Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (479)

Search Parameters:
Keywords = time series transformation to dataset

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7965 KiB  
Article
Identification of Environmental Noise Traces in Seismic Recordings Using Vision Transformer and Mel-Spectrogram
by Qianlong Ding, Shuangquan Chen, Jinsong Shen and Borui Wang
Appl. Sci. 2025, 15(15), 8586; https://doi.org/10.3390/app15158586 (registering DOI) - 1 Aug 2025
Abstract
Environmental noise is inevitable during seismic data acquisition, with major sources including heavy machinery, rivers, wind, and other environmental factors. During field data acquisition, it is important to assess the impact of environmental noise and evaluate data quality. In subsequent seismic data processing, [...] Read more.
Environmental noise is inevitable during seismic data acquisition, with major sources including heavy machinery, rivers, wind, and other environmental factors. During field data acquisition, it is important to assess the impact of environmental noise and evaluate data quality. In subsequent seismic data processing, these noise components also need to be eliminated. Accurate identification of noise traces facilitates rapid quality control (QC) during fieldwork and provides a reliable basis for targeted noise attenuation. Conventional environmental noise identification primarily relies on amplitude differences. However, in seismic data, high-amplitude signals are not necessarily caused by environmental noise. For example, surface waves or traces near the shot point may also exhibit high amplitudes. Therefore, relying solely on amplitude-based criteria has certain limitations. To improve noise identification accuracy, we use the Mel-spectrogram to extract features from seismic data and construct the dataset. Compared to raw time-series signals, the Mel-spectrogram more clearly reveals energy variations and frequency differences, helping to identify noise traces more accurately. We then employ a Vision Transformer (ViT) network to train a model for identifying noise in seismic data. Tests on synthetic and field data show that the proposed method performs well in identifying noise. Moreover, a denoising case based on synthetic data further confirms its general applicability, making it a promising tool in seismic data QC and processing workflows. Full article
Show Figures

Figure 1

20 pages, 4782 KiB  
Article
Enhanced Spatiotemporal Landslide Displacement Prediction Using Dynamic Graph-Optimized GNSS Monitoring
by Jiangfeng Li, Jiahao Qin, Kaimin Kang, Mingzhi Liang, Kunpeng Liu and Xiaohua Ding
Sensors 2025, 25(15), 4754; https://doi.org/10.3390/s25154754 (registering DOI) - 1 Aug 2025
Abstract
Landslide displacement prediction is crucial for disaster mitigation, yet traditional methods often fail to capture the complex, non-stationary spatiotemporal dynamics of slope evolution. This study introduces an enhanced prediction framework that integrates multi-scale signal processing with dynamic, geology-aware graph modeling. The proposed methodology [...] Read more.
Landslide displacement prediction is crucial for disaster mitigation, yet traditional methods often fail to capture the complex, non-stationary spatiotemporal dynamics of slope evolution. This study introduces an enhanced prediction framework that integrates multi-scale signal processing with dynamic, geology-aware graph modeling. The proposed methodology first employs the Maximum Overlap Discrete Wavelet Transform (MODWT) to denoise raw Global Navigation Satellite System (GNSS)-monitored displacement time series data, enhancing the underlying deformation features. Subsequently, a geology-aware graph is constructed, using the temporal correlation of displacement series as a practical proxy for physical relatedness between monitoring nodes. The framework’s core innovation lies in a dynamic graph optimization model with low-rank constraints, which adaptively refines the graph topology to reflect time-varying inter-sensor dependencies driven by factors like mining activities. Experiments conducted on a real-world dataset from an active open-pit mine demonstrate the framework’s superior performance. The DCRNN-proposed model achieved the highest accuracy among eight competing models, recording a Root Mean Square Error (RMSE) of 2.773 mm in the Vertical direction, a 39.1% reduction compared to its baseline. This study validates that the proposed dynamic graph optimization approach provides a robust and significantly more accurate solution for landslide prediction in complex, real-world engineering environments. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

