Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,229)

Search Parameters:
Keywords = time–frequency map

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2373 KB  
Article
LLM-Empowered Kolmogorov-Arnold Frequency Learning for Time Series Forecasting in Power Systems
by Zheng Yang, Yang Yu, Shanshan Lin and Yue Zhang
Mathematics 2025, 13(19), 3149; https://doi.org/10.3390/math13193149 - 2 Oct 2025
Abstract
With the rapid evolution of artificial intelligence technologies in power systems, data-driven time-series forecasting has become instrumental in enhancing the stability and reliability of power systems, allowing operators to anticipate demand fluctuations and optimize energy distribution. Despite the notable progress made by current [...] Read more.
With the rapid evolution of artificial intelligence technologies in power systems, data-driven time-series forecasting has become instrumental in enhancing the stability and reliability of power systems, allowing operators to anticipate demand fluctuations and optimize energy distribution. Despite the notable progress made by current methods, they are still hindered by two major limitations: most existing models are relatively small in architecture, failing to fully leverage the potential of large-scale models, and they are based on fixed nonlinear mapping functions that cannot adequately capture complex patterns, leading to information loss. To this end, an LLM-Empowered Kolmogorov–Arnold frequency learning (LKFL) is proposed for time series forecasting in power systems, which consists of LLM-based prompt representation learning, KAN-based frequency representation learning, and entropy-oriented cross-modal fusion. Specifically, LKFL first transforms multivariable time-series data into text prompts and leverages a pre-trained LLM to extract semantic-rich prompt representations. It then applies Fast Fourier Transform to convert the time-series data into the frequency domain and employs Kolmogorov–Arnold networks (KAN) to capture multi-scale periodic structures and complex frequency characteristics. Finally, LKFL integrates the prompt and frequency representations through an entropy-oriented cross-modal fusion strategy, which minimizes the semantic gap between different modalities and ensures full integration of complementary information. This comprehensive approach enables LKFL to achieve superior forecasting performance in power systems. Extensive evaluations on five benchmarks verify that LKFL sets a new standard for time-series forecasting in power systems compared with baseline methods. Full article
(This article belongs to the Special Issue Artificial Intelligence and Data Science, 2nd Edition)
Show Figures

Figure 1

23 pages, 4303 KB  
Article
LMCSleepNet: A Lightweight Multi-Channel Sleep Staging Model Based on Wavelet Transform and Muli-Scale Convolutions
by Jiayi Yang, Yuanyuan Chen, Tingting Yu and Ying Zhang
Sensors 2025, 25(19), 6065; https://doi.org/10.3390/s25196065 - 2 Oct 2025
Abstract
Sleep staging is a crucial indicator for assessing sleep quality, which contributes to sleep monitoring and the diagnosis of sleep disorders. Although existing sleep staging methods achieve high classification performance, two major challenges remain: (1) the ability to effectively extract salient features from [...] Read more.
Sleep staging is a crucial indicator for assessing sleep quality, which contributes to sleep monitoring and the diagnosis of sleep disorders. Although existing sleep staging methods achieve high classification performance, two major challenges remain: (1) the ability to effectively extract salient features from multi-channel sleep data remains limited; (2) excessive model parameters hinder efficiency improvements. To address these challenges, this work proposes a lightweight multi-channel sleep staging network (LMCSleepNet). LMCSleepNet is composed of four modules. The first module enhances frequency domain features through continuous wavelet transform. The second module extracts time–frequency features using multi-scale convolutions. The third module optimizes ResNet18 with depthwise separable convolutions to reduce parameters. The fourth module improves spatial correlation using the Convolutional Block Attention Module (CBAM). On the public datasets SleepEDF-20, SleepEDF-78, and LMCSleepNet, respectively, LMCSleepNet achieved classification accuracies of 88.2% (κ = 0.84, MF1 = 82.4%) and 84.1% (κ = 0.77, MF1 = 77.7%), while reducing model parameters to 1.49 M. Furthermore, experiments validated the influence of temporal sampling points in wavelet time–frequency maps on sleep classification performance (accuracy, Cohen’s kappa, and macro-average F1-score) and the influence of multi-scale dilated convolution module fusion methods on classification performance. LMCSleepNet is an efficient lightweight model for extracting and integrating multimodal features from multichannel Polysomnography (PSG) data, which facilitates its application in resource-constrained scenarios. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

