Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,635)

Search Parameters:
Keywords = time series characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7011 KiB  
Article
Monitoring Chrysanthemum Cultivation Areas Using Remote Sensing Technology
by Yin Ye, Meng-Ting Wu, Chun-Juan Pu, Jing-Mei Chen, Zhi-Xian Jing, Ting-Ting Shi, Xiao-Bo Zhang and Hui Yan
Horticulturae 2025, 11(8), 933; https://doi.org/10.3390/horticulturae11080933 (registering DOI) - 7 Aug 2025
Abstract
Chrysanthemum has a long history of medicinal use with rich germplasm resources and extensive cultivation. Traditional chrysanthemum cultivation involves complex patterns and long flowering periods, with the ongoing expansion of planting areas complicating statistical surveys. Currently, reliable, timely, and universally applicable standardized monitoring [...] Read more.
Chrysanthemum has a long history of medicinal use with rich germplasm resources and extensive cultivation. Traditional chrysanthemum cultivation involves complex patterns and long flowering periods, with the ongoing expansion of planting areas complicating statistical surveys. Currently, reliable, timely, and universally applicable standardized monitoring methods for chrysanthemum cultivation areas remain underdeveloped. This research employed 16 m resolution satellite imagery spanning 2021 to 2023 alongside 2 m resolution data acquired in 2022 to quantify chrysanthemum cultivation extent across Sheyang County, Jiangsu Province, China. After evaluating multiple classifiers, Maximum Likelihood Classification was selected as the optimal method. Subsequently, time-series-based post-classification processing was implemented: initial cultivation information extraction was performed through feature comparison, supervised classification, and temporal analysis. Accuracy validation via Overall Accuracy, Kappa coefficient, Producer’s Accuracy, and User’s Accuracy identified critical issues, followed by targeted refinement of spectrally confused features to obtain precise area estimates. The chrysanthemum cultivation area in 2022 was quantified as 46,950,343 m2 for 2 m resolution and 46,332,538 m2 for 16 m resolution. Finally, the conversion ratio characteristics between resolutions were analyzed, yielding adjusted results of 38,466,192 m2 for 2021 and 47,546,718 m2 for 2023, respectively. These outcomes demonstrate strong alignment with local agricultural statistics, confirming method viability for chrysanthemum cultivation area computation. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

17 pages, 4004 KiB  
Article
Research on Switching Current Model of GaN HEMT Based on Neural Network
by Xiang Wang, Zhihui Zhao, Huikai Chen, Xueqi Sun, Shulong Wang and Guohao Zhang
Micromachines 2025, 16(8), 915; https://doi.org/10.3390/mi16080915 - 7 Aug 2025
Abstract
The switching characteristics of GaN HEMT devices exhibit a very complex dynamic nonlinear behavior and multi-physics coupling characteristics, and traditional switching current models based on physical mechanisms have significant limitations. This article adopts a hybrid architecture of convolutional neural network and long short-term [...] Read more.
The switching characteristics of GaN HEMT devices exhibit a very complex dynamic nonlinear behavior and multi-physics coupling characteristics, and traditional switching current models based on physical mechanisms have significant limitations. This article adopts a hybrid architecture of convolutional neural network and long short-term memory network (CNN-LSTM). In the 1D-CNN layer, the one-dimensional convolutional neural network can automatically learn and extract local transient features of time series data by sliding convolution operations on time series data through its convolution kernel, making these local transient features present a specific form in the local time window. In the double-layer LSTM layer, the neural network model captures the transient characteristics of switch current through the gating mechanism and state transfer. The hybrid architecture of the constructed model has significant advantages in accuracy, with metrics such as root mean square error (RMSE) and mean absolute error (MAE) significantly reduced, compared to traditional switch current models, solving the problem of insufficient accuracy in traditional models. The neural network model has good fitting performance at both room and high temperatures, with an average coefficient close to 1. The new neural network hybrid architecture has short running time and low computational resource consumption, meeting the needs of practical applications. Full article
(This article belongs to the Special Issue Advanced Wide Bandgap Semiconductor Materials and Devices)
Show Figures