13 pages, 1859 KiB  
Article
Electricity Load Forecasting Method Based on the GRA-FEDformer Algorithm
by Xin Jin, Tingzhe Pan, Heyang Yu, Zongyi Wang and Wangzhang Cao
Energies 2025, 18(15), 4057; https://doi.org/10.3390/en18154057 (registering DOI) - 31 Jul 2025
Abstract
In recent years, Transformer-based methods have shown full potential in power load forecasting problems. However, their computational cost is high, while it is difficult to capture the global characteristics of the time series. When the forecasting time length is long, the overall shift [...] Read more.
In recent years, Transformer-based methods have shown full potential in power load forecasting problems. However, their computational cost is high, while it is difficult to capture the global characteristics of the time series. When the forecasting time length is long, the overall shift of the forecasting trend often occurs. Therefore, this paper proposes a gray relation analysis–frequency-enhanced decomposition transformer (GRA-FEDformer) method for forecasting power loads in power systems. Firstly, considering the impact of different weather factors on power loads, the correlation between various factors and power loads was analyzed using the GRA method to screen out the high-correlation factors as model inputs. Secondly, a frequency decomposition method for long short-time-scale components was utilized. Its combination with the transformer-based model can give the deep learning model an ability to simultaneously capture the fluctuating behavior of the short time scale and the overall trend of changes in the long time scale in power loads. The experimental results show that the proposed method had better forecasting performance than the other methods for a one-year dataset in a region of Morocco. In particular, the advantages of the proposed method were more obvious in the forecasting task with a longer forecasting length. Full article
(This article belongs to the Topic Advances in Power Science and Technology, 2nd Edition)
Show Figures

Figure 1

24 pages, 3714 KiB  
Article
DTCMMA: Efficient Wind-Power Forecasting Based on Dimensional Transformation Combined with Multidimensional and Multiscale Convolutional Attention Mechanism
by Wenhan Song, Enguang Zuo, Junyu Zhu, Chen Chen, Cheng Chen, Ziwei Yan and Xiaoyi Lv
Sensors 2025, 25(15), 4530; https://doi.org/10.3390/s25154530 - 22 Jul 2025
Viewed by 244
Abstract
With the growing global demand for clean energy, the accuracy of wind-power forecasting plays a vital role in ensuring the stable operation of power systems. However, wind-power generation is significantly influenced by meteorological conditions and is characterized by high uncertainty and multiscale fluctuations. [...] Read more.
With the growing global demand for clean energy, the accuracy of wind-power forecasting plays a vital role in ensuring the stable operation of power systems. However, wind-power generation is significantly influenced by meteorological conditions and is characterized by high uncertainty and multiscale fluctuations. Traditional recurrent neural network (RNN) and long short-term memory (LSTM) models, although capable of handling sequential data, struggle with modeling long-term temporal dependencies due to the vanishing gradient problem; thus, they are now rarely used. Recently, Transformer models have made notable progress in sequence modeling compared to RNNs and LSTM models. Nevertheless, when dealing with long wind-power sequences, their quadratic computational complexity (O(L2)) leads to low efficiency, and their global attention mechanism often fails to capture local periodic features accurately, tending to overemphasize redundant information while overlooking key temporal patterns. To address these challenges, this paper proposes a wind-power forecasting method based on dimension-transformed collaborative multidimensional multiscale attention (DTCMMA). This method first employs fast Fourier transform (FFT) to automatically identify the main periodic components in wind-power data, reconstructing the one-dimensional time series as a two-dimensional spatiotemporal representation, thereby explicitly encoding periodic features. Based on this, a collaborative multidimensional multiscale attention (CMMA) mechanism is designed, which hierarchically integrates channel, spatial, and pixel attention to adaptively capture complex spatiotemporal dependencies. Considering the geometric characteristics of the reconstructed data, asymmetric convolution kernels are adopted to enhance feature extraction efficiency. Experiments on multiple wind-farm datasets and energy-related datasets demonstrate that DTCMMA outperforms mainstream methods such as Transformer, iTransformer, and TimeMixer in long-sequence forecasting tasks, achieving improvements in MSE performance by 34.22%, 2.57%, and 0.51%, respectively. The model’s training speed also surpasses that of the fastest baseline by 300%, significantly improving both prediction accuracy and computational efficiency. This provides an efficient and accurate solution for wind-power forecasting and contributes to the further development and application of wind energy in the global energy mix. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

