechanics of Sports Techniques, 3rd ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1985. [Google Scholar]
- Mattes, K.; Wolff, S.; Alizadeh, S. Kinematic stride characteristics of maximal sprint running of elite sprinters–verification of the “swing-pull technique”. J. Hum. Kinet. 2021, 77, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Moura, T.B.M.A.; Leme, J.C.; Nakamura, F.Y.; Cardoso, J.R.; Moura, F.A. Determinant biomechanical variables for each sprint phase performance in track and field: A systematic review. Int. J. Sports Sci. Coach. 2024, 19, 488–509. [Google Scholar] [CrossRef]
- Rumpf, M.C.; Cronin, J.B.; Oliver, J.; Hughes, M. Kinematics and Kinetics of Maximum Running Speed in Youth Across Maturity. Pediatr. Exerc. Sci. 2015, 27, 277–284. [Google Scholar] [CrossRef]
- Ito, A.; Ishikawa, M.; Isolehto, J.; Komi, P.V. Changes in the step width, step length, and step frequency of the world’s top sprinters during the 100 metres. New Stud. Athl. 2006, 21, 35–39. [Google Scholar]
- Hunter, J.P.; Marshall, R.N.; McNair, P.J. Interaction of step length and step rate during sprint running. Med. Sci. Sports Exerc. 2004, 36, 261–271. [Google Scholar] [CrossRef]
- Salo, A.I.; Bezodis, I.N.; Batterham, A.M.; Kerwin, D.G. Elite sprinting: Are athletes individually step-frequency or step-length reliant? Med. Sci. Sports Exerc. 2011, 43, 1055–1062. [Google Scholar] [CrossRef]
- Brughelli, M.; Cronin, J.; Chaouachi, A. Effects of running velocity on running kinetics and kinematics. J. Strength Cond. Res. 2011, 25, 933–939. [Google Scholar] [CrossRef]
- Kumar, H. Age changes in the speed of running during 30 meter sprint running. J. Exerc. Sci. Physiother. 2006, 2, 92–95. [Google Scholar]
- Paruzel–Dyja, M.; Iskra, J.; Zajac, A. Somatic and fitness endowment of sprinting stride in the context of developmental changes and diverse sport activities. J. Hum. Kinet. 2007, 18, 109–120. [Google Scholar]
- Paruzel-Dyja, M.; Walaszczyk, A.; Iskra, J. Elite male and female sprinters’ body build, stride length and stride frequency. Stud. Phys. Cult. Tour. 2006, 13, 33–37. [Google Scholar]
- Bissas, A.I.; Havenetidis, K. The use of various strength-power tests as predictors of sprint running performance. J. Sports Med. Phys. Fit. 2008, 48, 49–54. [Google Scholar]
- Coh, M.; Skof, B.; Kugovnik, O.; Dolenec, A.; Kampmiller, T.; Laczo, E.; Holcek, R.; Selinger, P. Kinematic and dynamic characteristics of maximal speed in young sprinters. Kinesiol. Slov. 1995, 2, 5–10. [Google Scholar]
- Hay, J.G. Cycle Rate, Length, and Speed of Progression in Human Locomotion. J. Appl. Biomech. 2002, 18, 257–270. [Google Scholar] [CrossRef]
- Mackala, K.; Mero, A. A Kinematics Analysis οf Three Best 100 m Performances Ever. J. Hum. Kinet. 2013, 36, 149–160. [Google Scholar] [CrossRef]
- Monte, A.; Muollo, V.; Nardello, F.; Zamparo, P. Sprint running: How changes in step frequency affect running mechanics and leg spring behaviour at maximal speed. J. Sports Sci. 2017, 35, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Morin, J.B.; Bourdin, M.; Edouard, P.; Peyrot, N.; Samozino, P.; Lacour, J.R. Mechanical determinants of 100-m sprint running performance. Eur. J. Appl. Phys. 2012, 112, 3921–3930. [Google Scholar] [CrossRef] [PubMed]
- Letzelter, S. The development of velocity and acceleration in sprints: A comparison of elite and juvenile female sprinters. New Stud. Athl. 2006, 21, 15–22. [Google Scholar]