Figure 1

18 pages, 5296 KiB  
Article
Grid-Search-Optimized, Gated Recurrent Unit-Based Prediction Model for Ionospheric Total Electron Content
by Shuo Zhou, Ziyi Yang, Qiao Yu and Jian Wang
Technologies 2025, 13(8), 347; https://doi.org/10.3390/technologies13080347 - 7 Aug 2025
Abstract
Accurately predicting the ionosphere’s Total Electron Content (TEC) is significant for ensuring the regular operation of satellite navigation and communication systems and space weather prediction. To further improve the accuracy of TEC prediction, this paper proposes a TEC prediction model based on the [...] Read more.
Accurately predicting the ionosphere’s Total Electron Content (TEC) is significant for ensuring the regular operation of satellite navigation and communication systems and space weather prediction. To further improve the accuracy of TEC prediction, this paper proposes a TEC prediction model based on the grid-optimized Gate Recurrent Unit (GRU). This model has the following main features: (1) it uses statistical learning methods to interpolate the missing data of TEC observations; (2) it constructs a sliding time window by using the multi-dimensional time series features of two types of solar activity indices to support modeling; (3) It adopts grid search combined with optimization of network depth, time step length, and other hyperparameters to significantly enhance the model’s ability to extract the characteristics of the ionospheric 11-year cycle and seasonal variations. Taking the EGLIN station as an example, the proposed model is verified. The experimental results show that the root mean square error of the GRU model during the period from 2019 to 2020 was 0.78 TECU, which was significantly lower than those of the CCIR, URSI, and statistical machine learning models. Compared with the other three models, the RMSE error of the GRU model was reduced by 72.73%, 72.64%, and 57.38%, respectively. The above research verifies the advantages of the proposed model in predicting TEC and provides a new idea for ionospheric modeling. Full article
(This article belongs to the Section Environmental Technology)
Show Figures

Figure 1

27 pages, 17353 KiB  
Article
A Framework to Retrieve Water Quality Parameters in Small, Optically Diverse Freshwater Ecosystems Using Sentinel-2 MSI Imagery
by Matheus Henrique Tavares, David Guimarães, Joana Roussillon, Valentin Baute, Julien Cucherousset, Stéphanie Boulêtreau and Jean-Michel Martinez
Remote Sens. 2025, 17(15), 2729; https://doi.org/10.3390/rs17152729 - 7 Aug 2025
Abstract
Small lakes (<10 km2) provide a range of ecosystem services but are often overlooked in both monitoring efforts and limnological studies. Remote sensing has been increasingly used to complement in situ monitoring or to provide water colour data for unmonitored inland [...] Read more.
Small lakes (<10 km2) provide a range of ecosystem services but are often overlooked in both monitoring efforts and limnological studies. Remote sensing has been increasingly used to complement in situ monitoring or to provide water colour data for unmonitored inland water bodies. However, due to spatial, radiometric, and spectral constraints, it has been heavily focused on large lakes. Sentinel-2 MSI is the first sensor with the capability to consistently retrieve a wide range of essential water quality variables, such as chlorophyll-a concentration (chl-a) and water transparency, in small water bodies, and to provide long time series. Here, we provide and validate a framework for retrieving two variables, chl-a and turbidity, over lakes with diverse optical characteristics using Sentinel-2 imagery. It is based on GRS for atmospheric and sun glint correction, WaterDetect for water detection, and inversion models that were automatically selected based on two different sets of optical water types (OWTs)—one for each variable; for chl-a, we produced a blended product for improved spatial representation. To validate the approach, we compared the products with more than 600 in situ data from 108 lakes located in the Adour–Garonne river basins, ranging from 3 to ∼5000 ha, as well as remote sensing reflectance (Rrs) data collected during 10 field campaigns during the summer and spring seasons. Rrs retrieval (n = 65) was robust for bands 2 to 5, with MAPE varying from 15 to 32% and achieving correlation from 0.74 up to 0.92. For bands 6 to 8A, the Rrs retrieval was much less accurate, being influenced by adjacency effects. Glint removal significantly enhanced Rrs accuracy, with RMSE improving from 0.0067 to 0.0021 sr−1 for band 4, for example. Water quality retrieval showed consistent results, with an MAPE of 56%, an RMSE of 11.4 mg m−3, and an r of 0.76 for chl-a, and an MAPE of 47%, an RMSE of 9.7 NTU, and an r of 0.87 for turbidity, and no significant effect of lake area or lake depth on retrieval errors. The temporal and spatial representations of the selected parameters were also shown to be consistent, demonstrating that the framework is robust and can be applied over lakes as small as 3 ha. The validated methods can be applied to retrieve time series of chl-a and turbidity starting from 2016 and with a frequency of up to 5 days, largely expanding the database collected by water agencies. This dataset will be extremely useful for studying the dynamics of these small freshwater ecosystems. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