25 pages, 5547 KiB  
Article
Urban Expansion and Landscape Transformation in Năvodari, Romania: An Integrated Geospatial and Socio-Economic Perspective
by Cristina-Elena Mihalache and Monica Dumitrașcu
Land 2025, 14(7), 1496; https://doi.org/10.3390/land14071496 - 19 Jul 2025
Viewed by 406
Abstract
Urban growth often surpasses the actual needs of the population, leading to inefficient land use and long-term environmental challenges. This study provides an integrated perspective on urban landscape transformation by linking socio-demographic dynamics with ecological consequences, notably vegetation loss and increased impervious surfaces. [...] Read more.
Urban growth often surpasses the actual needs of the population, leading to inefficient land use and long-term environmental challenges. This study provides an integrated perspective on urban landscape transformation by linking socio-demographic dynamics with ecological consequences, notably vegetation loss and increased impervious surfaces. The study area is Năvodari Administrative-Territorial Unit (ATU), a coastal tourist city located along the Black Sea in Romania. By integrating geospatial datasets such as Urban Atlas and Corine Land Cover with population- and construction-related statistics, the analysis reveals a disproportionate increase in urbanized land compared to population growth. Time-series analyses based on the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Built-up Index (NDBI) from 1990 to 2022 highlight significant ecological degradation, including vegetation loss and increased built-up density. The findings suggest that real estate investment and tourism-driven development play a more substantial role than demographic dynamics in shaping land use change. Understanding urban expansion as a coupled social–ecological process is essential for promoting sustainable planning and enhancing environmental resilience. While this study is focused on the coastal city of Năvodari, its insights are relevant to a broader international context, particularly for rapidly developing tourist destinations facing similar urban and ecological pressures. The findings support efforts toward more inclusive, balanced, and environmentally responsible urban development, aligning with the core principles of Sustainable Development Goal 11, particularly Target 11.3, which emphasizes sustainable urbanization and efficient land use. Full article
Show Figures

Figure 1

25 pages, 4363 KiB  
Article
Method for Predicting Transformer Top Oil Temperature Based on Multi-Model Combination
by Lin Yang, Minghe Wang, Liang Chen, Fan Zhang, Shen Ma, Yang Zhang and Sixu Yang
Electronics 2025, 14(14), 2855; https://doi.org/10.3390/electronics14142855 - 17 Jul 2025
Viewed by 197
Abstract
The top oil temperature of a transformer is a vital sign reflecting its operational condition. The accurate prediction of this parameter is essential for evaluating insulation performance and extending equipment lifespan. At present, the prediction of oil temperature is mainly based on single-feature [...] Read more.
The top oil temperature of a transformer is a vital sign reflecting its operational condition. The accurate prediction of this parameter is essential for evaluating insulation performance and extending equipment lifespan. At present, the prediction of oil temperature is mainly based on single-feature prediction. However, it overlooks the influence of other features. This has a negative effect on the prediction accuracy. Furthermore, the training dataset is often made up of data from a single transformer. This leads to the poor generalization of the prediction. To tackle these challenges, this paper leverages large-scale data analysis and processing techniques, and presents a transformer top oil temperature prediction model that combines multiple models. The Convolutional Neural Network was applied in this method to extract spatial features from multiple input variables. Subsequently, a Long Short-Term Memory network was employed to capture dynamic patterns in the time series. Meanwhile, a Transformer encoder enhanced feature interaction and global perception. The spatial characteristics extracted by the CNN and the temporal characteristics extracted by LSTM were further integrated to create a more comprehensive representation. The established model was optimized using the Whale Optimization Algorithm to improve prediction accuracy. The results of the experiment indicate that the maximum RMSE and MAPE of this method on the summer and winter datasets were 0.5884 and 0.79%, respectively, demonstrating superior prediction accuracy. Compared with other models, the proposed model improved prediction performance by 13.74%, 36.66%, and 43.36%, respectively, indicating high generalization capability and accuracy. This provides theoretical support for condition monitoring and fault warning of power equipment. Full article
Show Figures

