Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Keywords = three-port power converter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 6345 KiB  
Article
Multimodal Switching Control Strategy for Wide Voltage Range Operation of Three-Phase Dual Active Bridge Converters
by Chenhao Zhao, Chuang Huang, Shaoxu Jiang and Rui Wang
Processes 2025, 13(6), 1921; https://doi.org/10.3390/pr13061921 - 17 Jun 2025
Viewed by 322
Abstract
In recent years, to achieve “dual carbon” goals, increasing the penetration of renewable energy has become a critical approach in China’s power sector. Power electronic converters play a key role in integrating renewable energy into the power system. Among them, the Dual Active [...] Read more.
In recent years, to achieve “dual carbon” goals, increasing the penetration of renewable energy has become a critical approach in China’s power sector. Power electronic converters play a key role in integrating renewable energy into the power system. Among them, the Dual Active Bridge (DAB) DC-DC converter has gained widespread attention due to its merits, such as galvanic isolation, bidirectional power transfer, and soft switching. It has been extensively applied in microgrids, distributed generation, and electric vehicles. However, with the large-scale integration of stochastic renewable sources and uncertain loads into the grid, DAB converters are required to operate over a wider voltage regulation range and under more complex operating conditions. Conventional control strategies often fail to meet these demands due to their limited soft-switching range, restricted optimization capability, and slow dynamic response. To address these issues, this paper proposes a multi-mode switching optimized control strategy for the three-port DAB (3p-DAB) converter. The proposed method aims to broaden the soft-switching range and optimize the operation space, enabling high-power transfer capability while reducing switching and conduction losses. First, to address the issue of the narrow soft-switching range at medium and low power levels, a single-cycle interleaved phase-shift control mode is proposed. Under this control, the three-phase Dual Active Bridge can achieve zero-voltage switching and optimize the minimum current stress, thereby improving the operating efficiency of the converter. Then, in the face of the actual demand for wide voltage regulation of the converter, a standardized global unified minimum current stress optimization scheme based on the virtual phase-shift ratio is proposed. This scheme establishes a unified control structure and a standardized control table, reducing the complexity of the control structure design and the gain expression. Finally, both simulation and experimental results validate the effectiveness and superiority of the proposed multi-mode optimized control strategy. Full article
Show Figures

Figure 1

19 pages, 4244 KiB  
Article
Modular-Multi-Port-Converter-Based Battery Energy Storage System with Integrated Battery Management Functions
by Bortecene Yildirim, Mohammed A. Elgendy, Andrew Smith, Mehmet C. Kulan and Bahadir Akbal
Energies 2025, 18(12), 3142; https://doi.org/10.3390/en18123142 - 15 Jun 2025
Viewed by 621
Abstract
Modular converters offer an effective solution for battery energy storage systems (BESSs) by lowering battery pack voltage levels and enabling additional functionalities, such as state of charge (SoC) and state of health (SoH) balancing, temperature regulation, and improved system reliability. However, conventional modular [...] Read more.
Modular converters offer an effective solution for battery energy storage systems (BESSs) by lowering battery pack voltage levels and enabling additional functionalities, such as state of charge (SoC) and state of health (SoH) balancing, temperature regulation, and improved system reliability. However, conventional modular designs often require numerous additional components, including passive elements, switches, and sensing circuits. This paper proposes a modular multi-port converter (MMPC) BESS that combines energy conversion and battery management functions, leveraging the benefits of both modular and multi-port architectures. The proposed system demonstrates promising scalability and adaptability within the tested voltage and power ranges, with potential for extension to higher voltage and power applications through modular expansion. It also introduces an additional control layer, enhancing flexibility for control optimization and cost-effectiveness while improving reliability by reducing dependency on bypass switches. A prototype utilizing three dual-port converters managing six battery packs was developed. The experimental results confirm that the MMPC-based BESS achieves energy conversion and effectively balances the SoC among battery packs during both charging and discharging, under initial SoC mismatches. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