16 pages, 3989 KiB  
Article
Secure Context-Aware Traffic Light Scheduling System: Integrity of Vehicles’ Identities
by Marah Yahia, Maram Bani Younes, Firas Najjar, Ahmad Audat and Said Ghoul
World Electr. Veh. J. 2025, 16(8), 448; https://doi.org/10.3390/wevj16080448 - 7 Aug 2025
Abstract
Autonomous vehicles and intelligent traffic transportation are widely investigated for road networks. Context-aware traffic light scheduling algorithms determine signal phases by analyzing the real-time characteristics and contextual information of competing traffic flows. The context of traffic flows mainly considers the existence of regular, [...] Read more.
Autonomous vehicles and intelligent traffic transportation are widely investigated for road networks. Context-aware traffic light scheduling algorithms determine signal phases by analyzing the real-time characteristics and contextual information of competing traffic flows. The context of traffic flows mainly considers the existence of regular, emergency, or heavy vehicles. This is an important factor in setting the phases of the traffic light schedule and assigning a high priority for emergency vehicles to pass through the signalized intersection first. VANET technology, through its communication capabilities and the exchange of data packets among moving vehicles, is utilized to collect real-time traffic information for the analyzed road scenarios. This introduces an attractive environment for hackers, intruders, and criminals to deceive drivers and intelligent infrastructure by manipulating the transmitted packets. This consequently leads to the deployment of less efficient traffic light scheduling algorithms. Therefore, ensuring secure communications between traveling vehicles and verifying the integrity of transmitted data are crucial. In this work, we investigate the possible attacks on the integrity of transferred messages and vehicles’ identities and their effects on the traffic light schedules. Then, a new secure context-aware traffic light scheduling system is proposed that guarantees the integrity of transmitted messages and verifies the vehicles’ identities. Finally, a comprehensive series of experiments were performed to assess the proposed secure system in comparison to the absence of security mechanisms within a simulated road intersection. We can infer from the experimental study that attacks on the integrity of vehicles have different effects on the efficiency of the scheduling algorithm. The throughput of the signalized intersection and the waiting delay time of traveling vehicles are highly affected parameters. Full article
Show Figures

Figure 1

10 pages, 485 KiB  
Article
Factors Associated with Functional Outcome Following Acute Ischemic Stroke Due to M1 MCA/ICA Occlusion in the Extended Time Window
by John Constantakis, Quinn Steiner, Thomas Reher, Timothy Choi, Fauzia Hollnagel, Qianqian Zhao, Nicole Bennett, Veena A. Nair, Eric E. Adelman, Vivek Prabhakaran, Beverly Aagard-Kienitz and Bolanle Famakin
J. Clin. Med. 2025, 14(15), 5556; https://doi.org/10.3390/jcm14155556 - 6 Aug 2025
Abstract
Introduction: A validated clinical decision tool predictive of favorable functional outcomes following endovascular thrombectomy (EVT) in acute ischemic stroke (AIS) remains elusive. We performed a retrospective case series of patients at our regional Comprehensive Stroke Center, over a four-year period, who have undergone [...] Read more.
Introduction: A validated clinical decision tool predictive of favorable functional outcomes following endovascular thrombectomy (EVT) in acute ischemic stroke (AIS) remains elusive. We performed a retrospective case series of patients at our regional Comprehensive Stroke Center, over a four-year period, who have undergone EVT to elucidate patient characteristics and factors associated with a favorable functional outcome after EVT. Methods: We reviewed all cases of EVT at our institution between February 2018 and February 2022 in the extended time window from 6–24 h. Demographic, clinical, imaging, and procedure co-variates were included. A favorable clinical outcome was defined as a modified Rankin scale of 0–2. We included patients with M1 or internal carotid artery occlusion treated with EVT within 6–24 h after symptom onset. We used a univariate and multivariate logistic regression analysis to identify patient factors associated with a favorable clinical outcome at 90 days. Results: Our study included evaluation of 121 patients who underwent EVT at our comprehensive stroke center. Our analysis demonstrates that a higher recanalization score based on the modified Thrombolysis In Cerebral Infarction (mTICI) scale (2B-3) was a strong indicator of a favorable outcome (OR 7.33; CI 2.06–26.07; p = 0.0021). Our data also showed that a higher baseline National Institutes of Health Stroke Scale (NIHSS) score (p = 0.0095) and the presence of pre-existing hypertension (p = 0.0035) may also be predictors of an unfavorable outcome (mRS > 2) per our multivariate analysis. Conclusion: Patients without pre-existing hypertension had more favorable outcomes following EVT in the expanded time window. This is consistent with other multicenter data in the expanded time window that demonstrates greater odds of a poor outcome with elevated pre-, peri-, and post-endovascular-treatment blood pressure. Our data also demonstrate that the mTICI score is a strong predictor of favorable outcome, even after controlling for other variables. A lower baseline NIHSS at the time of thrombectomy may also indicate a favorable outcome. Furthermore, the presence of clinical or radiographic mismatch based on the Alberta Stroke Program Early Computed Tomography Score (ASPECTS) and NIHSS per DAWN and DEFUSE-3 criteria did not emerge as a predictor of favorable outcome, which is congruent with recent randomized controlled trials and meta-analyses. Full article
(This article belongs to the Special Issue Ischemic Stroke: Diagnosis and Treatment)
Show Figures