Figure 1

28 pages, 10424 KiB  
Article
The Application of Wind Power Prediction Based on the NGBoost–GRU Fusion Model in Traffic Renewable Energy System
by Fudong Li, Yongjun Gan and Xiaolong Li
Sustainability 2025, 17(14), 6405; https://doi.org/10.3390/su17146405 - 13 Jul 2025
Viewed by 454
Abstract
In the context of the “double carbon” goals and energy transformation, the integration of energy and transportation has emerged as a crucial trend in their coordinated development. Wind power prediction serves as the cornerstone technology for ensuring efficient operations within this integrated framework. [...] Read more.
In the context of the “double carbon” goals and energy transformation, the integration of energy and transportation has emerged as a crucial trend in their coordinated development. Wind power prediction serves as the cornerstone technology for ensuring efficient operations within this integrated framework. This paper introduces a wind power prediction methodology based on an NGBoost–GRU fusion model and devises an innovative dynamic charging optimization strategy for electric vehicles (EVs) through deep collaboration. By integrating the dynamic feature extraction capabilities of GRU for time series data with the strengths of NGBoost in modeling nonlinear relationships and quantifying uncertainties, the proposed approach achieves enhanced performance. Specifically, the dual GRU fusion strategy effectively mitigates error accumulation and leverages spatial clustering to boost data homogeneity. These advancements collectively lead to a significant improvement in the prediction accuracy and reliability of wind power generation. Experiments on the dataset of a wind farm in Gansu Province demonstrate that the model achieves excellent performance, with an RMSE of 36.09 kW and an MAE of 29.96 kW at the 12 h prediction horizon. Based on this predictive capability, a “wind-power-charging collaborative optimization framework” is developed. This framework not only significantly enhances the local consumption rate of wind power but also effectively cuts users’ charging costs by approximately 18.7%, achieving a peak-shaving effect on grid load. As a result, it substantially improves the economic efficiency and stability of system operation. Overall, this study offers novel insights and robust support for optimizing the operation of integrated energy systems. Full article
Show Figures

Figure 1

16 pages, 1730 KiB  
Article
Retail Demand Forecasting: A Comparative Analysis of Deep Neural Networks and the Proposal of LSTMixer, a Linear Model Extension
by Georgios Theodoridis and Athanasios Tsadiras
Information 2025, 16(7), 596; https://doi.org/10.3390/info16070596 - 11 Jul 2025
Viewed by 535
Abstract
Accurate retail demand forecasting is integral to the operational efficiency of any retail business. As demand is described over time, the prediction of demand is a time-series forecasting problem which may be addressed in a univariate manner, via statistical methods and simplistic machine [...] Read more.
Accurate retail demand forecasting is integral to the operational efficiency of any retail business. As demand is described over time, the prediction of demand is a time-series forecasting problem which may be addressed in a univariate manner, via statistical methods and simplistic machine learning approaches, or in a multivariate fashion using generic deep learning forecasters that are well-established in other fields. This study analyzes, optimizes, trains and tests such forecasters, namely the Temporal Fusion Transformer and the Temporal Convolutional Network, alongside the recently proposed Time-Series Mixer, to accurately forecast retail demand given a dataset of historical sales in 45 stores with their accompanied features. Moreover, the present work proposes a novel extension of the Time-Series Mixer architecture, the LSTMixer, which utilizes an additional Long Short-Term Memory block to achieve better forecasts. The results indicate that the proposed LSTMixer model is the better predictor, whilst all the other aforementioned models outperform the common statistical and machine learning methods. An ablation test is also performed to ensure that the extension within the LSTMixer design is responsible for the improved results. The findings promote the use of deep learning models for retail demand forecasting problems and establish LSTMixer as a viable and efficient option. Full article
(This article belongs to the Special Issue Artificial Intelligence (AI) for Economics and Business Management)
Show Figures

Figure 1

37 pages, 100736 KiB  
Article
Hybrid GIS-Transformer Approach for Forecasting Sentinel-1 Displacement Time Series
by Lama Moualla, Alessio Rucci, Giampiero Naletto, Nantheera Anantrasirichai and Vania Da Deppo
Remote Sens. 2025, 17(14), 2382; https://doi.org/10.3390/rs17142382 - 10 Jul 2025
Cited by 1 | Viewed by 303
Abstract
This study presents a deep learning-based approach for forecasting Sentinel-1 displacement time series, with particular attention to irregular temporal patterns—an aspect often overlooked in previous works. Displacement data were generated using the Parallel Small BAseline Subset (P-SBAS) technique via the Geohazard Thematic Exploitation [...] Read more.
This study presents a deep learning-based approach for forecasting Sentinel-1 displacement time series, with particular attention to irregular temporal patterns—an aspect often overlooked in previous works. Displacement data were generated using the Parallel Small BAseline Subset (P-SBAS) technique via the Geohazard Thematic Exploitation Platform (G-TEP). Initial experiments on a regular dataset from Lombardy employed Long Short-Term Memory (LSTM) models to forecast multiple future time steps. Empirical analysis determined that optimal forecasting is achieved with a 50-time-step input sequence, and that predicting 10% of the input sequence length strikes a balance between temporal coverage and accuracy. The investigation then extended to irregular datasets from Lisbon and Washington, comparing two preprocessing strategies: imputation and the inclusion of time intervals as a second feature. While imputation improved one-step predictions, it was inadequate for multi-step forecasting. To address this, a Time-Gated LSTM (TG-LSTM) was implemented. TG-LSTM outperformed standard LSTM for irregular data in one-step prediction but faced limitations in handling heteroscedasticity and computational cost during multi-step forecasting. These issues were effectively resolved using Temporal Fusion Transformers (TFT), which achieved the best performance, with RMSE values of 1.71 mm/year (Lisbon) and 1.26 mm/year (Washington). A key contribution of this work is the development of a GIS-integrated forecasting toolbox that incorporates LSTM models for regular sequences and TG-LSTM/TFT models for irregular ones. The toolbox enables both single- and multi-step displacement predictions, offering a scalable solution for geohazard monitoring and early warning applications. Full article
Show Figures

