error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (252)

Search Parameters:
Keywords = timber connections

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 6017 KB  
Review
A Review of Inter-Modular Connections for Volumetric Cross-Laminated Timber Modular Buildings
by Juan S. Zambrano-Jaramillo and Erica C. Fischer
Buildings 2026, 16(1), 78; https://doi.org/10.3390/buildings16010078 - 24 Dec 2025
Viewed by 301
Abstract
The application of volumetric modular construction using Cross-Laminated Timber (CLT) has emerged as a sustainable and efficient alternative to traditional building methods, especially in residential and mid-rise structures. However, the widespread adoption of this technology remains limited due to the lack of standardized [...] Read more.
The application of volumetric modular construction using Cross-Laminated Timber (CLT) has emerged as a sustainable and efficient alternative to traditional building methods, especially in residential and mid-rise structures. However, the widespread adoption of this technology remains limited due to the lack of standardized inter-modular connection systems. This paper presents a comprehensive state-of-the-art review of inter-modular connections used in volumetric CLT modular buildings. This review aims to evaluate the inter-modular connections by developing performance objectives and identifying gaps in knowledge of volumetric CLT inter-modular connections. It begins with an overview of global CLT modular construction trends, highlighting geographic distribution, structural demands, and environmental hazards such as seismic and wind exposure. Seven representative connection systems were identified from the literature and assessed using a multi-criteria framework comprising structural performance, manufacturing feasibility, on-site construction efficiency, and experimental and numerical evaluation. Each connection was scored according to defined evaluation metrics, and the results were provided to identify key strengths and limitations. The top-performing systems demonstrated superior resilience, modular adaptability, and validation through experimental testing and simulation. The paper identified critical research gaps, including limited performance data available for seismic applications, challenges in disassembly and reuse specifications, and the need for adaptable, damage-tolerant systems to enhance building structural performance. These findings provide a reference evaluation methodology for future development of inter-modular connections, to expand the applicability of volumetric CLT modular construction in moderate and high seismic and wind hazard regions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 5054 KB  
Article
Energy-Based Design for the Seismic Improvement of Historic Churches by Nonlinear Modelling
by Nicola Longarini, Pietro Crespi, Luigi Cabras and Michele Santoro
Buildings 2026, 16(1), 12; https://doi.org/10.3390/buildings16010012 - 19 Dec 2025
Viewed by 206
Abstract
This study investigates the seismic retrofit of historic single-nave churches through the optimization of roof diaphragms designed to enhance energy dissipation. The proposed strategy introduces a deformable box-type diaphragm above the existing roof, composed of timber panels and steel connectors with a cover [...] Read more.
This study investigates the seismic retrofit of historic single-nave churches through the optimization of roof diaphragms designed to enhance energy dissipation. The proposed strategy introduces a deformable box-type diaphragm above the existing roof, composed of timber panels and steel connectors with a cover of steel stripes, where energy dissipation is concentrated in the connections. The retrofit design is guided by the estimation of Equivalent Damping Ratio (EDR) instead of the usually adopted resistance criterion, considering an energy-based approach to improve global seismic performance while preserving architectural integrity. In this way, the retrofitted configuration of the roof can be considered a damper. Three numerical phases are presented to assess the effectiveness of the equivalent damping-based intervention. In the first one, the seismic response of the initial non-retrofitted configuration is implemented using a 3D linear finite element model subjected to a response spectrum. Subsequently, nonlinear equivalent models subjected to spectrum-compatible accelerograms are implemented, simulating the possible retrofitted configurations of the roofs to detect the optimum damping and finding the corresponding roof diaphragm configuration. In the third one, the response of the detected retrofitted configuration is also evaluated by nonlinear 3D model subjected to accelerograms. The three phases with the relative numerical approaches are here applied to a case study, located in a high seismic hazard area. The results demonstrate that the EDR-based methodology can optimize the retrofitted roof diaphragm configuration; the nave transverse response is improved in comparison with that designed with the traditional approach, considering only the over-strength of the interventions. Comparisons about the approaches based on the EDR and the strength criteria are presented in terms of lateral displacements, in-plane shear acting on the roof diaphragm, and in-plane stresses on the façade. Full article
(This article belongs to the Special Issue Modeling and Testing the Performance of Masonry Structures)
Show Figures