19 pages, 2848 KB  
Article
Monitoring of Cropland Abandonment Integrating Machine Learning and Google Earth Engine—Taking Hengyang City as an Example
by Yefeng Jiang and Zichun Guo
Land 2025, 14(10), 1984; https://doi.org/10.3390/land14101984 - 2 Oct 2025
Abstract
Cropland abandonment, a global challenge, necessitates comprehensive monitoring to achieve the zero hunger goal. Prior monitoring approaches to cropland abandonment often face constraints in resolution, time series, drivers, prediction, or a combination of these. Here, we proposed an artificial intelligence framework to comprehensively [...] Read more.
Cropland abandonment, a global challenge, necessitates comprehensive monitoring to achieve the zero hunger goal. Prior monitoring approaches to cropland abandonment often face constraints in resolution, time series, drivers, prediction, or a combination of these. Here, we proposed an artificial intelligence framework to comprehensively monitor cropland abandonment and tested the framework in Hengyang City, China. Specifically, we first mapped land cover at 30 m resolution from 1985 to 2023 using Landsat, stable sample points, and a machine learning model. Subsequently, we constructed the extent, time, and frequency of cropland abandonment from 1986 to 2022 by analyzing pixel-level land-use trajectories. Finally, we quantified the drivers of cropland abandonment using machine learning models and predicted the spatial distribution of cropland abandonment risk from 2032 to 2062. Our results indicated that the abandonment maps achieved overall accuracies of 0.88 and 0.78 for identifying abandonment locations and timing, respectively. From 1986 to 2022, the proportion of cropland abandonment ranged between 0.15% and 4.06%, with an annual average abandonment rate of 1.32%. Additionally, the duration of abandonment varied from 2 to 38 years, averaging approximately 14 years, indicating widespread cropland abandonment in the study area. Furthermore, 62.99% of the abandoned cropland experienced abandonment once, 27.17% experienced it twice, and only 0.23% experienced it five times or more. Over 50% of cropland abandonment remained unreclaimed or reused. During the study period, tree cover, soil pH, soil total phosphorus, potential crop yield, and the multiresolution index of valley bottom flatness emerged as the five most important environmental covariates, with relative importances of 0.087, 0.074, 0.068, 0.050, and 0.043, respectively. Temporally, cropland abandonment in 1992 was influenced by transportation inaccessibility and low agricultural productivity, soil quality degradation became an additional factor by 2010, and synergistic effects of all three drivers were observed from 2012 to 2022. Notably, most cropland had a low abandonment risk (mean: 0.36), with only 0.37% exceeding 0.7, primarily distributed in transitional zones between cropland and non-cropland. Future risk predictions suggested a gradual decline in both risk values and the spatial extent of cropland abandonment from 2032 to 2062. In summary, we developed a comprehensive framework for monitoring cropland abandonment using artificial intelligence technology, which can be used in national or regional land-use policies, warning systems, and food security planning. Full article
Show Figures

Figure 1

21 pages, 1584 KB  
Article
Ionospheric Information-Assisted Spoofing Detection Technique and Performance Evaluation for Dual-Frequency GNSS Receiver
by Zhenyang Wu, Haixuan Fu, Xiaoxuan Xu, Yuhao Xiao, Yimin Ma, Ziheng Zhou and Hong Li
Electronics 2025, 14(19), 3865; https://doi.org/10.3390/electronics14193865 - 29 Sep 2025
Abstract
Global Navigation Satellite System (GNSS) spoofing, which manipulates PVT solutions through false measurements, increasingly threatens GNSS reliability and user safety. However, most existing simulator-based spoofers, constrained by their inability to access real-time ionospheric information (e.g., Global Ionosphere Maps, GIMs) from external sources, struggle [...] Read more.
Global Navigation Satellite System (GNSS) spoofing, which manipulates PVT solutions through false measurements, increasingly threatens GNSS reliability and user safety. However, most existing simulator-based spoofers, constrained by their inability to access real-time ionospheric information (e.g., Global Ionosphere Maps, GIMs) from external sources, struggle to replicate authentic total electron content (TEC) along each signal propagation path accurately and in a timely manner. In contrast, widespread dual-frequency (DF) receivers with access to the internet can validate local TEC measurements against external references, establishing a pivotal spoofing detection distinction. Here, we propose an Ionospheric Information-Assisted Spoofing Detection Technique (IIA-SDT), exploiting the inherent consistency between TEC values derived from DF pseudo-range measurements and external references in spoofing-free scenarios. Spoofing probably disrupts this consistency: in simulator-based full-channel spoofing where all channels are spoofed, the inaccuracies of the offline ionospheric model used by the spoofer inevitably cause TEC mismatches; in partial-channel spoofing where the spoofer fails to control all channels, an unintended PVT deviation is induced, which also causes TEC deviations due to the spatial variation of the ionosphere. Basic principles and theoretical analysis of the proposed IIA-SDT are elaborated in the paper. Simulations using ionospheric data collected from 2023 to 2024 at a typical mid-latitude location are conducted to evaluate IIA-SDT performance under various parameter configurations. With a window length of 5 s and satellite number of 8, the annual average detection probability approximates 75% at a false alarm rate of 1×103, with observable temporal variations. Field experiments across multiple scenarios further validate the spoofing detection capability of the proposed method. Full article
Show Figures