Figure 1

21 pages, 1871 KiB  
Article
Fusion of Recurrence Plots and Gramian Angular Fields with Bayesian Optimization for Enhanced Time-Series Classification
by Maria Mariani, Prince Appiah and Osei Tweneboah
Axioms 2025, 14(7), 528; https://doi.org/10.3390/axioms14070528 - 10 Jul 2025
Viewed by 491
Abstract
Time-series classification remains a critical task across various domains, demanding models that effectively capture both local recurrence structures and global temporal dependencies. We introduce a novel framework that transforms time series into image representations by fusing recurrence plots (RPs) with both Gramian Angular [...] Read more.
Time-series classification remains a critical task across various domains, demanding models that effectively capture both local recurrence structures and global temporal dependencies. We introduce a novel framework that transforms time series into image representations by fusing recurrence plots (RPs) with both Gramian Angular Summation Fields (GASFs) and Gramian Angular Difference Fields (GADFs). This fusion enriches the structural encoding of temporal dynamics. To ensure optimal performance, Bayesian Optimization is employed to automatically select the ideal image resolution, eliminating the need for manual tuning. Unlike prior methods that rely on individual transformations, our approach concatenates RP, GASF, and GADF into a unified representation and generalizes to multivariate data by stacking transformation channels across sensor dimensions. Experiments on seven univariate datasets show that our method significantly outperforms traditional classifiers such as one-nearest neighbor with Dynamic Time Warping, Shapelet Transform, and RP-based convolutional neural networks. For multivariate tasks, the proposed fusion model achieves macro F1 scores of 91.55% on the UCI Human Activity Recognition dataset and 98.95% on the UCI Room Occupancy Estimation dataset, outperforming standard deep learning baselines. These results demonstrate the robustness and generalizability of our framework, establishing a new benchmark for image-based time-series classification through principled fusion and adaptive optimization. Full article
Show Figures

Figure 1

27 pages, 7808 KiB  
Article
Phenology-Aware Transformer for Semantic Segmentation of Non-Food Crops from Multi-Source Remote Sensing Time Series
by Xiongwei Guan, Meiling Liu, Shi Cao and Jiale Jiang
Remote Sens. 2025, 17(14), 2346; https://doi.org/10.3390/rs17142346 - 9 Jul 2025
Viewed by 324
Abstract
Accurate identification of non-food crops underpins food security by clarifying land-use dynamics, promoting sustainable farming, and guiding efficient resource allocation. Proper identification and management maintain the balance between food and non-food cropping, a prerequisite for ecological sustainability and a healthy agricultural economy. Distinguishing [...] Read more.
Accurate identification of non-food crops underpins food security by clarifying land-use dynamics, promoting sustainable farming, and guiding efficient resource allocation. Proper identification and management maintain the balance between food and non-food cropping, a prerequisite for ecological sustainability and a healthy agricultural economy. Distinguishing large-scale non-food crops—such as oilseed rape, tea, and cotton—remains challenging because their canopy reflectance spectra are similar. This study proposes a novel phenology-aware Vision Transformer Model (PVM) for accurate, large-scale non-food crop classification. PVM incorporates a Phenology-Aware Module (PAM) that fuses multi-source remote-sensing time series with crop-growth calendars. The study area is Hunan Province, China. We collected Sentinel-1 SAR and Sentinel-2 optical imagery (2021–2022) and corresponding ground-truth samples of non-food crops. The model uses a Vision Transformer (ViT) backbone integrated with PAM. PAM dynamically adjusts temporal attention using encoded phenological cues, enabling the network to focus on key growth stages. A parallel Multi-Task Attention Fusion (MTAF) mechanism adaptively combines Sentinel-1 and Sentinel-2 time-series data. The fusion exploits sensor complementarity and mitigates cloud-induced data gaps. The fused spatiotemporal features feed a Transformer-based decoder that performs multi-class semantic segmentation. On the Hunan dataset, PVM achieved an F1-score of 74.84% and an IoU of 61.38%, outperforming MTAF-TST and 2D-U-Net + CLSTM baselines. Cross-regional validation on the Canadian Cropland Dataset confirmed the model’s generalizability, with an F1-score of 71.93% and an IoU of 55.94%. Ablation experiments verified the contribution of each module. Adding PAM raised IoU by 8.3%, whereas including MTAF improved recall by 8.91%. Overall, PVM effectively integrates phenological knowledge with multi-source imagery, delivering accurate and scalable non-food crop classification. Full article
Show Figures