Figure 1

17 pages, 1800 KiB  
Article
Healing Kinetics of Sinus Lift Augmentation Using Biphasic Calcium Phosphate Granules: A Case Series in Humans
by Michele Furlani, Valentina Notarstefano, Nicole Riberti, Emira D’Amico, Tania Vanessa Pierfelice, Carlo Mangano, Elisabetta Giorgini, Giovanna Iezzi and Alessandra Giuliani
Bioengineering 2025, 12(8), 848; https://doi.org/10.3390/bioengineering12080848 - 6 Aug 2025
Abstract
Sinus augmentation provides a well-established model for investigating the three-dimensional morphometry and macromolecular dynamics of bone regeneration, particularly when using biphasic calcium phosphate (BCP) graft substitutes. This case series included six biopsies from patients who underwent maxillary sinus augmentation using BCP granules composed [...] Read more.
Sinus augmentation provides a well-established model for investigating the three-dimensional morphometry and macromolecular dynamics of bone regeneration, particularly when using biphasic calcium phosphate (BCP) graft substitutes. This case series included six biopsies from patients who underwent maxillary sinus augmentation using BCP granules composed of 30% hydroxyapatite (HA) and 70% β-tricalcium phosphate (β-TCP). Bone core biopsies were obtained at healing times of 6 months, 9 months, and 12 months. Histological evaluation yielded qualitative and quantitative insights into new bone distribution, while micro-computed tomography (micro-CT) and Raman microspectroscopy (RMS) were employed to assess the three-dimensional architecture and macromolecular composition of the regenerated bone. Micro-CT analysis revealed progressive maturation of the regenerated bone microstructure over time. At 6 months, the apical regenerated area exhibited a significantly higher mineralized volume fraction (58 ± 5%) compared to the basal native bone (44 ± 11%; p = 0.0170), as well as significantly reduced trabecular spacing (Tb.Sp: 187 ± 70 µm vs. 325 ± 96 µm; p = 0.0155) and degree of anisotropy (DA: 0.37 ± 0.05 vs. 0.73 ± 0.03; p < 0.0001). By 12 months, the mineralized volume fraction in the regenerated area (53 ± 5%) was statistically comparable to basal bone (44 ± 3%; p > 0.05), while Tb.Sp (211 ± 20 µm) and DA (0.23 ± 0.09) remained significantly lower (Tb.Sp: 395 ± 41 µm, p = 0.0041; DA: 0.46 ± 0.04, p = 0.0001), indicating continued structural remodelling and organization. Raman microspectroscopy further revealed dynamic macromolecular changes during healing. Characteristic β-TCP peaks (e.g., 1315, 1380, 1483 cm−1) progressively diminished over time and were completely absent in the regenerated tissue at 12 months, contrasting with their partial presence at 6 months. Simultaneously, increased intensity of collagen-specific bands (e.g., Amide I at 1661 cm−1, Amide III at 1250 cm−1) and carbonate peaks (1065 cm−1) reflected active matrix formation and mineralization. Overall, this case series provides qualitative and quantitative evidence that bone regeneration and integration of BCP granules in sinus augmentation continues beyond 6 months, with ongoing maturation observed up to 12 months post-grafting. Full article
Show Figures