Figure 1

18 pages, 4946 KB  
Article
Probabilistic Analysis of Wedge Failures and Stability of Underground Workings with Combined Support Under Thrust Faulting Conditions
by Vladimir Demin, Alexey Kalinin, Nadezhda Tomilova, Aleksandr Tomilov, Natalya Mutovina, Assem Akpanbayeva and Tatiana Demina
Appl. Sci. 2025, 15(19), 10533; https://doi.org/10.3390/app151910533 - 29 Sep 2025
Abstract
Ensuring the stability of surrounding rock in underground excavations is a critical prerequisite for safe mining operations. This study examines the mechanisms of wedge failure formation and determines the performance of a combined support system (rock bolts + shotcrete) through probabilistic analysis. Field [...] Read more.
Ensuring the stability of surrounding rock in underground excavations is a critical prerequisite for safe mining operations. This study examines the mechanisms of wedge failure formation and determines the performance of a combined support system (rock bolts + shotcrete) through probabilistic analysis. Field investigations in the Zhylandy ore field (Kazakhstan) included fracture mapping, rock mass quality assessment (RQD), fracture frequency (FF), and in situ stress measurements, which confirmed a thrust-faulting regime. Numerical modeling with Dips ver.8 and UnWedge ver.6 software (Rocscience) identified critical excavation orientations of 120° and 141° associated with maximum-volume wedge formation, as well as a “safe orientation window” of 70° ± 10°. The probabilistic analysis showed that rock bolts alone yield a factor of safety (FS) < 1.2, whereas the combined support system increases FS to 2.4–3.5, significantly reducing the likelihood of wedge failures. An adaptive framework integrating numerical modeling with intelligent monitoring (“monitor → update model → adjust support”) is proposed, allowing real-time adjustment of support parameters and optimization of material consumption. The practical significance of this work lies in providing design-ready recommendations for support selection and excavation orientation, contributing to accident prevention and sustainable mining operations. Full article
(This article belongs to the Special Issue Rock Mechanics and Mining Engineering)
Show Figures

Figure 1

22 pages, 76128 KB  
Article
Nonlinear Wave Structures, Multistability, and Chaotic Behavior of Quantum Dust-Acoustic Shocks in Dusty Plasma with Size Distribution Effects
by Huanbin Xue and Lei Zhang
Mathematics 2025, 13(19), 3101; https://doi.org/10.3390/math13193101 - 27 Sep 2025
Abstract
This paper presents a detailed study of the (3+1)-dimensional Zakharov–Kuznetsov–Burgers equation to investigate shock-wave phenomena in dusty plasmas with quantum effects. The model provides significant physical insight into nonlinear dispersive and dissipative structures arising in charged-dust–ion environments, corresponding [...] Read more.
This paper presents a detailed study of the (3+1)-dimensional Zakharov–Kuznetsov–Burgers equation to investigate shock-wave phenomena in dusty plasmas with quantum effects. The model provides significant physical insight into nonlinear dispersive and dissipative structures arising in charged-dust–ion environments, corresponding to both laboratory and astrophysical plasmas. We then perform a qualitative, numerically assisted dynamical analysis using bifurcation diagrams, multistability checks, return maps, Poincaré sections, and phase portraits. For both the unperturbed and a perturbed system, we identify chaotic, quasi-periodic, and periodic regimes from these numerical diagnostics; accordingly, our dynamical conclusions are qualitative. We also examine frequency-response and time-delay sensitivity, providing a qualitative classification of nonlinear behavior across a broad parameter range. After establishing the global dynamical picture, traveling-wave solutions are obtained using the Paul–Painlevé approach. These solutions represent shock and solitary structures in the plasma system, thereby bridging the analytical and dynamical perspectives. The significance of this study lies in combining a detailed dynamical framework with exact traveling-wave solutions, allowing a deeper understanding of nonlinear shock dynamics in quantum dusty plasmas. These results not only advance theoretical plasma modeling but also hold potential applications in plasma-based devices, wave propagation in optical fibers, and astrophysical plasma environments. Full article
Show Figures

