Monitoring of Cropland Abandonment Integrating Machine Learning and Google Earth Engine—Taking Hengyang City as an Example
Abstract
1. Introduction
2. Materials and Methods
2.1. Artificial Intelligence Framework
2.2. Data Sources and Preprocessing
2.3. Study Area and Construction of Stable Sample
2.4. Identification and Accuracy Assessment of Cropland Abandonment
2.5. Machine Learning Models and Accuracy Assessment
3. Results
3.1. Spatiotemporal Evolution of Cropland
3.2. Spatiotemporal Distribution of Cropland Abandonment
3.3. Spatiotemporal Drivers of Cropland Abandonment
3.4. Prediction of Cropland Abandonment Risk
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, X.R.; Zhao, N.; Wang, Y.W.; Ye, Y.L.; Wang, W.; Yue, T.X.; Zhang, L.Q.; Liu, Y.S. The potential role of abandoned cropland for food security in China. Resour. Conserv. Recycl. 2025, 212, 108004. [Google Scholar] [CrossRef]
- Olsen, V.M.; Fensholt, R.; Olofsson, P.; Bonifacio, R.; Butsic, V.; Druce, D.; Ray, D.; Prishchepov, A.V. The impact of conflict-driven cropland abandonment on food insecurity in South Sudan revealed using satellite remote sensing. Nat. Food 2021, 2, 990–996. [Google Scholar] [CrossRef] [PubMed]
- Guo, A.D.; Yue, W.Z.; Yang, J.; Xue, B.; Xiao, W.; Li, M.M.; He, T.T.; Zhang, M.X.; Jin, X.; Zhou, Q.S. Cropland abandonment in China: Patterns, drivers, and implications for food security. J. Clean. Prod. 2023, 418, 138154. [Google Scholar] [CrossRef]
- Zheng, Q.M.; Ha, T.; Prishchepov, A.V.; Zeng, Y.W.; Yin, H.; Koh, L.P. The neglected role of abandoned cropland in supporting both food security and climate change mitigation. Nat. Commun. 2023, 14, 6083. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.L.; He, X.K.; Yin, X.G.; Chen, F. The pattern of abandoned cropland and its productivity potential in China: A four-years continuous study. Sci. Total Environ. 2023, 870, 161928. [Google Scholar] [CrossRef]
- Wang, J.; Guan, Y.J.; Wang, H.Y.; Zhou, W. Identifying and monitoring of abandoned farmland in key agricultural production areas on the Qinghai-Tibet Plateau: A case study of the Huangshui Basin. J. Environ. Manag. 2024, 354, 120380. [Google Scholar] [CrossRef]
- Hong, C.Q.; Prishchepov, A.V.; Jin, X.B.; Han, B.; Lin, J.H.; Liu, J.P.; Ren, J.; Zhou, Y.K. The role of harmonized Landsat Sentinel-2 (HLS) products to reveal multiple trajectories and determinants of cropland abandonment in subtropical mountainous areas. J. Environ. Manag. 2023, 336, 117621. [Google Scholar] [CrossRef]
- Wang, Y.H.; Yang, A.X.; Yang, Q.Y. The extent, drivers and production loss of farmland abandonment in China: Evidence from a spatiotemporal analysis of farm households survey. J. Clean. Prod. 2023, 414, 137772. [Google Scholar] [CrossRef]
- Yin, H.; Brandao, A.; Buchner, J.; Helmers, D.; Iuliano, B.G.; Kimambo, N.E.; Lewinska, K.E.; Razenkova, E.; Rizayeva, A.; Rogova, N.; et al. Monitoring cropland abandonment with Landsat time series. Remote Sens. Environ. 2020, 246, 111873. [Google Scholar] [CrossRef]
- Guo, Y.C.; Song, W. Spatial distribution and simulation of cropland abandonment in Wushan County, Chongqing, China. Sustainability 2019, 11, 1367. [Google Scholar] [CrossRef]
- Zhang, T.T.; Yang, J.Y.; Zhou, H.; Dai, A.J.; Tan, D.L. Abandoned cropland mapping and its influencing factors analysis: A case study in the Beijing-Tianjin-Hebei region. Catena 2024, 239, 107876. [Google Scholar] [CrossRef]