- Kuitunen, S.; Komi, P.V.; Kyröläinen, H. Knee and ankle joint stiffness in sprint running. Med. Sci. Sports Exerc. 2002, 34, 166–173. [Google Scholar] [CrossRef]
- Weyand, P.G.; Sternlight, D.B.; Bellizzi, M.J.; Wright, S. Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J. Appl. Physiol. 2000, 89, 1991–1999. [Google Scholar] [CrossRef]
- Shadmehr, R.; Smith, M.A.; Krakauer, J.W. Error correction, sensory prediction, and adaptation in motor control. Annu. Rev. Neurosci. 2010, 33, 89–108. [Google Scholar] [CrossRef]
- Bernstein, N. The Co-Ordination and Regulation of Movements; Pergamon Press: Oxford, UK, 1967. [Google Scholar]
- Clark, J.E. On Becoming Skillful: Patterns and Constraints. Res. Q. Exerc. Sport 1995, 66, 173–183. [Google Scholar] [CrossRef]
- Talukdar, K.; Harrison, C.; McGuigan, M.; Borotkanics, R. Kinetics and kinematics of sprinting in mid and post peak height velocity female athletes. Int. J. Strength Cond. 2021, 1, 1–9. [Google Scholar] [CrossRef]
- Miyashiro, K.; Nagahara, R.; Yamamoto, K.; Nishijima, T. Kinematics of maximal speed sprinting with different running speed, leg length, and step characteristics. Front. Sports Act. Living 2019, 1, 37. [Google Scholar] [CrossRef] [PubMed]
- Coh, M.; Babic, V. Biodynamic characteristics of maximum speed development. Facta Univ.-Ser. Phys. Educ. Sport 2010, 8, 141–148. [Google Scholar]
- Katsikari, K.; Bassa, E.; Skoufas, D.; Lazaridis, S.; Kotzamanidis, C.; Patikas, D.A. Kinetic and Kinematic Changes in Vertical Jump in Prepubescent Girls After 10 Weeks of Plyometric Training. Pediatr. Exerc. Sci. 2020, 32, 81–88. [Google Scholar] [CrossRef]
- Bertozzi, F.; Camuncoli, F.; Galli, M.; Tarabini, M. The relationship between jump and sprint performance in preschool children. J. Sports Med. Phys. Fit. 2024, 64, 526–531. [Google Scholar] [CrossRef]
- Rossi, J.; Slotala, R.; Samozino, P.; Morin, J.B.; Edouard, P. Sprint acceleration mechanics changes from children to adolescent. Comput. Methods Biomech. Biomed. Eng. 2017, 20 (Suppl. 1), S181–S182. [Google Scholar] [CrossRef]
- Sudlow, A.; Galantine, P.; Del Sordo, G.; Raymond, J.J.; Dalleau, G.; Peyrot, N.; Duché, P. Effects of maximal power and the force–velocity profile on sprint acceleration performance according to maturity status and sex. J. Sports Sci. 2025, 43, 1319–1328. [Google Scholar] [CrossRef]
- Rumpf, M.C.; Cronin, J.B.; Mohamad, I.N.; Mohamad, S.; Oliver, J.L.; Hughes, M.G. Kinetic asymmetries during running in male youth. Phys. Ther. Sport 2014, 15, 53–57. [Google Scholar] [CrossRef]
- Exell, T.; Irwin, G.; Gittoes, M.; Kerwin, D. Strength and performance asymmetry during maximal velocity sprint running. Scand. J. Med. Sci. Sports 2017, 27, 1273–1282. [Google Scholar] [CrossRef]
- Nagahara, R.; Gleadhill, S. Asymmetries of kinematics and kinetics in female and male sprinting. J. Sports Med. Phys. Fit. 2023, 63, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Noro, K.; Hirai, H.; Okamoto, H.; Kogawa, D.; Kamimukai, C.; Nagao, H.; Kaneko, Y.; Hori, K.; Yamamoto, S.; Yamada, N.; et al. Inter-limb Asymmetry of Equilibrium Regulation in the Legs of 10–11-Year-Old Boys during Overground Sprinting. In Proceedings of the 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Guadalajara, Mexico, 1–5 November 2021; pp. 4787–4791. [Google Scholar] [CrossRef]