Figure 1

25 pages, 20535 KB  
Article
DWTF-DETR: A DETR-Based Model for Inshore Ship Detection in SAR Imagery via Dynamically Weighted Joint Time–Frequency Feature Fusion
by Tiancheng Dong, Taoyang Wang, Yuqi Han, Deren Li, Guo Zhang and Yuan Peng
Remote Sens. 2025, 17(19), 3301; https://doi.org/10.3390/rs17193301 - 25 Sep 2025
Abstract
Inshore ship detection in synthetic aperture radar (SAR) imagery poses significant challenges due to the high density and diversity of ships. However, low inter-object backscatter contrast and blurred boundaries of docked ships often result in performance degradation for traditional object detection methods, especially [...] Read more.
Inshore ship detection in synthetic aperture radar (SAR) imagery poses significant challenges due to the high density and diversity of ships. However, low inter-object backscatter contrast and blurred boundaries of docked ships often result in performance degradation for traditional object detection methods, especially under complex backgrounds and low signal-to-noise ratio (SNR) conditions. To address these issues, this paper proposes a novel detection framework, the Dynamic Weighted Joint Time–Frequency Feature Fusion DEtection TRansformer (DETR) Model (DWTF-DETR), specifically designed for SAR-based ship detection in inshore areas. The proposed model integrates a Dual-Domain Feature Fusion Module (DDFM) to extract and fuse features from both SAR images and their frequency-domain representations, enhancing sensitivity to both high- and low-frequency target features. Subsequently, a Dual-Path Attention Fusion Module (DPAFM) is introduced to dynamically weight and fuse shallow detail features with deep semantic representations. By leveraging an attention mechanism, the module adaptively adjusts the importance of different feature paths, thereby enhancing the model’s ability to perceive targets with ambiguous structural characteristics. Experiments conducted on a self-constructed inshore SAR ship detection dataset and the public HRSID dataset demonstrate that DWTF-DETR achieves superior performance compared to the baseline RT-DETR. Specifically, the proposed method improves mAP@50 by 1.60% and 0.72%, and F1-score by 0.58% and 1.40%, respectively. Moreover, comparative experiments show that the proposed approach outperforms several state-of-the-art SAR ship detection methods. The results confirm that DWTF-DETR is capable of achieving accurate and robust detection in diverse and complex maritime environments. Full article
Show Figures

Graphical abstract

25 pages, 4048 KB  
Article
Fractal Neural Dynamics and Memory Encoding Through Scale Relativity
by Călin Gheorghe Buzea, Valentin Nedeff, Florin Nedeff, Mirela Panaite Lehăduș, Lăcrămioara Ochiuz, Dragoș Ioan Rusu, Maricel Agop and Dragoș Teodor Iancu
Brain Sci. 2025, 15(10), 1037; https://doi.org/10.3390/brainsci15101037 - 24 Sep 2025
Viewed by 53
Abstract
Background/Objectives: Synaptic plasticity is fundamental to learning and memory, yet classical models such as Hebbian learning and spike-timing-dependent plasticity often overlook the distributed and wave-like nature of neural activity. We present a computational framework grounded in Scale Relativity Theory (SRT), which describes neural [...] Read more.
Background/Objectives: Synaptic plasticity is fundamental to learning and memory, yet classical models such as Hebbian learning and spike-timing-dependent plasticity often overlook the distributed and wave-like nature of neural activity. We present a computational framework grounded in Scale Relativity Theory (SRT), which describes neural propagation along fractal geodesics in a non-differentiable space-time. The objective is to link nonlinear wave dynamics with the emergence of structured memory representations in a biologically plausible manner. Methods: Neural activity was modeled using nonlinear Schrödinger-type equations derived from SRT, yielding complex wave solutions. Synaptic plasticity was coupled through a reaction–diffusion rule driven by local activity intensity. Simulations were performed in one- and two-dimensional domains using finite difference schemes. Analyses included spectral entropy, cross-correlation, and Fourier methods to evaluate the organization and complexity of the resulting synaptic fields. Results: The model reproduced core neurobiological features: localized potentiation resembling CA1 place fields, periodic plasticity akin to entorhinal grid cells, and modular tiling patterns consistent with V1 orientation maps. Interacting waveforms generated interference-dependent plasticity, modeling memory competition and contextual modulation. The system displayed robustness to noise, gradual potentiation with saturation, and hysteresis under reversal, reflecting empirical learning and reconsolidation dynamics. Cross-frequency coupling of theta and gamma inputs further enriched trace complexity, yielding multi-scale memory structures. Conclusions: Wave-driven dynamics in fractal space-time provide a hypothesis-generating framework for distributed memory formation. The current approach is theoretical and simulation-based, relying on a simplified plasticity rule that omits neuromodulatory and glial influences. While encouraging in its ability to reproduce biological motifs, the framework remains preliminary; future work must benchmark against established models such as STDP and attractor networks and propose empirical tests to validate or falsify its predictions. Full article
(This article belongs to the Section Cognitive, Social and Affective Neuroscience)
Show Figures