- Rose, S.; Kraatz, S.; Kellndorfer, J.; Cosh, M.H.; Torbick, N.; Huang, X.D.; Siqueira, P. Evaluating NISAR’s cropland mapping algorithm over the conterminous United States using Sentinel-1 data. Remote Sens. Environ. 2021, 260, 112472. [Google Scholar] [CrossRef]
- Ozdogan, M.; Woodcock, C.E. Resolution dependent errors in remote sensing of cultivated areas. Remote Sens. Environ. 2006, 103, 203–217. [Google Scholar] [CrossRef]
- Du, Z.R.; Yang, J.Y.; Ou, C.; Zhang, T.T. Agricultural land abandonment and retirement mapping in the Northern China crop-pasture band using temporal consistency check and trajectory-based change detection approach. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4406712. [Google Scholar] [CrossRef]
- Lu, D.; Su, K.C.; Wang, Z.P.; Hou, M.J.; Li, X.X.; Lin, A.W.; Yang, Q.Y. Patterns and drivers of terrace abandonment in China: Monitoring based on multi-source remote sensing data. Land Use Policy 2025, 148, 107388. [Google Scholar] [CrossRef]
- Han, Z.; Song, W. Spatiotemporal variations in cropland abandonment in the Guizhou–Guangxi karst mountain area, China. J. Clean. Prod. 2019, 238, 117888. [Google Scholar] [CrossRef]
- Hou, D.W.; Meng, F.H.; Prishchepov, A.V. How is urbanization shaping agricultural land-use? Unraveling the nexus between farmland abandonment and urbanization in China. Landsc. Urban Plan. 2021, 214, 104170. [Google Scholar] [CrossRef]
- Hong, C.Q.; Prishchepov, A.V.; Bavorova, M. Cropland abandonment in mountainous China: Patterns and determinants at multiple scales and policy implications. Land Use Policy 2024, 145, 107292. [Google Scholar] [CrossRef]
- Levers, C.; Schneider, M.; Prishchepov, A.V.; Estel, S.; Kuemmerle, T. Spatial variation in determinants of agricultural land abandonment in Europe. Sci. Total Environ. 2018, 644, 95–111. [Google Scholar] [CrossRef]
- Cui, Y.F.; Dong, J.W.; Zhang, C.; Yang, J.L.; Chen, N.; Guo, P.; Di, Y.Y.; Chen, M.X.; Li, A.W.; Liu, R.G. Validation and refinement of cropland map in southwestern China by harnessing ten contemporary datasets. Sci. Data 2024, 11, 671. [Google Scholar] [CrossRef]
- Zhang, M.X.; Li, G.Y.; He, T.T.; Zhai, G.; Guo, A.D.; Chen, H.; Wu, C.F. Reveal the severe spatial and temporal patterns of abandoned cropland in China over the past 30 years. Sci. Total Environ. 2023, 857, 159591. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Li, S.Z.; Xiao, J.; Lei, X.Y.; Wang, Y.H. Farmland abandonment in the mountainous areas from an ecological restoration perspective: A case study of Chongqing, China. Ecol. Indic. 2023, 153, 110412. [Google Scholar] [CrossRef]
- Liu, J.Y.; Kuang, W.H.; Zhang, Z.X.; Xu, X.L.; Qin, Y.W.; Ning, J.; Zhou, W.C.; Zhang, S.W.; Li, R.D.; Yan, C.Z.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Tu, Y.; Wu, S.B.; Chen, B.; Weng, Q.H.; Bai, Y.Q.; Yang, J.; Yu, L.; Xu, B. A 30 m annual cropland dataset of China from 1986 to 2021. Earth Syst. Sci. Data 2024, 16, 2297–2316. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.P.; Cao, X.; Chen, L.J.; Chen, X.H.; He, C.Y.; Han, G.; Peng, S.; Liu, M.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global land use/land cover with Sentinel 2 and deep learning. In Proceedings of the 2021 IEEE international geoscience and remote sensing symposium IGARSS, Brussels, Belgium, 12 October 2021; pp. 4704–4707. [Google Scholar]
- Li, Z.H.; He, W.; Cheng, M.F.; Hu, J.X.; Yang, G.Y.; Zhang, H.Y. SinoLC-1: The first 1 m resolution national-scale land-cover map of China created with a deep learning framework and open-access data. Earth Syst. Sci. Data 2023, 15, 4749–4780. [Google Scholar] [CrossRef]