Figure 1

23 pages, 4361 KiB  
Article
Novel Visible Light-Driven Ho2InSbO7/Ag3PO4 Photocatalyst for Efficient Oxytetracycline Contaminant Degradation
by Jingfei Luan and Tiannan Zhao
Molecules 2025, 30(15), 3289; https://doi.org/10.3390/molecules30153289 - 6 Aug 2025
Abstract
In this study, a Z-scheme Ho2InSbO7/Ag3PO4 (HAO) heterojunction photocatalyst was successfully fabricated for the first time by ultrasound-assisted solvothermal method. The structural features, compositional components and morphological characteristics of the synthesized materials were thoroughly characterized by [...] Read more.
In this study, a Z-scheme Ho2InSbO7/Ag3PO4 (HAO) heterojunction photocatalyst was successfully fabricated for the first time by ultrasound-assisted solvothermal method. The structural features, compositional components and morphological characteristics of the synthesized materials were thoroughly characterized by a series of techniques, including X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectrum, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. A comprehensive array of analytical techniques, including ultraviolet-visible diffuse reflectance absorption spectra, photoluminescence spectroscopy, time-resolved photoluminescence spectroscopy, photocurrent testing, electrochemical impedance spectroscopy, electron paramagnetic resonance, and ultraviolet photoelectron spectroscopy, was employed to systematically investigate the optical, chemical, and photoelectronic properties of the materials. Using oxytetracycline (OTC), a representative tetracycline antibiotic, as the target substrate, the photocatalytic activity of the HAO composite was assessed under visible light irradiation. Comparative analyses demonstrated that the photocatalytic degradation capability of the HAO composite surpassed those of its individual components. Notably, during the degradation process, the application of the HAO composite resulted in an impressive removal efficiency of 99.89% for OTC within a span of 95 min, along with a total organic carbon mineralization rate of 98.35%. This outstanding photocatalytic performance could be ascribed to the efficient Z-scheme electron-hole separation system occurring between Ho2InSbO7 and Ag3PO4. Moreover, the adaptability and stability of the HAO heterojunction were thoroughly validated. Through experiments involving the capture of reactive species and electron paramagnetic resonance analysis, the active species generated by HAO were identified as hydroxyl radicals (•OH), superoxide anions (•O2), and holes (h+). This identification provides valuable insights into the mechanisms and pathways associated with the photodegradation of OTC. In conclusion, this research not only elucidates the potential of HAO as an efficient Z-scheme heterojunction photocatalyst but also marks a significant contribution to the advancement of sustainable remediation strategies for OTC contamination. Full article
(This article belongs to the Special Issue Nanomaterials in Photochemical Devices: Advances and Applications)
Show Figures

Graphical abstract

26 pages, 4116 KiB  
Article
Robust Optimal Operation of Smart Microgrid Considering Source–Load Uncertainty
by Zejian Qiu, Zhuowen Zhu, Lili Yu, Zhanyuan Han, Weitao Shao, Kuan Zhang and Yinfeng Ma
Processes 2025, 13(8), 2458; https://doi.org/10.3390/pr13082458 - 4 Aug 2025
Viewed by 151
Abstract
The uncertainties arising from high renewable energy penetration on both the generation and demand sides pose significant challenges to distribution network security. Smart microgrids are considered an effective way to solve this problem. Existing studies exhibit limitations in prediction accuracy, Alternating Current (AC) [...] Read more.
The uncertainties arising from high renewable energy penetration on both the generation and demand sides pose significant challenges to distribution network security. Smart microgrids are considered an effective way to solve this problem. Existing studies exhibit limitations in prediction accuracy, Alternating Current (AC) power flow modeling, and integration with optimization frameworks. This paper proposes a closed-loop technical framework combining high-confidence interval prediction, second-order cone convex relaxation, and robust optimization to facilitate renewable energy integration in distribution networks via smart microgrid technology. First, a hybrid prediction model integrating Variational Mode Decomposition (VMD), Long Short-Term Memory (LSTM), and Quantile Regression (QR) is designed to extract multi-frequency characteristics of time-series data, generating adaptive prediction intervals that accommodate individualized decision-making preferences. Second, a second-order cone relaxation method transforms the AC power flow optimization problem into a mixed-integer second-order cone programming (MISOCP) model. Finally, a robust optimization method considering source–load uncertainties is developed. Case studies demonstrate that the proposed approach reduces prediction errors by 21.15%, decreases node voltage fluctuations by 16.71%, and reduces voltage deviation at maximum offset nodes by 17.36%. This framework significantly mitigates voltage violation risks in distribution networks with large-scale grid-connected photovoltaic systems. Full article
(This article belongs to the Special Issue Applications of Smart Microgrids in Renewable Energy Development)
Show Figures