Figure 1

36 pages, 35564 KB  
Article
Enhancing Soundscape Characterization and Pattern Analysis Using Low-Dimensional Deep Embeddings on a Large-Scale Dataset
by Daniel Alexis Nieto Mora, Leonardo Duque-Muñoz and Juan David Martínez Vargas
Mach. Learn. Knowl. Extr. 2025, 7(4), 109; https://doi.org/10.3390/make7040109 - 24 Sep 2025
Viewed by 48
Abstract
Soundscape monitoring has become an increasingly important tool for studying ecological processes and supporting habitat conservation. While many recent advances focus on identifying species through supervised learning, there is growing interest in understanding the soundscape as a whole while considering patterns that extend [...] Read more.
Soundscape monitoring has become an increasingly important tool for studying ecological processes and supporting habitat conservation. While many recent advances focus on identifying species through supervised learning, there is growing interest in understanding the soundscape as a whole while considering patterns that extend beyond individual vocalizations. This broader view requires unsupervised approaches capable of capturing meaningful structures related to temporal dynamics, frequency content, spatial distribution, and ecological variability. In this study, we present a fully unsupervised framework for analyzing large-scale soundscape data using deep learning. We applied a convolutional autoencoder (Soundscape-Net) to extract acoustic representations from over 60,000 recordings collected across a grid-based sampling design in the Rey Zamuro Reserve in Colombia. These features were initially compared with other audio characterization methods, showing superior performance in multiclass classification, with accuracies of 0.85 for habitat cover identification and 0.89 for time-of-day classification across 13 days. For the unsupervised study, optimized dimensionality reduction methods (Uniform Manifold Approximation and Projection and Pairwise Controlled Manifold Approximation and Projection) were applied to project the learned features, achieving trustworthiness scores above 0.96. Subsequently, clustering was performed using KMeans and Density-Based Spatial Clustering of Applications with Noise (DBSCAN), with evaluations based on metrics such as the silhouette, where scores above 0.45 were obtained, thus supporting the robustness of the discovered latent acoustic structures. To interpret and validate the resulting clusters, we combined multiple strategies: spatial mapping through interpolation, analysis of acoustic index variance to understand the cluster structure, and graph-based connectivity analysis to identify ecological relationships between the recording sites. Our results demonstrate that this approach can uncover both local and broad-scale patterns in the soundscape, providing a flexible and interpretable pathway for unsupervised ecological monitoring. Full article
Show Figures