Figure 1

25 pages, 3106 KiB  
Article
Multifractal-Aware Convolutional Attention Synergistic Network for Carbon Market Price Forecasting
by Liran Wei, Mingzhu Tang, Na Li, Jingwen Deng, Xinpeng Zhou and Haijun Hu
Fractal Fract. 2025, 9(7), 449; https://doi.org/10.3390/fractalfract9070449 - 7 Jul 2025
Viewed by 357
Abstract
Accurate carbon market price prediction is crucial for promoting a low-carbon economy and sustainable engineering. Traditional models often face challenges in effectively capturing the multifractality inherent in carbon market prices. Inspired by the self-similarity and scale invariance inherent in fractal structures, this study [...] Read more.
Accurate carbon market price prediction is crucial for promoting a low-carbon economy and sustainable engineering. Traditional models often face challenges in effectively capturing the multifractality inherent in carbon market prices. Inspired by the self-similarity and scale invariance inherent in fractal structures, this study proposes a novel multifractal-aware model, MF-Transformer-DEC, for carbon market price prediction. The multi-scale convolution (MSC) module employs multi-layer dilated convolutions constrained by shared convolution kernel weights to construct a scale-invariant convolutional network. By projecting and reconstructing time series data within a multi-scale fractal space, MSC enhances the model’s ability to adapt to complex nonlinear fluctuations while significantly suppressing noise interference. The fractal attention (FA) module calculates similarity matrices within a multi-scale feature space through multi-head attention, adaptively integrating multifractal market dynamics and implicit associations. The dynamic error correction (DEC) module models error commonality through variational autoencoder (VAE), and uncertainty-guided dynamic weighting achieves robust error correction. The proposed model achieved an average R2 of 0.9777 and 0.9942 for 7-step ahead predictions on the Shanghai and Guangdong carbon price datasets, respectively. This study pioneers the interdisciplinary integration of fractal theory and artificial intelligence methods for complex engineering analysis, enhancing the accuracy of carbon market price prediction. The proposed technical pathway of “multi-scale deconstruction and similarity mining” offers a valuable reference for AI-driven fractal modeling. Full article
Show Figures

Figure 1

33 pages, 2533 KiB  
Article
VBTCKN: A Time Series Forecasting Model Based on Variational Mode Decomposition with Two-Channel Cross-Attention Network
by Zhiguo Xiao, Changgen Li, Huihui Hao, Siwen Liang, Qi Shen and Dongni Li
Symmetry 2025, 17(7), 1063; https://doi.org/10.3390/sym17071063 - 4 Jul 2025
Viewed by 403
Abstract
Time series forecasting serves a critical function in domains such as energy, meteorology, and power systems by leveraging historical data to predict future trends. However, existing methods often prioritize long-term dependencies while neglecting the integration of local features and global patterns, resulting in [...] Read more.
Time series forecasting serves a critical function in domains such as energy, meteorology, and power systems by leveraging historical data to predict future trends. However, existing methods often prioritize long-term dependencies while neglecting the integration of local features and global patterns, resulting in limited accuracy for short-term predictions of non-stationary multivariate sequences. To address these challenges, this paper proposes a time series forecasting model named VBTCKN based on variational mode decomposition and a dual-channel cross-attention network. First, the model employs variational mode decomposition (VMD) to decompose the time series into multiple frequency-complementary modal components, thereby reducing sequence volatility. Subsequently, the BiLSTM channel extracts temporal dependencies between sequences, while the transformer channel captures dynamic correlations between local features and global patterns. The cross-attention mechanism dynamically fuses features from both channels, enhancing complementary information integration. Finally, prediction results are generated through Kolmogorov–Arnold networks (KAN). Experiments conducted on four public datasets demonstrated that VBTCKN outperformed other state-of-the-art methods in both accuracy and robustness. Compared with BiLSTM, VBTCKN reduced RMSE by 63.32%, 68.31%, 57.98%, and 90.76%, respectively. Full article
Show Figures