Figure 1

30 pages, 1504 KB  
Article
Ecological Network Theory Boosts Land Maxing Benefits for Biodiversity: An Example with Tropical Bee-Plant Interactions
by Valerie E. Peters and Elijah Cruz Cardona
Insects 2025, 16(12), 1269; https://doi.org/10.3390/insects16121269 - 13 Dec 2025
Viewed by 529
Abstract
Land maxing in cultivated ecosystems can improve upon other agroecological approaches because in this approach social, economic and ecological benefits are maximized within the available land, in part through the careful selection of plant species with specific benefits, e.g., biodiversity conservation, provision of [...] Read more.
Land maxing in cultivated ecosystems can improve upon other agroecological approaches because in this approach social, economic and ecological benefits are maximized within the available land, in part through the careful selection of plant species with specific benefits, e.g., biodiversity conservation, provision of ecological services, diversifying and improving farmer incomes. In this approach, plant species selected for improving farmer incomes are those providing non-timber marketable products, and plant species selected for biodiversity conservation and provision of ecological services can be identified quantitatively via ecological network theory. Here, we demonstrate using ecological network theory to identify (a) farm management practices associated with ecological network indices, and (b) key plant species that farmers can plant to maximize the potential for their land to support bees and pollination services. In this study we quantified bee-plant interaction networks within 10 agroforests, and compared results between the entire bee community and the subsetted stingless bee community. Bee abundance increased with flowering plant richness, explaining 9% of the variance (R2 = 0.09; β = 0.05, SE = 0.03). Diverse agroforests with higher numbers of tree species supported less connected (R2 = 0.67; β = −0.08, SE = 0.02), less nested (R2 = 0.53; β = −0.05, SE = 0.01), and more specialized (R2 = 0.63; β = 0.07, SE = 0.02) and modular (R2 = 0.37; β = 0.05, SE = 0.02) bee-plant networks. Some key plant species with the strongest impacts on network structure and stability were shared between the entire bee-plant and the stingless bee-plant networks. We recommend that farmers plant the species highlighted in this study to maximize the value of their diverse agroforests to support bee communities and pollination services. Full article
(This article belongs to the Special Issue Bee Conservation: Behavior, Health and Pollination Ecology)
Show Figures

Figure 1

22 pages, 4624 KB  
Article
Optimizing Timber Roof Diaphragms for Seismic Damping in the Retrofit of Masonry Churches
by Nicola Longarini, Pietro Crespi and Luigi Cabras
Appl. Sci. 2025, 15(23), 12705; https://doi.org/10.3390/app152312705 - 30 Nov 2025
Viewed by 275
Abstract
This paper addresses the seismic retrofitting of masonry churches with timber roofs by designing a ductile roof diaphragm with a new energy-based methodology. The proposed approach relies on nonlinear dynamic analyses conducted on an equivalent structural model. In this model, masonry nonlinearity is [...] Read more.
This paper addresses the seismic retrofitting of masonry churches with timber roofs by designing a ductile roof diaphragm with a new energy-based methodology. The proposed approach relies on nonlinear dynamic analyses conducted on an equivalent structural model. In this model, masonry nonlinearity is represented by rotational plastic hinges at the base of the equivalent wall elements. Roof system nonlinearity is modeled by shear plastic hinges simulating the energy dissipation of steel connections. In the equivalent model, the earthquake is implemented using a set of spectrum-compatible accelerograms. The dynamic response of the aforementioned plastic hinges is analyzed in terms of equivalent damping during the seismic events by extracting the relevant hysteresis cycles. This allows for the evaluation of both dissipated and strain energy. The estimation of the equivalent damping ratio provided by the roof diaphragm is based on multiple design configurations. After identifying the maximum achievable damping ratio, the study suggests ways to determine the corresponding roof stiffness, which defines the optimal retrofit configuration. This configuration is then implemented in a three-dimensional model that includes nonlinear properties for both masonry and connection elements, allowing a validation of the seismic response obtained from the initial equivalent model with a more complex and detailed model. Finally, a seismic response comparison is conducted between the optimized dissipated energy configuration, based on damping ratio evaluation, and an overstrength design variant determined considering the elastic behavior of the roof connections. Full article
Show Figures