Figure 1

22 pages, 7906 KB  
Article
Analysis of Flood Risk in Ulsan Metropolitan City, South Korea, Considering Urban Development and Changes in Weather Factors
by Changjae Kwak, Junbeom Jo, Jihye Han, Jungsoo Kim and Sungho Lee
Water 2025, 17(19), 2800; https://doi.org/10.3390/w17192800 - 23 Sep 2025
Viewed by 199
Abstract
Urban flood damage is increasing globally, particularly in major cities. Factors contributing to flood risk include urban environmental changes, such as watershed development and precipitation variations caused by climate change. Rapid urbanization and weather anomalies further complicate flood management and damage mitigation. Additionally, [...] Read more.
Urban flood damage is increasing globally, particularly in major cities. Factors contributing to flood risk include urban environmental changes, such as watershed development and precipitation variations caused by climate change. Rapid urbanization and weather anomalies further complicate flood management and damage mitigation. Additionally, detailed analyses at small spatial units (e.g., roads, buildings) remain insufficient. Hence, urban flood analysis considering such spatial variations is required. This study analyzed flood risk in Ulsan, Korea, under a severe flood scenario. Land cover changes from the 1980s to 2010s were examined in 10-year intervals, along with the frequency of heavy rainfall and high river water levels that trigger severe floods. Flood risk was structured as a matrix of likelihood and impact. The results revealed that land cover changes, influenced by development policies or regulations, had a minimal impact on urban flood risk, which is likely because effective drainage systems and stringent urban planning regulations mitigated their effects. However, the frequency and intensity of extreme precipitation events had a substantial effect. These findings were validated using a comparative analysis of an inundation damage trace map and flood range simulated by a physical model. The 10 m grid resolution and time-series likelihood-and-impact framework used in this study can inform budget allocation, resource mobilization, disaster prevention planning, and decision-making during disaster response efforts in major cities. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

31 pages, 920 KB  
Article
Relationship Between RAP and Multi-Modal Cerebral Physiological Dynamics in Moderate/Severe Acute Traumatic Neural Injury: A CAHR-TBI Multivariate Analysis
by Abrar Islam, Kevin Y. Stein, Donald Griesdale, Mypinder Sekhon, Rahul Raj, Francis Bernard, Clare Gallagher, Eric P. Thelin, Francois Mathieu, Andreas Kramer, Marcel Aries, Logan Froese and Frederick A. Zeiler
Bioengineering 2025, 12(9), 1006; https://doi.org/10.3390/bioengineering12091006 - 22 Sep 2025
Viewed by 159
Abstract
Background: The cerebral compliance (or compensatory reserve) index, RAP, is a critical yet underutilized physiological marker in the management of moderate-to-severe traumatic brain injury (TBI). While RAP offers promise as a continuous bedside metric, its broader cerebral physiological context remains partly understood. This [...] Read more.
Background: The cerebral compliance (or compensatory reserve) index, RAP, is a critical yet underutilized physiological marker in the management of moderate-to-severe traumatic brain injury (TBI). While RAP offers promise as a continuous bedside metric, its broader cerebral physiological context remains partly understood. This study aims to characterize the burden of impaired RAP in relation to other key components of cerebral physiology. Methods: Archived data from 379 moderate-to-severe TBI patients were analyzed using descriptive and threshold-based methods across three RAP states (impaired, intact/transitional, and exhausted). Agglomerative hierarchical clustering, principal component analysis, and kernel-based clustering were applied to explore multivariate covariance structures. Then, high-frequency temporal analyses, including vector autoregressive integrated moving average impulse response functions (VARIMA IRF), cross-correlation, and Granger causality, were performed to assess dynamic coupling between RAP and other physiological signals. Results: Impaired and exhausted RAP states were associated with elevated intracranial pressure (p = 0.021). Regarding AMP, impaired RAP was associated with elevated levels, while exhausted RAP was associated with reduced pulse amplitude (p = 3.94 × 10−9). These two RAP states were also associated with compromised autoregulation and diminished perfusion. Clustering analyses consistently grouped RAP with its constituent signals (ICP and AMP), followed by brain oxygenation parameters (brain tissue oxygenation (PbtO2) and regional cerebral oxygen saturation (rSO2)). Cerebral autoregulation (CA) indices clustered more closely with RAP under impaired autoregulatory states. Temporal analyses revealed that RAP exhibited comparatively stronger responses to ICP and arterial blood pressure (ABP) at 1-min resolution. Moreover, when comparing ICP-derived and near-infrared spectroscopy (NIRS)-derived CA indices, they clustered more closely to RAP, and RAP demonstrated greater sensitivity to changes in these ICP-derived CA indices in high-frequency temporal analyses. These trends remained consistent at lower temporal resolutions as well. Conclusion: RAP relationships with other parameters remain consistent and differ meaningfully across compliance states. Integrating RAP into patient trajectory modelling and developing predictive frameworks based on these findings across different RAP states can map the evolution of cerebral physiology over time. This approach may improve prognostication and guide individualized interventions in TBI management. Therefore, these findings support RAP’s potential as a valuable metric for bedside monitoring and its prospective role in guiding patient trajectory modeling and interventional studies in TBI. Full article
Show Figures