Graphical abstract

16 pages, 814 KiB  
Article
An Interpretable Method for Anomaly Detection in Multivariate Time Series Predictions
by Shijie Tang, Yong Ding and Huiyong Wang
Appl. Sci. 2025, 15(13), 7479; https://doi.org/10.3390/app15137479 - 3 Jul 2025
Viewed by 319
Abstract
Anomaly detection methods for industrial control networks using multivariate time series usually adopt deep learning-based prediction models. However, most of the existing anomaly detection research only focuses on evaluating detection performance and rarely explains why data is marked as abnormal and which physical [...] Read more.
Anomaly detection methods for industrial control networks using multivariate time series usually adopt deep learning-based prediction models. However, most of the existing anomaly detection research only focuses on evaluating detection performance and rarely explains why data is marked as abnormal and which physical components have been attacked. Yet, in many scenarios, it is necessary to explain the decision-making process of detection. To address this concern, we propose an interpretable method for an anomaly detection model based on gradient optimization, which can perform batch interpretation of data without affecting model performance. Our method transforms the interpretation of anomalous features into solving an optimization problem in a normal “reference” state. In the selection of important features, we adopt the method of multiplying the absolute gradient by the input to measure the independent effects of different dimensions of data. At the same time, we use KSG mutual information estimation and multivariate cross-correlation to evaluate the relationship and mutual influence between different dimensional data within the same sliding window. By accumulating gradient changes, the interpreter can identify the attacked features. Comparative experiments were conducted on the SWAT and WADI datasets, demonstrating that our method can effectively identify the physical components that have experienced anomalies and their changing trends. Full article
(This article belongs to the Special Issue Novel Insights into Cryptography and Network Security)
Show Figures

Figure 1

19 pages, 8377 KiB  
Article
Enhanced RT-DETR with Dynamic Cropping and Legendre Polynomial Decomposition Rockfall Detection on the Moon and Mars
by Panpan Zang, Jinxin He, Yongbin Yang, Yu Li and Hanya Zhang
Remote Sens. 2025, 17(13), 2252; https://doi.org/10.3390/rs17132252 - 30 Jun 2025
Viewed by 409
Abstract
The analysis of rockfall events provides critical insights for deciphering planetary geological processes and reconstructing environmental evolutionary timelines. Conventional visual interpretation methods that rely on orbiter imagery can be inefficient due to their massive datasets and subtle morphological signatures. While deep learning technologies, [...] Read more.
The analysis of rockfall events provides critical insights for deciphering planetary geological processes and reconstructing environmental evolutionary timelines. Conventional visual interpretation methods that rely on orbiter imagery can be inefficient due to their massive datasets and subtle morphological signatures. While deep learning technologies, particularly object detection models, demonstrate transformative potential, they require specific adaptation to planetary imaging constraints, including low contrast, grayscale inputs, and small-target detection. Our coordinated optimization strategy integrates dynamic cropping optimization with architectural innovations: Kolmogorov–Arnold Network based C3 module (KANC3) replaces RepC3 through Legendre polynomial decomposition to strengthen feature representation, while our dynamic cropping strategy significantly improves small-target detection in low-contrast grayscale imagery by mitigating background and target imbalance. Experimental validation on the optimized RMaM-2020 dataset demonstrates that Real-Time Detection Transformer with a ResNet-18 backbone and Kolmogorov–Arnold Network based C3 module (RT-DETR-R18-KANC3) achieves 0.982 precision, 0.955 recall, and 0.964 mAP50 under low-contrast conditions, representing a 1% improvement over the baseline model and exceeding YOLO-series models by >40% in relative performance metrics. Full article
Show Figures

Graphical abstract

Back to TopTop