Figure 1

18 pages, 3312 KB  
Article
Experimental Study of Timber Composite Beam Elements Using Hardwood Mechanically Inserted and Welded Dowels
by Jure Barbalić, Bruno Zadravec, Nikola Perković and Vlatka Rajčić
Forests 2025, 16(11), 1748; https://doi.org/10.3390/f16111748 - 19 Nov 2025
Viewed by 342
Abstract
This paper presents results from an extensive study on laminated timber beams manufactured without adhesives or metal fasteners. The use of such elements enables the implementation of the 4R principles in construction (Reduce, Reuse, Recycle, Repair). Prior to the testing of beam elements, [...] Read more.
This paper presents results from an extensive study on laminated timber beams manufactured without adhesives or metal fasteners. The use of such elements enables the implementation of the 4R principles in construction (Reduce, Reuse, Recycle, Repair). Prior to the testing of beam elements, tests were conducted on embedment strength of wooden dowels in comparison with conventional steel ones. The specimens varied in dowel diameter and in the angle of applied load relative to the grain direction. In addition to mechanically inserted dowels, an innovative dowel-welding method was examined. Welding enhances the bonding between lamellas, thereby improving overall mechanical performance. Further investigations involved beams with lamellas joined by dowels of different diameters, spacing, orientation, and installation methods. Experimental results were compared with analytical models for composite beams. The study showed that, except through the entire height of the beam section, it is possible to use dowels that connect only two lamellas, which is important for production. Dowels placed at 45° in relation to the lamella fibers showed approximately 20% greater capacity. It is also important to mention that study shows how welded dowels are only useful when they have larger diameters because then they achieve a significant level of cohesion. Full article
(This article belongs to the Special Issue Advanced Numerical and Experimental Methods for Timber Structures)
Show Figures