Figure 1

20 pages, 6375 KB  
Article
Multi-Source Satellite Altimetry for Monitoring Storm Wave Footprints in the English Channel’s Coastal Areas
by Emma Imen Turki, Edward Salameh, Carlos Lopez Solano, Md Saiful Islam, Mateo Domingues, Lotfi Aouf, David Gutierrez, Aurélien Carbonnière and Fréderic Frappart
Remote Sens. 2025, 17(18), 3262; https://doi.org/10.3390/rs17183262 - 22 Sep 2025
Viewed by 354
Abstract
Climate wave data, derived from significant wave height (SWH) altimetry, provide accurate information towards nearshore and coastal areas. Their use is crucial to enhance our capabilities of observing, understanding, and forecasting storm waves, even in complex coastal basins. In this study, SWOT nadir [...] Read more.
Climate wave data, derived from significant wave height (SWH) altimetry, provide accurate information towards nearshore and coastal areas. Their use is crucial to enhance our capabilities of observing, understanding, and forecasting storm waves, even in complex coastal basins. In this study, SWOT nadir data were combined with nine existing altimeters for assessing waves and monitoring their evolution during storms in the English Channel, near UK–French coasts. Validation against wave buoys and numerical models shows high accuracy, with correlations around 95%, decreasing to 85% when buoy track offsets > 50 km, producing the largest errors. The multi-source approach enables depth-resolved monitoring, with SWH mapping revealing ~20–25% modulation in the Channel and ~36% dissipation near the Seine Bay during storms. Spectral analysis of multi-source altimeter-derived merged observations improve time-sampling, resolving high-frequency variability from monthly to daily scales and capturing ~75% of storms. Most storm wave features along altimetry tracks are resolved, with CFOSAT mapping nearshore areas and SWOT capturing coastal zones, both achieving ~80% variance. This temporal and spatial monitoring would be further enhanced with SWOT’s 2D wide swath. This finding provides a complementary, comprehensive understanding of coastal waves and offers valuable input for data assimilation, to improve storm wave estimates in coastal basins. Full article
Show Figures

Figure 1

14 pages, 1569 KB  
Article
A Summary of Pain Locations and Neuropathic Patterns Extracted Automatically from Patient Self-Reported Sensation Drawings
by Andrew Bishara, Elisabetta de Rinaldis, Trisha F. Hue, Thomas Peterson, Jennifer Cummings, Abel Torres-Espin, Jeannie F. Bailey, Jeffrey C. Lotz and REACH Investigators
Int. J. Environ. Res. Public Health 2025, 22(9), 1456; https://doi.org/10.3390/ijerph22091456 - 19 Sep 2025
Viewed by 319
Abstract
Background Chronic low-back pain (LBP) is the largest contributor to disability worldwide, yet many assessments still reduce a complex, spatially distributed condition to a single 0–10 score. Body-map drawings capture location and extent of pain, but manual digitization is too slow and inconsistent [...] Read more.
Background Chronic low-back pain (LBP) is the largest contributor to disability worldwide, yet many assessments still reduce a complex, spatially distributed condition to a single 0–10 score. Body-map drawings capture location and extent of pain, but manual digitization is too slow and inconsistent for large studies or real-time telehealth. Methods Paper pain drawings from 332 adults in the multicenter COMEBACK study (four University of California sites, March 2021–June 2023) were scanned to PDFs. A Python pipeline automatically (i) rasterized PDF pages with pdf2image v1.17.0; (ii) resized each scan and delineated anterior/posterior regions of interest; (iii) registered patient silhouettes to a canonical high-resolution template using ORB key-points, Brute-Force Hamming matching, RANSAC inlier selection, and 3 × 3 projective homography implemented in OpenCV; (iv) removed template outlines via adaptive Gaussian thresholding, Canny edge detection, and 3 × 3 dilation, leaving only patient-drawn strokes; (v) produced binary masks for pain, numbness, and pins-and-needles, then stacked these across subjects to create pixel-frequency matrices; and (vi) normalized matrices with min–max scaling and rendered heat maps. RGB composites assigned distinct channels to each sensation, enabling intuitive visualization of overlapping symptom distributions and for future data analyses. Results Cohort-level maps replicated classic low-back pain hotspots over lumbar paraspinals, gluteal fold, and posterior thighs, while exposing less-recognized clusters along the lateral hip and lower abdomen. Neuropathic-leaning drawings displayed broader leg involvement than purely nociceptive patterns. Conclusions Our automated workflow converts pen-on-paper pain drawings into machine-readable digitized images and heat maps at the population scale, laying practical groundwork for spatially informed, precision management of chronic LBP. Full article
Show Figures