Figure 1

27 pages, 4742 KiB  
Article
Modeling and Generating Extreme Fluctuations in Time Series with a Multilayer Linear Response Model
by Yusuke Naritomi, Tetsuya Takaishi and Takanori Adachi
Entropy 2025, 27(8), 823; https://doi.org/10.3390/e27080823 - 3 Aug 2025
Viewed by 233
Abstract
A multilayer linear response model (MLRM) is proposed to generate time-series data based on linear response theory. The proposed MLRM is designed to generate data for anomalous dynamics by extending the conventional single-layer linear response model (SLRM) into multiple layers. While the SLRM [...] Read more.
A multilayer linear response model (MLRM) is proposed to generate time-series data based on linear response theory. The proposed MLRM is designed to generate data for anomalous dynamics by extending the conventional single-layer linear response model (SLRM) into multiple layers. While the SLRM is a linear equation with respect to external forces, the MLRM introduces nonlinear interactions, enabling the generation of a wider range of dynamics. The MLRM is applicable to various fields, such as finance, as it does not rely on machine learning techniques and maintains interpretability. We investigated whether the MLRM could generate anomalous dynamics, such as those observed during the coronavirus disease 2019 (COVID-19) pandemic, using pre-pandemic data. Furthermore, an analysis of the log returns and realized volatility derived from the MLRM-generated data demonstrated that both exhibited heavy-tailed characteristics, consistent with empirical observations. These results indicate that the MLRM can effectively reproduce the extreme fluctuations and tail behavior seen during high-volatility periods. Full article
(This article belongs to the Section Complexity)
Show Figures

Figure 1

25 pages, 2859 KiB  
Article
Feature-Based Normality Models for Anomaly Detection
by Hui Yie Teh, Kevin I-Kai Wang and Andreas W. Kempa-Liehr
Sensors 2025, 25(15), 4757; https://doi.org/10.3390/s25154757 - 1 Aug 2025
Viewed by 257
Abstract
Detecting previously unseen anomalies in sensor data is a challenging problem for artificial intelligence when sensor-specific and deployment-specific characteristics of the time series need to be learned from a short calibration period. From the application point of view, this challenge becomes increasingly important [...] Read more.
Detecting previously unseen anomalies in sensor data is a challenging problem for artificial intelligence when sensor-specific and deployment-specific characteristics of the time series need to be learned from a short calibration period. From the application point of view, this challenge becomes increasingly important because many applications are gravitating towards utilising low-cost sensors for Internet of Things deployments. While these sensors offer cost-effectiveness and customisation, their data quality does not match that of their high-end counterparts. To improve sensor data quality while addressing the challenges of anomaly detection in Internet of Things applications, we present an anomaly detection framework that learns a normality model of sensor data. The framework models the typical behaviour of individual sensors, which is crucial for the reliable detection of sensor data anomalies, especially when dealing with sensors observing significantly different signal characteristics. Our framework learns sensor-specific normality models from a small set of anomaly-free training data while employing an unsupervised feature engineering approach to select statistically significant features. The selected features are subsequently used to train a Local Outlier Factor anomaly detection model, which adaptively determines the boundary separating normal data from anomalies. The proposed anomaly detection framework is evaluated on three real-world public environmental monitoring datasets with heterogeneous sensor readings. The sensor-specific normality models are learned from extremely short calibration periods (as short as the first 3 days or 10% of the total recorded data) and outperform four other state-of-the-art anomaly detection approaches with respect to F1-score (between 5.4% and 9.3% better) and Matthews correlation coefficient (between 4.0% and 7.6% better). Full article
(This article belongs to the Special Issue Innovative Approaches to Cybersecurity for IoT and Wireless Networks)
Show Figures