Figure 1

22 pages, 22714 KB  
Article
Experimental Performance of Timber–Concrete Slab-to-Concrete Wall Connections Under Gravitational and Lateral In-Plane Loading
by Valentina Maldonado, Hernán Santa María and Pablo Guindos
Buildings 2025, 15(22), 4161; https://doi.org/10.3390/buildings15224161 - 19 Nov 2025
Viewed by 427
Abstract
In this research, the lateral and gravitational behaviors of four timber–concrete composite (TCC) slab-to-wall connections were tested to study their lateral and gravitational behaviors. Results showed that the lateral behavior of the connections was mainly controlled by the concrete slab, since the timber [...] Read more.
In this research, the lateral and gravitational behaviors of four timber–concrete composite (TCC) slab-to-wall connections were tested to study their lateral and gravitational behaviors. Results showed that the lateral behavior of the connections was mainly controlled by the concrete slab, since the timber sections and connections remained mostly unaffected. The experimental results were contrasted with a linear finite element model built in ETABS, thus explaining why the experimental lateral strength was six times larger than that analytically obtained via ACI 318-19. As for the gravitational tests, results showed a higher shear capacity in connections with screws as the wall-to-slab connector than those with bars. In general, all the connections showed much higher strength and stiffness than those typically required by design code standards. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 2070 KB  
Systematic Review
Innovative Practices for CLT Buildings Towards Embodied Carbon Reduction in Seismic Zones: A Systematic Review
by Victor Rosales, Carmen Avilés-Palacios, Sergio Álvarez and Emilio Luengo
Buildings 2025, 15(22), 4141; https://doi.org/10.3390/buildings15224141 - 17 Nov 2025
Viewed by 751
Abstract
The use of Cross-Laminated Timber (CLT) panels in buildings offers earthquake resistance with a low carbon footprint. However, significant seismic displacements can cause damage, raising concerns about the long-term embodied carbon balance obtained, particularly if significant interventions are required to restore the original [...] Read more.
The use of Cross-Laminated Timber (CLT) panels in buildings offers earthquake resistance with a low carbon footprint. However, significant seismic displacements can cause damage, raising concerns about the long-term embodied carbon balance obtained, particularly if significant interventions are required to restore the original functionality. This study embraces a systematic review of innovations considered for massive timber structures in seismic zones, focusing on embodied carbon emission reduction. The analysis undertaken is based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) using the Scopus and Web of Science database references published from 2010 to 2025. A total of 53 documents meeting the search criteria were identified and assessed, considering their degree of technological maturity (TRLs). The results highlight efforts toward innovation in the performance of connections and lateral stabilization to minimize damage and enhance reparability, revealing the need to link new practices and technologies to the structural and environmental results of the solution, particularly in terms of efficiency in the use of materials about their possible repair and reuse at different stages of the life cycle. The availability of innovations aimed at carbon footprint reduction, and which present a high degree of technological maturity is reviewed and the potential of these solutions is evidenced in places where seismic vulnerability greatly influences the design; combining performance with the aim of achieving a carbon-neutral economy. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 3391 KB  
Article
Influence of Timber-to-Concrete Connection Types on the Behaviour of Timber–Concrete Composite Structures
by Dmitrijs Serdjuks, Agris Rogainis, Elza Briuka, Janis Sliseris, Leonids Pakrastins and Vjaceslavs Lapkovskis
J. Compos. Sci. 2025, 9(11), 593; https://doi.org/10.3390/jcs9110593 - 2 Nov 2025
Viewed by 1010
Abstract
The current study investigates the influence of timber-to-concrete connection types on the behaviour of timber–concrete composite (TCC) structures employing metal web timber joists. Two groups of laboratory specimens were prepared, each comprising four samples with push-joisted beams joined by oriented strand board (OSB) [...] Read more.
The current study investigates the influence of timber-to-concrete connection types on the behaviour of timber–concrete composite (TCC) structures employing metal web timber joists. Two groups of laboratory specimens were prepared, each comprising four samples with push-joisted beams joined by oriented strand board (OSB) and cast with a concrete layer. One group utilised compliant timber-to-concrete connections via perforated steel tape angles, while the other employed rigid connections through epoxy adhesive and granite chips. The specimens, consisting of two 1390 mm long beams of grade PS10 timber, were tested under three-point bending. Experimental results and finite element analyses demonstrated that specimens with compliant connections exhibited 14–16% greater maximum vertical displacements but only a marginal 1.79% reduction in load-carrying capacity compared to those with rigid connections. Findings indicate that connection compliance markedly affects stiffness and deflection but has a minor impact on ultimate strength. These insights can guide optimisation of TCC members with metal web joists, balancing structural performance and design requirements in sustainable timber construction. Full article
(This article belongs to the Special Issue Functional Composites: Fabrication, Properties and Applications)
Show Figures