- Payne, V.G.; Isaacs, L.D. Human Motor Development: A Lifespan Approach, 9th ed.; Routledge: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Nagahara, R.; Takai, Y.; Haramura, M.; Mizutani, M.; Matsuo, A.; Kanehisa, H.; Fukunaga, T. Age-Related Differences in Spatiotemporal Variables and Ground Reaction Forces During Sprinting in Boys. Pediatr. Exerc. Sci. 2018, 30, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Smits-Engelsman, B.C.; Wilson, P.H. Age-related changes in motor imagery from early childhood to adulthood: Probing the internal representation of speed-accuracy trade-offs. Hum. Mov. Sci. 2013, 32, 1151–1162. [Google Scholar] [CrossRef] [PubMed]
- Hausdorff, J.M.; Zemany, L.; Peng, C.; Goldberger, A.L. Maturation of gait dynamics: Stride-to-stride variability and its temporal organization in children. J. Appl. Physiol. 1999, 86, 1040–1047. [Google Scholar] [CrossRef]
- Latorre-Román, P.A.; Párraga-Montilla, J.A.; Salas-Sánchez, J.; Robles-Fuentes, A.; Enrique Roche-Seruendo, L.; Lucena-Zurita, M.; Manjón-Pozas, D.; Consuegra-Gonzalez, P. Differences in spatiotemporal running parameters in children and adolescents: A cross-sectional study. J. Sports Sci. 2025, 43, 544–554. [Google Scholar] [CrossRef]
- Hussain, S.A.; Singh, S.; Malik, S.H. Biomechanical analysis of spatio-temporal gait factors in determining gender gait maturation in school children. Int. J. Physiol. Nutr. Phys. Educ. 2021, 6, 65–70. [Google Scholar] [CrossRef]
- Biino, V.; Giustino, V.; Gallotta, M.C.; Bellafiore, M.; Battaglia, G.; Lanza, M.; Baldari, C.; Giuriato, M.; Figlioli, F.; Guidetti, L.; et al. Effects of sports experience on children’s gross motor coordination level. Front. Sports Act. Living 2023, 5, 1310074. [Google Scholar] [CrossRef]
- Davids, K.; Glazier, P.; Araújo, D.; Bartlett, R. Movement systems as dynamical systems: The functional role of variability and its implications for sports medicine. Sports Med. 2003, 33, 245–260. [Google Scholar] [CrossRef]
- Koh, T.H.; Eyre, J.A. Maturation of corticospinal tracts assessed by electromagnetic stimulation of the motor cortex. Arch. Dis. Child. 1988, 63, 1347–1352. [Google Scholar] [CrossRef] [PubMed]
- Dotan, R.; Mitchell, C.; Cohen, R.; Klentrou, P.; Gabriel, D.; Falk, B. Child-adult differences in muscle activation-a review. Pediatr. Exerc. Sci. 2012, 24, 2–21. [Google Scholar] [CrossRef] [PubMed]
- Lazaridis, S.; Bassa, E.; Patikas, D.; Giakas, G.; Gollhofer, A.; Kotzamanidis, C. Neuromuscular differences between prepubescents boys and adult men during drop jump. Eur. J. Appl. Physiol. 2010, 110, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The Importance of Muscular Strength in Athletic Performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef]
- Radnor, J.M.; Oliver, J.L.; Waugh, C.M.; Myer, G.D.; Moore, I.S.; Lloyd, R.S. The Influence of Growth and Maturation on Stretch-Shortening Cycle Function in Youth. Sports Med. 2018, 48, 57–71. [Google Scholar] [CrossRef]
- Meyers, R.W.; Moeskops, S.; Oliver, J.L.; Hughes, M.G.; Cronin, J.B.; Lloyd, R.S. Lower-Limb Stiffness and Maximal Sprint Speed in 11-16-Year-Old Boys. J. Strength Cond. Res. 2019, 33, 1987–1995. [Google Scholar] [CrossRef]
- Yamane, T.; Kimura, M.; Morita, M. Impact of Sensor-Axis Combinations on Machine Learning Accuracy for Human Activity Recognition Using Accelerometer Data in Clinical Settings. Phys. Act. Health 2025, 9, 95–109. [Google Scholar] [CrossRef]
- Theodorou, A.S.; Panoutsakopoulos, V.; Exell, T.A.; Argeitaki, P.; Paradisis, G.P.; Smirniotou, A. Step characteristic interaction and asymmetry during the approach phase in long jump. J. Sports Sci. 2017, 35, 346–354. [Google Scholar] [CrossRef]
- Stergiou, N.; Decker, L.M. Human movement variability, nonlinear dynamics, and pathology: Is there a connection? Hum. Mov. Sci. 2011, 30, 869–888. [Google Scholar] [CrossRef]