Figure 1

33 pages, 1619 KiB  
Article
Empowering the Intelligent Transformation of the Manufacturing Sector Through New Quality Productive Forces: Value Implications, Theoretical Analysis, and Empirical Examination
by Yinyan Hu and Xinran Jia
Sustainability 2025, 17(15), 7006; https://doi.org/10.3390/su17157006 - 1 Aug 2025
Viewed by 281
Abstract
Achieving sustainable development goals remains a core issue in global development. In response, China has proposed the development of new quality productive forces (NQPFs) through innovative thinking, emphasizing that fostering NQPFs is both an intrinsic requirement and a pivotal focus for advancing high-quality [...] Read more.
Achieving sustainable development goals remains a core issue in global development. In response, China has proposed the development of new quality productive forces (NQPFs) through innovative thinking, emphasizing that fostering NQPFs is both an intrinsic requirement and a pivotal focus for advancing high-quality development. Concurrently, the intelligent transformation of the manufacturing sector serves as a critical direction for China’s economic restructuring and upgrading. This paper places “new quality productive forces” and “intelligent transformation of manufacturing” within the same analytical framework. Starting from the logical chain of “new quality productive forces—three major mechanisms—intelligent transformation of manufacturing,” it concretizes the value implications of new quality productive forces into a systematic conceptual framework driven by the synergistic interaction of three major mechanisms: the mechanism of revolutionary technological breakthroughs, the mechanism of innovative allocation of production factors, and the mechanism of deep industrial transformation and upgrading. This study constructs a “3322” evaluation index system for NQPFs, based on three formative processes, three driving forces, two supporting systems, and two-dimensional characteristics. Simultaneously, it builds an evaluation index system for the intelligent transformation of manufacturing, encompassing intelligent technology, intelligent applications, and intelligent benefits. Using national time-series data from 2012 to 2023, this study assesses the development levels of both NQPFs and the intelligent transformation of manufacturing during this period. The study further analyzes the impact of NQPFs on the intelligent transformation of the manufacturing sector. The research results indicate the following: (1) NQPFs drive the intelligent transformation of the manufacturing industry through the three mechanisms of innovative allocation of production factors, revolutionary breakthroughs in technology, and deep transformation and upgrading of industries. (2) The development of NQPFs exhibits a slow upward trend; however, the outbreak of the pandemic and Sino-US trade frictions have caused significant disruptions to the development of new-type productive forces. (3) The level of intelligent manufacturing continues to improve; however, from 2020 to 2023, due to the impact of the COVID-19 pandemic and Sino-US trade conflicts, the level of intelligent benefits has slightly declined. (4) NQPFs exert a powerful driving force on the intelligent transformation of manufacturing, exerting a significant positive impact on intelligent technology, intelligent applications, and intelligent efficiency levels. Full article
Show Figures

Figure 1

27 pages, 4163 KiB  
Article
Rainfall Forecasting Using a BiLSTM Model Optimized by an Improved Whale Migration Algorithm and Variational Mode Decomposition
by Yueqiao Yang, Shichuang Li, Ting Zhou, Liang Zhao, Xiao Shi and Boni Du
Mathematics 2025, 13(15), 2483; https://doi.org/10.3390/math13152483 - 1 Aug 2025
Viewed by 278
Abstract
The highly stochastic nature of rainfall presents significant challenges for the accurate prediction of its time series. To enhance the prediction performance of non-stationary rainfall time series, this study proposes a hybrid deep learning forecasting framework—VMD-IWMA-BiLSTM—that integrates Variational Mode Decomposition (VMD), Improved Whale [...] Read more.
The highly stochastic nature of rainfall presents significant challenges for the accurate prediction of its time series. To enhance the prediction performance of non-stationary rainfall time series, this study proposes a hybrid deep learning forecasting framework—VMD-IWMA-BiLSTM—that integrates Variational Mode Decomposition (VMD), Improved Whale Migration Algorithm (IWMA), and Bidirectional Long Short-Term Memory network (BiLSTM). Firstly, VMD is employed to decompose the original rainfall series into multiple modes, extracting Intrinsic Mode Functions (IMFs) with more stable frequency characteristics. Secondly, IWMA is utilized to globally optimize multiple hyperparameters of the BiLSTM model, enhancing its ability to capture complex nonlinear relationships and long-term dependencies. Finally, experimental validation is conducted using daily rainfall data from 2020 to 2024 at the Xinzheng National Meteorological Observatory. The results demonstrate that the proposed framework outperforms traditional models such as LSTM, ARIMA, SVM, and LSSVM in terms of prediction accuracy. This research provides new insights and effective technical pathways for improving rainfall time series prediction accuracy and addressing the challenges posed by high randomness. Full article
Show Figures