Figure 1

31 pages, 7347 KB  
Article
An Assessment of the Behaviour of Ceiling Beams of Different Structure
by Katarzyna Ciesielczyk, Robert Studziński, Marcin Chybiński, Jacek Ścigałło, Wojciech Szymkuć, Jakub Krzysztof Grabski, Tomasz Marciniak and Łukasz Polus
Appl. Sci. 2025, 15(21), 11543; https://doi.org/10.3390/app152111543 - 29 Oct 2025
Viewed by 383
Abstract
The article focuses on floor composite beams used in buildings. Within the scope of the conducted analytical and numerical studies, the authors compared the typical solution—namely, the T-shaped reinforced concrete beam—with various types of composite beams, the height of which could not exceed [...] Read more.
The article focuses on floor composite beams used in buildings. Within the scope of the conducted analytical and numerical studies, the authors compared the typical solution—namely, the T-shaped reinforced concrete beam—with various types of composite beams, the height of which could not exceed the predetermined usable depth of the beam cross-section. The analyses focused on traditional steel–concrete composite beams, which are widely used in civil engineering, as well as modern solutions, such as timber–timber and steel–timber composite beams. A new type of a steel–timber composite beam with a cold-formed girder made of two channels was presented in this study. Due to the flexibility of the connections, the timber–timber and steel–timber composite beams were examined under three different connection conditions: full composite action, partial composite action, and no composite action (friction only). Composite beams with timber slabs are consistent with the principles of sustainable construction, which makes their comparison with conventional solutions particularly relevant. The load-deflection curves and the bending resistance of the analysed elements were obtained using numerical simulations. In the numerical analyses, advanced material models were used. Composite beams with timber elements had lower stiffness than the steel–concrete composite beam. For this reason, meeting the serviceability limit state can be more challenging for such structures. Furthermore, the degree of shear connection in the composite beams with timber elements had a strong impact on their load-bearing capacity and end-slip. The steel–timber composite beam with a cold-formed girder had the most favourable resistance-to-mass ratio. The analytical results, and especially the numerical findings, provide a foundation for future experimental investigations. Full article
(This article belongs to the Special Issue Novel Timber Structures and Materials in Building Engineering)
Show Figures

Figure 1

26 pages, 3165 KB  
Article
The Perception and Performance of Wood in Relation to Tourist Experience—A Pilot Study
by Veronika Kotradyová and Erik Vavrinsky
Buildings 2025, 15(19), 3626; https://doi.org/10.3390/buildings15193626 - 9 Oct 2025
Viewed by 802
Abstract
This article explores how natural wood materials—especially untreated or minimally treated timber—are perceived and experienced during tourist experiences in recreational and tourism-oriented built environments. Drawing on principles of biophilic design and cultural theories of authenticity, the study examines both the psychological and the [...] Read more.
This article explores how natural wood materials—especially untreated or minimally treated timber—are perceived and experienced during tourist experiences in recreational and tourism-oriented built environments. Drawing on principles of biophilic design and cultural theories of authenticity, the study examines both the psychological and the physiological impacts of wood surfaces on users. One of the objectives of this study is to strengthen the theoretical background and to explore the connections between tourists’ experiences and the material environment. Two pilot studies were conducted: a questionnaire administered to visitors of a national design fair (n = 37) and a physiological experiment measuring user responses to three material types (solid oak, chipboard, and white laminate). The results indicate that natural wood evokes significantly more positive emotional responses and is strongly associated with authenticity, sustainability, and comfort, although concerns about hygiene and surface aging persist. A SWOT analysis is used to summarize the strategic opportunities and risks associated with wood in tourism design. The findings support the inclusion of natural wood as a multisensory design element that enhances atmosphere, emotional engagement, and perceived environmental quality—especially when surface maintenance and cultural framing are appropriately addressed. Full article
Show Figures

Figure 1

17 pages, 2676 KB  
Article
Stiffness and Strength of Scots Pine Wood Under Compression Perpendicular to the Grain and Rolling Shear Loading
by Shaheda T. Akter, Anders Olsson and Thomas K. Bader
Appl. Sci. 2025, 15(19), 10775; https://doi.org/10.3390/app151910775 - 7 Oct 2025
Viewed by 2574
Abstract
To increase and optimize the use of wood in structural elements, a deep understanding of its mechanical behavior is necessary. The transverse material properties of wood are particularly important for mass timber construction and for utilizing wood as a strengthening material in timber [...] Read more.
To increase and optimize the use of wood in structural elements, a deep understanding of its mechanical behavior is necessary. The transverse material properties of wood are particularly important for mass timber construction and for utilizing wood as a strengthening material in timber connections. This study experimentally determined the stiffness and strength of Scots pine wood under compression perpendicular to the grain and rolling shear loading, as well as their dependence on the annual ring structure. A previously established biaxial test configuration was employed for this purpose. The modulus of elasticity in the radial direction was found to be about twice that in the tangential direction (687 vs. 372 N/mm2), although the strength in the tangential direction (5.19 N/mm2) was comparatively higher than that in the radial direction (4.70 N/mm2). For rolling shear, especially for the rolling shear modulus, a large variation was found, and its relationship with annual ring structure was assessed. The obtained RS modulus ranged from 50 to 254 N/mm2, while RS strength was found to be between 2.14 and 4.61 N/mm2. The results aligned well with previous findings. Full article
Show Figures