- Liu, F.; Wu, H.; Zhao, Y.; Li, D.; Yang, J.L.; Song, X.; Shi, Z.; Zhu, A.X.; Zhang, G.L. Mapping high resolution National Soil Information Grids of China. Sci. Bull. 2022, 3, 328–340. [Google Scholar] [CrossRef]
- Shangguan, W.; Dai, Y.J.; Liu, B.Y.; Zhu, A.X.; Duan, Q.Y.; Wu, L.Z.; Ji, D.Y.; Ye, A.Z.; Yuan, H.; Zhang, Q.; et al. A China Dataset of Soil Properties for Land Surface Modeling. J. Adv. Model. Earth Syst. 2013, 5, 212–224. [Google Scholar] [CrossRef]
- Li, J.L.; He, H.B.; Zeng, Q.H.; Chen, L.D.; Sun, R.H. A Chinese soil conservation dataset preventing soil water erosion from 1992 to 2019. Sci. Data 2023, 10, 319. [Google Scholar] [CrossRef]
- Wu, Y.Z.; Shi, K.F.; Chen, Z.Q.; Liu, S.R.; Chang, Z.J. An Improved Time-Series DMSP-OLS-like Data (1992–2023) in China by Integrating DMSP-OLS and SNPP-VIIRS. Harvard Dataverse, V5. 2021. Available online: https://doi.org/10.7910/DVN/GIYGJU (accessed on 1 January 2024).
- Gao, J.; Shi, Y.; Zhang, H.; Chen, X.; Zhang, W.; Shen, W.; Xiao, T.; Zhang, Y. China regional 250 m normalized difference vegetation index data set (2000–2023). Natl. Tibet. Plateau/Third Pole Environ. Data Cent. 2023, 2, 946–952. [Google Scholar]
- Chen, J.D.; Gao, M.; Cheng, S.L.; Hou, W.X.; Song, M.L.; Liu, X.; Liu, Y. Global 1 km × 1 km gridded revised real gross domestic product and electricity consumption during 1992–2019 based on calibrated nighttime light data. Sci. Data 2022, 9, 202. [Google Scholar] [CrossRef]
- Peng, S.Z.; Ding, Y.X.; Wen, Z.M.; Chen, Y.M.; Cao, Y.; Ren, J.Y. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol. 2017, 233, 183–194. [Google Scholar] [CrossRef]
- Peng, S.Z.; Ding, Y.X.; Liu, W.Z.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Cai, Y.T.; Xu, X.C.; Zhu, P.; Nie, S.; Wang, C.; Xiong, Y.J.; Liu, X.P. Unveiling spatiotemporal tree cover patterns in China: The first 30 m annual tree cover mapping from 1985 to 2023. ISPRS J. Photogramm. Remote Sens. 2024, 216, 240–258. [Google Scholar] [CrossRef]
- Chen, C.; Li, J.Q. Analysis and countermeasures of abandoned farmland in Southern rural areas of China: A case study of Qidong County, Hengyang City, Hunan Province. Sci. Technol. Vis. 2014, 3, 317+334. [Google Scholar]
- Long, Y.Q.; Sun, J.; Wellens, J.; Colinet, G.; Wu, W.B.; Meersmans, J. Mapping the spatiotemporal dynamics of cropland abandonment and recultivation across the Yangtze River Basin. Remote Sens. 2024, 16, 1052. [Google Scholar] [CrossRef]
- Lu, D.; Wang, Z.P.; Li, X.X.; Zhou, Y.J. Evaluation of the efficiency and drivers of complemented cropland in Southwest China over the past 30 years from the perspective of cropland abandonment. J. Environ. Manag. 2024, 351, 119909. [Google Scholar] [CrossRef]
- Huang, J.; Liu, J.; Ye, Y.C.; Jiang, Y.M.; Lai, Y.Y.; Qin, X.B.; Zhang, L.; Jiang, Y.F. Mapping soil properties in the Haihun River sub-watershed, Yangtze River Basin, China, by integrating machine learning and variable selection. Sensors 2024, 24, 3784. [Google Scholar] [CrossRef]
- Li, W.F.; Jiang, Y.F.; Ye, Y.C.; Guo, X.; Shi, Z. Spatiotemporal interpretable mapping framework for soil heavy metals. J. Clean. Prod. 2024, 468, 143101. [Google Scholar] [CrossRef]
- Lundberg, S.; Lee, S.I. A unified approach to interpreting model predictions 2017. In Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 1–10. Available online: https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf (accessed on 1 January 2024).