Figure 1

43 pages, 2466 KiB  
Article
Adaptive Ensemble Learning for Financial Time-Series Forecasting: A Hypernetwork-Enhanced Reservoir Computing Framework with Multi-Scale Temporal Modeling
by Yinuo Sun, Zhaoen Qu, Tingwei Zhang and Xiangyu Li
Axioms 2025, 14(8), 597; https://doi.org/10.3390/axioms14080597 - 1 Aug 2025
Viewed by 209
Abstract
Financial market forecasting remains challenging due to complex nonlinear dynamics and regime-dependent behaviors that traditional models struggle to capture effectively. This research introduces the Adaptive Financial Reservoir Network with Hypernetwork Flow (AFRN–HyperFlow) framework, a novel ensemble architecture integrating Echo State Networks, temporal convolutional [...] Read more.
Financial market forecasting remains challenging due to complex nonlinear dynamics and regime-dependent behaviors that traditional models struggle to capture effectively. This research introduces the Adaptive Financial Reservoir Network with Hypernetwork Flow (AFRN–HyperFlow) framework, a novel ensemble architecture integrating Echo State Networks, temporal convolutional networks, mixture density networks, adaptive Hypernetworks, and deep state-space models for enhanced financial time-series prediction. Through comprehensive feature engineering incorporating technical indicators, spectral decomposition, reservoir-based representations, and flow dynamics characteristics, the framework achieves superior forecasting performance across diverse market conditions. Experimental validation on 26,817 balanced samples demonstrates exceptional results with an F1-score of 0.8947, representing a 12.3% improvement over State-of-the-Art baseline methods, while maintaining robust performance across asset classes from equities to cryptocurrencies. The adaptive Hypernetwork mechanism enables real-time regime-change detection with 2.3 days average lag and 95% accuracy, while systematic SHAP analysis provides comprehensive interpretability essential for regulatory compliance. Ablation studies reveal Echo State Networks contribute 9.47% performance improvement, validating the architectural design. The AFRN–HyperFlow framework addresses critical limitations in uncertainty quantification, regime adaptability, and interpretability, offering promising directions for next-generation financial forecasting systems incorporating quantum computing and federated learning approaches. Full article
(This article belongs to the Special Issue Financial Mathematics and Econophysics)
Show Figures

Figure 1

20 pages, 2619 KiB  
Article
Fatigue Life Prediction of CFRP-FBG Sensor-Reinforced RC Beams Enabled by LSTM-Based Deep Learning
by Minrui Jia, Chenxia Zhou, Xiaoyuan Pei, Zhiwei Xu, Wen Xu and Zhenkai Wan
Polymers 2025, 17(15), 2112; https://doi.org/10.3390/polym17152112 - 31 Jul 2025
Viewed by 248
Abstract
Amidst the escalating demand for high-precision structural health monitoring in large-scale engineering applications, carbon fiber-reinforced polymer fiber Bragg grating (CFRP-FBG) sensors have emerged as a pivotal technology for fatigue life evaluation, owing to their exceptional sensitivity and intrinsic immunity to electromagnetic interference. A [...] Read more.
Amidst the escalating demand for high-precision structural health monitoring in large-scale engineering applications, carbon fiber-reinforced polymer fiber Bragg grating (CFRP-FBG) sensors have emerged as a pivotal technology for fatigue life evaluation, owing to their exceptional sensitivity and intrinsic immunity to electromagnetic interference. A time-series predictive architecture based on long short-term memory (LSTM) networks is developed in this work to facilitate intelligent fatigue life assessment of structures subjected to complex cyclic loading by capturing and modeling critical spectral characteristics of CFRP-FBG sensors, specifically the side-mode suppression ratio and main-lobe peak-to-valley ratio. To enhance model robustness and generalization, Principal Component Analysis (PCA) was employed to isolate the most salient spectral features, followed by data preprocessing via normalization and model optimization through the integration of the Adam optimizer and Dropout regularization strategy. Relative to conventional Backpropagation (BP) neural networks, the LSTM model demonstrated a substantial improvement in predicting the side-mode suppression ratio, achieving a 61.62% reduction in mean squared error (MSE) and a 34.99% decrease in root mean squared error (RMSE), thereby markedly enhancing robustness to outliers and ensuring greater overall prediction stability. In predicting the peak-to-valley ratio, the model attained a notable 24.9% decrease in mean absolute error (MAE) and a 21.2% reduction in root mean squared error (RMSE), thereby substantially curtailing localized inaccuracies. The forecasted confidence intervals were correspondingly narrower and exhibited diminished fluctuation, highlighting the LSTM architecture’s enhanced proficiency in capturing nonlinear dynamics and modeling temporal dependencies. The proposed method manifests considerable practical engineering relevance and delivers resilient intelligent assistance for the seamless implementation of CFRP-FBG sensor technology in structural health monitoring and fatigue life prognostics. Full article
(This article belongs to the Section Artificial Intelligence in Polymer Science)
Show Figures

Figure 1

Back to TopTop