Figure 1

20 pages, 3846 KB  
Article
Research on Generalized Average Modeling and Characteristic Harmonic Frequency Configuration Strategy for PWM Inverter Using Modelica
by Zhaoxuan Sun, Liping Chen, Jianwan Ding and Xiaoyan Liu
Electronics 2025, 14(18), 3685; https://doi.org/10.3390/electronics14183685 - 17 Sep 2025
Viewed by 214
Abstract
During operation, the voltage and current waveforms output by pulse width modelation (PWM) inverters often contain high-frequency ripples. Compared to the average model, the generalized average model (GAM) can take into account the effects of high-frequency components and harmonics, further improving the accuracy [...] Read more.
During operation, the voltage and current waveforms output by pulse width modelation (PWM) inverters often contain high-frequency ripples. Compared to the average model, the generalized average model (GAM) can take into account the effects of high-frequency components and harmonics, further improving the accuracy of the model calculations. However, as the order of GAM increases, the construction of its mathematical model becomes increasingly complex and may lose the original harmonic characteristics of the system. To facilitate the analysis of the influence of the order of the generalized average model on the harmonic characteristics of its original system, a GAM of the PWM inverter was constructed using the Modelica language based on the mapping rules from the time-domain state-space model to the multi-frequency-domain GAM. Subsequently, based on the spectral distribution of the external control signal, a configuration strategy for the characteristic harmonic frequencies of the GAM was proposed. Simulation experiments were conducted separately for one-phase and three-phase inverters. The results indicate that the proposed configuration strategy for the characteristic harmonic frequencies of GAM not only preserves the harmonic characteristics of the original system but also improves the computational efficiency of the system model. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

26 pages, 10731 KB  
Article
Two-Stage Optimization Research of Power System with Wind Power Considering Energy Storage Peak Regulation and Frequency Regulation Function
by Juan Li and Hongxu Zhang
Energies 2025, 18(18), 4947; https://doi.org/10.3390/en18184947 - 17 Sep 2025
Viewed by 275
Abstract
Addressing the problems of wind power’s anti-peak regulation characteristics, increasing system peak regulation difficulty, and wind power uncertainty causing frequency deviation leading to power imbalance, this paper considers the peak shaving and valley filling function and frequency regulation characteristics of energy storage, establishing [...] Read more.
Addressing the problems of wind power’s anti-peak regulation characteristics, increasing system peak regulation difficulty, and wind power uncertainty causing frequency deviation leading to power imbalance, this paper considers the peak shaving and valley filling function and frequency regulation characteristics of energy storage, establishing a day-ahead and intraday coordinated two-stage optimization scheduling model for research. Stage 1 establishes a deterministic wind power prediction model based on time series Autoregressive Integrated Moving Average (ARIMA), adopts dynamic peak-valley identification method to divide energy storage operation periods, designs energy storage peak regulation working interval and reserves frequency regulation capacity, and establishes a day-ahead 24 h optimization model with minimum cost as the objective to determine the basic output of each power source and the charging and discharging plan of energy storage participating in peak regulation. Stage 2 still takes the minimum cost as the objective, based on the output of each power source determined in Stage 1, adopts Monte Carlo scenario generation and improved scenario reduction technology to model wind power uncertainty. On one hand, it considers how energy storage improves wind power system inertia support to ensure the initial rate of change of frequency meets requirements. On the other hand, considering energy storage reserve capacity responding to frequency deviation, it introduces dynamic power flow theory, where wind, thermal, load, and storage resources share unbalanced power proportionally based on their frequency characteristic coefficients, establishing an intraday real-time scheduling scheme that satisfies the initial rate of change of frequency and steady-state frequency deviation constraints. The study employs improved chaotic mapping and an adaptive weight Particle Swarm Optimization (PSO) algorithm to solve the two-stage optimization model and finally takes the improved IEEE 14-node system as an example to verify the proposed scheme through simulation. Results demonstrate that the proposed method improves the system net load peak-valley difference by 35.9%, controls frequency deviation within ±0.2 Hz range, and reduces generation cost by 7.2%. The proposed optimization scheduling model has high engineering application value. Full article
Show Figures

Figure 1

Back to TopTop