- Wang, Z.G.; Hu, B.F.; Zhang, C.; Atkinson, P.M.; Wang, Z.F.; Xu, K.; Chang, J.F.; Fang, X.K.; Jiang, Y.F.; Shi, Z. How the Air Clean Plan and carbon mitigation measures co-benefited China in PM2.5 reduction and health from 2014 to 2020. Environ. Int. 2022, 169, 107510. [Google Scholar] [CrossRef]
- Siachalou, S.; Mallinis, G.; Tsakiri-Strati, M. A hidden markov models approach for crop classification: Linking crop phenology to time series of multi-sensor remote sensing data. Remote Sens. 2015, 7, 3633–3650. [Google Scholar] [CrossRef]
- Chen, X.R.; Zhan, Y.L.; Liu, Y.; Gu, X.F.; Yu, T.; Wang, D.K.; Liu, Q.X.; Zhang, Y.; Zhang, Y.Z. Improving the classification accuracy of annual crops using time series of temperature and vegetation indices. Remote Sens. 2020, 12, 3202. [Google Scholar] [CrossRef]
- Ni, R.G.; Tian, J.Y.; Li, X.J.; Yin, D.M.; Li, J.W.; Gong, H.L.; Zhang, J.; Zhu, L.; Wu, D.L. An enhanced pixel-based phenological feature for accurate paddy rice mapping with Sentinel-2 imagery in Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2021, 178, 282–296. [Google Scholar] [CrossRef]
- Mei, Q.H.; Zhang, Z.; Han, J.C.; Song, J.; Dong, J.W.; Wu, H.Q.; Xu, J.L.; Tao, F.L. ChinaSoyArea10m: A dataset of soybean-planting areas with a spatial resolution of 10 m across China from 2017 to 2021. Earth Syst. Sci. Data 2024, 16, 3213–3231. [Google Scholar] [CrossRef]
- Wijesingha, J.; Dzene, I.; Wachendorf, M. Evaluating the spatial–temporal transferability of models for agricultural land cover mapping using Landsat archive. ISPRS J. Photogramm. Remote Sens. 2024, 213, 72–86. [Google Scholar] [CrossRef]
- Wang, X.Y.; He, Y.B.; Zha, Y.; Chen, H.C.; Wang, Y.Y.; Wu, X.Y.; Ning, J.; Feng, A.R.; Han, S.N.; Luo, S.J. Mapping winter fallow arable lands in Southern China by using a multi-temporal overlapped area minimization threshold method. Giscience Remote Sens. 2024, 61, 2333587. [Google Scholar] [CrossRef]
- Zhu, X.F.; Xiao, G.F.; Zhang, D.J.; Guo, L.L. Mapping abandoned farmland in China using time series MODIS NDVI. Sci. Total Environ. 2021, 755, 142651. [Google Scholar] [CrossRef]
- Chaudhary, S.; Wang, Y.K.; Dixit, A.M.; Khanal, N.R.; Xu, P.; Fu, B.; Yan, K.; Liu, Q.; Lu, Y.F.; Li, M. A synopsis of farmland abandonment and its driving factors in Nepal. Land 2020, 9, 84. [Google Scholar] [CrossRef]
- Crawford, C.L.; Yin, H.; Radeloff, V.C.; Wilcove, D.S. Rural land abandonment is too ephemeral to provide major benefits for biodiversity and climate. Sci. Adv. 2022, 8, eabm8999. [Google Scholar] [CrossRef]
- Li, S.F.; Li, X.B.; Xin, L.J.; Tan, M.H.; Wang, X.; Wang, R.J.; Jiang, M.; Wang, Y.H. Extent and distribution of cropland abandonment in Chinese mountainous areas. Resour. Sci. 2017, 39, 1801–1811. [Google Scholar]
- Zeng, J.; Luo, T.; Chen, W.X.; Gu, T.C. Assessing and mapping cropland abandonment risk in China. Land Degrad. Dev. 2024, 35, 2738–2753. [Google Scholar] [CrossRef]
- Ma, Y.C.; Wang, J.S.; Xiong, J.H.; Sun, M.Z.; Wang, J.Y. Risk assessment for cropland abandonment in mountainous area based on AHP and PCA—Take Yunnan Province in China as an example. Ecol. Indic. 2024, 158, 111287. [Google Scholar] [CrossRef]