Figure 1

31 pages, 9075 KB  
Article
Behaviour Analysis of Timber–Concrete Composite Floor Structure with Granite Chip Connection
by Anna Haijima, Elza Briuka, Janis Sliseris, Dmitrijs Serdjuks, Arturs Ziverts and Vjaceslavs Lapkovskis
J. Compos. Sci. 2025, 9(10), 538; https://doi.org/10.3390/jcs9100538 - 2 Oct 2025
Viewed by 1534
Abstract
This study investigates the mechanical behaviour of timber–concrete composite (TCC) floor members with an innovative adhesive connection reinforced by granite chips, glass fibre yarn net in the epoxy adhesive layer, and polypropylene (PP) fibres in the concrete layer. Laboratory tests involved three groups [...] Read more.
This study investigates the mechanical behaviour of timber–concrete composite (TCC) floor members with an innovative adhesive connection reinforced by granite chips, glass fibre yarn net in the epoxy adhesive layer, and polypropylene (PP) fibres in the concrete layer. Laboratory tests involved three groups of specimens subjected to three-point bending over a span of 500 mm with specimen lengths of 550 mm. Group A specimens exhibited crack initiation at approximately 8 kN and partial disintegration at an average load of 11.17 kN, with maximum vertical displacements ranging from 1.7 to 2.5 mm at 8 kN load, increasing rapidly to 4.3 to 5 mm post-cracking. The addition of reinforcing fibres decreased the brittleness of the adhesive connection and improved load-bearing capacity. Finite element modeling using the newly developed Verisim4D software (2025 v 0.6) and analytical micromechanics approaches demonstrated satisfactory accuracy in predicting the composite behavior. This research highlights the potential of reinforcing the adhesive layer and concrete with fibres to enhance the ductility and durability of TCC members under flexural loading. Full article
(This article belongs to the Special Issue Behaviour and Analysis of Timber–Concrete Composite Structures)
Show Figures

Figure 1

21 pages, 8188 KB  
Article
Experimental Study of the Actual Structural Behaviour of CLT and CLT–Concrete Composite Panels with Embedded Moment-Resisting Joint
by Matúš Farbák, Jozef Gocál and Peter Koteš
Buildings 2025, 15(19), 3534; https://doi.org/10.3390/buildings15193534 - 1 Oct 2025
Cited by 1 | Viewed by 1404
Abstract
Timber structures and structural members have undergone rapid development in recent decades and are now fully competitive with traditional structures made of reinforced concrete or structural steel in many areas. Low self-weight, high durability, rapid construction assembly, and a favourable environmental footprint predispose [...] Read more.
Timber structures and structural members have undergone rapid development in recent decades and are now fully competitive with traditional structures made of reinforced concrete or structural steel in many areas. Low self-weight, high durability, rapid construction assembly, and a favourable environmental footprint predispose timber structures for wider future use. A persisting drawback is the often-complicated joining of individual elements, especially when moment resistance is required. For CLT panels, this issue is more urgent due to their relatively small thickness and cross-laminated lay-up. This paper presents experimental research investigating parameters related to the actual behaviour of a moment-resisting embedded joint of CLT panels. The test programme consisted of four series (12 specimens) loaded in four-point bending to failure. The proposed and tested joint consists of high-strength steel rods glued into the two connected parts of the CLT panel. In addition to a detailed investigation of the resistance and stiffness of the joint, this research evaluates the effect of composite action with a reinforced-concrete slab on the performance of this type of joint. The experimental results and their detailed analysis are also extended to propose a framework concept for creating a theoretical (mechanical) model based on the component method. Full article
(This article belongs to the Special Issue Advances and Applications in Timber Structures)
Show Figures