Parameter | MAX (n = 28) | ACC (n = 37) | t | p | g |
---|---|---|---|---|---|
age (years) | 6.9 ± 1.0 | 6.9 ± 0.6 | 0.143 | 0.887 | 0.038 |
body height (m) | 1.23 ± 0.08 | 1.25 ± 0.07 | 1.023 | 0.310 | 0.265 |
body mass (kg) | 26.6 ± 6.3 | 26.3 ± 4.6 | 0.192 | 0.849 | 0.054 |
body mass index (kg/m2) | 17.4 ± 2.6 | 16.8 ± 2.2 | 1.053 | 0.297 | 0.277 |
Parameter | MAX (n = 28) | ACC (n = 37) | t | p | g |
---|---|---|---|---|---|
time 0–5 m (s) | 1.44 ± 0.14 | 1.41 ± 0.13 | 0.830 | 0.410 | 0.205 |
time 5–10 m (s) | 1.10 ± 0.10 | 1.08 ± 0.09 | 0.759 | 0.451 | 0.188 |
time 10–15 m(s) | 1.10 ± 0.10 | 1.03 ± 0.11 * | 2.431 | 0.018 | 0.602 |
time 0–10 m (s) | 2.54 ± 0.21 | 2.49 ± 0.21 | 0.890 | 0.377 | 0.220 |
time 0–15 m (s) | 3.63 ± 0.29 | 3.52 ± 0.31 | 1.450 | 0.152 | 0.359 |
Parameter | MAX (n = 28) | ACC (n = 37) | t | p | g |
---|---|---|---|---|---|
step length—left leg (m) | 1.21 ± 0.16 | 1.25 ± 0.15 | 1.105 | 0.274 | 0.273 |
step length—right leg (m) | 1.21 ± 0.14 | 1.26 ± 0.14 | 1.525 | 0.132 | 0.378 |
average step length (m) | 1.21 ± 0.14 | 1.26 ± 0.14 | 1.353 | 0.181 | 0.335 |
step length symmetry angle (%) | 1.45 ± 0.93 | 1.64 ± 1.40 | 0.630 | 0.513 | 0.156 |
relative step length (%) | 0.97 ± 0.10 | 1.00 ± 0.09 | 1.230 | 0.224 | 0.318 |
stride length (m) | 2.41 ± 0.29 | 2.51 ± 0.28 | 1.353 | 0.181 | 0.335 |
Parameter | MAX (n = 28) | ACC (n = 37) | t | p | g |
---|---|---|---|---|---|
step frequency—left leg (Hz) | 3.95 ± 0.38 | 3.90 ± 0.35 | 0.548 | 0.586 | 0.136 |
step frequency—right leg (Hz) | 3.99 ± 0.37 | 3.90 ± 0.31 | 1.041 | 0.302 | 0.258 |
average step frequency (Hz) | 3.97 ± 0.35 | 3.90 ± 0.30 | 0.852 | 0.397 | 0.211 |
step frequency symmetry angle (%) | 1.40 ± 1.62 | 1.59 ± 1.62 | 0.479 | 0.633 | 0.119 |
stride frequency (Hz) | 1.98 ± 0.18 | 1.95 ± 0.15 | 0.859 | 0.394 | 0.213 |
Parameter | MAX (n = 28) | ACC (n = 37) | t | p | g |
---|---|---|---|---|---|
step velocity—left leg (m/s) | 4.73 ± 0.60 | 4.83 ± 0.52 | 0.733 | 0.467 | 0.181 |
step velocity—right leg (m/s) | 4.81 ± 0.59 | 4.90 ± 0.49 | 0.706 | 0.483 | 0.175 |
average step velocity (m/s) | 4.77 ± 0.57 | 4.87 ± 0.49 | 0.747 | 0.458 | 0.185 |
step velocity symmetry angle (%) | 1.59 ± 1.28 | 1.43 ± 1.24 | 0.499 | 0.619 | 0.124 |
average stride velocity (m/s) | 4.77 ± 0.57 | 4.87 ± 0.49 | 0.754 | 0.453 | 0.187 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keskinis, I.; Panoutsakopoulos, V.; Merkou, E.; Lazaridis, S.; Bassa, E. Examination of Step Kinematics Between Children with Different Acceleration Patterns in Short-Sprint Dash. Biomechanics 2025, 5, 60. https://doi.org/10.3390/biomechanics5030060
Keskinis I, Panoutsakopoulos V, Merkou E, Lazaridis S, Bassa E. Examination of Step Kinematics Between Children with Different Acceleration Patterns in Short-Sprint Dash. Biomechanics. 2025; 5(3):60. https://doi.org/10.3390/biomechanics5030060
Chicago/Turabian StyleKeskinis, Ilias, Vassilios Panoutsakopoulos, Evangelia Merkou, Savvas Lazaridis, and Eleni Bassa. 2025. "Examination of Step Kinematics Between Children with Different Acceleration Patterns in Short-Sprint Dash" Biomechanics 5, no. 3: 60. https://doi.org/10.3390/biomechanics5030060
APA StyleKeskinis, I., Panoutsakopoulos, V., Merkou, E., Lazaridis, S., & Bassa, E. (2025). Examination of Step Kinematics Between Children with Different Acceleration Patterns in Short-Sprint Dash. Biomechanics, 5(3), 60. https://doi.org/10.3390/biomechanics5030060