Environmental Variables | Abbreviations | Periods | Resolutions | Data Sources |
---|---|---|---|---|
Soil pH | pH | 1980s/2010s | 1 km/250 m | [29,30] |
Soil organic carbon | SOC | 1980s/2010s | 1 km/250 m | |
Soil bulk density | BD | 1980s/2010s | 1 km/250 m | |
Soil total nitrogen | TN | 1980s/2010s | 1 km/250 m | |
Soil total phosphorus | TP | 1980s/2010s | 1 km/250 m | |
Soil total potassium | TK | 1980s/2010s | 1 km/250 m | |
Cation exchange capacity | CEC | 1980s/2010s | 1 km/250 m | |
Soil conservation services | SC | From 1992 to 2019 | 300 m | [31] |
Population density | PD | 2000–2020 | 100 m | www.worldpop.org (accessed on 1 January 2024) |
Nighttime light | NL | 1992–2023 | 1 km | [32] |
Fractional vegetation cover | FVC | 2000–2023 | 250 m | [33] |
Real GDP | GDP | 1992–2019 | 1 km | [34] |
Net primary productivity | NPP | From 1960 to 2100 | 1 km | National Earth System Science Data Center |
Net ecosystem productivity | NEP | From 1960 to 2100 | 1 km | |
Gross primary productivity | GPP | From 1960 to 2100 | 1 km | |
Mean annual press | MAPS | 1981–2015 | 1 km | |
Mean annual wind | MAW | 1981–2015 | 1 km | |
Aridity index | AI | 1901–2023 | 1 km | |
Mean annual precipitation | MAP | 1982–2022 | 1 km | |
Annual highest temperature | MMAT | From 1901 to 2022 | 1 km | [35,36] |
Annual minimum temperature | LMAT | From 1901 to 2022 | 1 km | |
Mean annual temperature | MAT | From 1901 to 2022 | 1 km | |
Potential evapotranspiration | PET | 1990–2023 | 1 km | |
Tree cover | TC | From 1985 to 2023 | 30 m | [37] |
Digital elevation model | DEM | / | 30 m | https://earthdata.nasa.gov/ (accessed on 1 January 2024) |
Slope | Slope | / | 30 m | |
Aspect | Aspect | / | 30 m | |
General curvature | GC | / | 30 m | |
Plan curvature | PC | 30 m | ||
Profile curvature | PCE | 30 m | ||
Slope length | SL | / | 30 m | |
Multiresolution index of ridge top flatness | MRRTF | / | 30 m | |
Multiresolution index of valley bottom flatness | MRVBF | / | 30 m | |
Terrain ruggedness index | TRI | / | 30 m | |
Topographic position index | TPI | / | 30 m | |
Normalized Difference Vegetation Index | NDVI | 2000–2022 | 30 m | National Ecosystem Science Data Center |
Potential crop yield | PCY | 1970/1980/1990/2000/2010 | 1 km | Resource and Environment Science and Data Center |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Guo, Z. Monitoring of Cropland Abandonment Integrating Machine Learning and Google Earth Engine—Taking Hengyang City as an Example. Land 2025, 14, 1984. https://doi.org/10.3390/land14101984
Jiang Y, Guo Z. Monitoring of Cropland Abandonment Integrating Machine Learning and Google Earth Engine—Taking Hengyang City as an Example. Land. 2025; 14(10):1984. https://doi.org/10.3390/land14101984
Chicago/Turabian StyleJiang, Yefeng, and Zichun Guo. 2025. "Monitoring of Cropland Abandonment Integrating Machine Learning and Google Earth Engine—Taking Hengyang City as an Example" Land 14, no. 10: 1984. https://doi.org/10.3390/land14101984
APA StyleJiang, Y., & Guo, Z. (2025). Monitoring of Cropland Abandonment Integrating Machine Learning and Google Earth Engine—Taking Hengyang City as an Example. Land, 14(10), 1984. https://doi.org/10.3390/land14101984