Figure 1

20 pages, 4662 KB  
Article
Experimental Study on the Shear Performance of Epoxy Resin-Bolted Steel-Cross Laminated Timber (CLT) Connections
by Qing Lyu, Jinxun Ye, Huake Wang, Jiale Xu, Yunfeng Xiao, Bo Fu, Xianlei Li and Zhaoyang Zhang
Buildings 2025, 15(18), 3400; https://doi.org/10.3390/buildings15183400 - 19 Sep 2025
Viewed by 700
Abstract
Steel–timber composite (STC) structures offer a sustainable and low-carbon structural solution. Steel–timber interface behavior is critical for the mechanical performance of STC structures. This paper introduces a novel connection for steel–timber composites (STC) that combines mechanical interlocking with adhesive bonding through an epoxy-bonded [...] Read more.
Steel–timber composite (STC) structures offer a sustainable and low-carbon structural solution. Steel–timber interface behavior is critical for the mechanical performance of STC structures. This paper introduces a novel connection for steel–timber composites (STC) that combines mechanical interlocking with adhesive bonding through an epoxy-bonded bolted design. Epoxy resin is injected into the timber dowel slots, followed by pre-tightening of the bolts, forming a composite dowel system where the ‘bolt–epoxy resin–timber’ components work in synergy. The load–displacement characteristics and failure modes of nine specimen groups were investigated through a series of double-shear push-out tests. The influence of a wide range of connector parameters on the stiffness, shear bearing capacity, and ductility of STC joints was systematically investigated. The parameters included fastener strength grade, thread configuration, diameter, number, and the use of epoxy resin reinforcement. The experimental results demonstrated that high-strength partially threaded bolts were crucial for achieving a synergy of high load-bearing capacity and commendable ductility, while full-threaded bolts exhibited vulnerability to brittle shear failure, a consequence of stress concentration at the root of the threads. Although screw connections provided enhanced initial stiffness through timber anchorage, ordinary bolt connections exhibited superior ultimate load-bearing capacity. In comparison with conventional bolt connections, epoxy resin–bolt connections exhibited enhanced mechanical properties, with an augmentation in ultimate load and initial stiffness of 12% and 11.8%, respectively, without sacrificing ductility. Full article
(This article belongs to the Special Issue Advances and Applications in Timber Structures)
Show Figures

Figure 1

18 pages, 4116 KB  
Article
Thermo-Mechanical Analysis of Dowelled Timber Connections in Single Shear with the Char Layer Calculation Effect
by João Campos Aguiar and Elza M. M. Fonseca
Fire 2025, 8(9), 365; https://doi.org/10.3390/fire8090365 - 16 Sep 2025
Viewed by 708
Abstract
The main goal of this work is to analyse the thermo-mechanical effect in single shear dowelled timber connections under fire conditions. This research includes the development of numerical models using the finite element method. The numerical methodology was validated using previously published experimental [...] Read more.
The main goal of this work is to analyse the thermo-mechanical effect in single shear dowelled timber connections under fire conditions. This research includes the development of numerical models using the finite element method. The numerical methodology was validated using previously published experimental and numerical data. New models were developed to evaluate the temperature evolution, charring rate, and load-bearing capacity of the connections throughout exposure to fire. The calculations based on Eurocode 5 are conservative in the dimensioning of connections at room temperature but have less impact on the design of fire resistance, as they do not consider factors such as geometric parameters or passive protection influence on structural performance. Finally, based on the results obtained, two useful design equations are proposed, allowing the calculation of the load-bearing capacity of single shear timber connections, with or without protection, as a function of fire exposure. Full article
(This article belongs to the Special Issue Advances in Fire Science and Fire Protection Engineering)
Show Figures

Figure 1

Back to TopTop