25 pages, 4440 KiB  
Article
PWM–PFM Hybrid Control of Three-Port LLC Resonant Converter for DC Microgrids
by Yi Zhang, Xiangjie Liu, Jiamian Wang, Baojiang Wu, Feilong Liu and Junfeng Xie
Energies 2025, 18(10), 2615; https://doi.org/10.3390/en18102615 - 19 May 2025
Viewed by 547
Abstract
This article proposes a high-efficiency isolated three-port resonant converter for DC microgrids, combining a dual active bridge (DAB)–LLC topology with hybrid Pulse Width Modulat-Pulse Frequency Modulation (PWM-PFM) phase shift control. Specifically, the integration of a dual active bridge and LLC resonant structure with [...] Read more.
This article proposes a high-efficiency isolated three-port resonant converter for DC microgrids, combining a dual active bridge (DAB)–LLC topology with hybrid Pulse Width Modulat-Pulse Frequency Modulation (PWM-PFM) phase shift control. Specifically, the integration of a dual active bridge and LLC resonant structure with interleaved buck/boost stages eliminates cascaded conversion losses. Energy flows bidirectionally between ports via zero-voltage switching, achieving a 97.2% efficiency across 150–300 V input ranges, which is a 15% improvement over conventional cascaded designs. Also, an improved PWM-PFM shift control scheme dynamically allocates power between ports without altering switching frequency. By decoupling power regulation and leveraging resonant tank optimization, this strategy reduces control complexity while maintaining a ±2.5% voltage ripple under 20% load transients. Additionally, a switch-controlled capacitor network and frequency tuning enable resonant parameter adjustment, achieving a 1:2 voltage gain range without auxiliary circuits. It reduces cost penalties compared to dual-transformer solutions, making the topology viable for heterogeneous DC microgrids. Based on a detailed theoretical analysis, simulation and experimental results verify the effectiveness of the proposed concept. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

13 pages, 6171 KiB  
Article
A Study on the Device Topology and Control Strategy of a Hybrid Three-Port Photovoltaic Energy Storage Grid-Connected Converter
by Chen Shi and Shuqing Wang
Electronics 2025, 14(10), 1966; https://doi.org/10.3390/electronics14101966 - 12 May 2025
Viewed by 425
Abstract
A grid-connected converter is the interface between renewable energy power generation systems, such as solar power generation, wind power, hydropower, etc., and the power grid, responsible for the stable and efficient transmission of electric energy generated by renewable energy power generation systems to [...] Read more.
A grid-connected converter is the interface between renewable energy power generation systems, such as solar power generation, wind power, hydropower, etc., and the power grid, responsible for the stable and efficient transmission of electric energy generated by renewable energy power generation systems to the grid. In order to realize local access for distributed photovoltaic power generation devices and energy storage devices, a composite three-port converter has the advantages of small size, low cost and high power density compared with a combined three-port converter. In view of the current problems of the existing compound three-port (AC/DC/DC) converters, such as DC and AC circulating current in current composite three-port converters and the harmonic control problem, the proposed compound three-port topology consists of a full-bridge inverter with six switching tubes, a zigzag transformer, two sets of filter inductors and two filter capacitors. Among them, the power frequency transformer adopts the zigzag connection method, which can effectively restrain the AC circulation and eliminate the DC magnetic flux of the iron core while introducing the third port. Firstly, the principle of AC/DC and DC/DC power conversion in the composite three-port topology is analyzed, which has higher efficiency than other topologies. Secondly, the topology control strategy is analyzed, and a two-loop hybrid current control method with improved current loop is proposed. When the DC-side voltage fluctuates, the DC offset of the battery can effectively improve the stability of the network side. Through the MATLAB/Simulink simulation experiment platform, the high efficiency of energy conversion and stable grid-connected operation characteristics are verified. Finally, the experiment of integrating into the power grid was carried out. Experiments were used to verify the effectiveness and feasibility of the proposed topology and strategy. The experimental results show that Total Harmonic Distortion (THD) can be controlled below 3%. Full article
Show Figures

Figure 1

24 pages, 8996 KiB  
Article
Design of a Three-Input, Single-Output DC–DC Converter for Electric Charging Station
by Sivaram Natarajan Vijayanathan, Lavanya Anbazhagan, Jagabar Sathik Mohamed Ali, Divya Navamani Jayachandran, Pradeep Vishnuram, CH. Naga Sai Kalyan, Mustafa Abdullah and Rajkumar Singh Rathore
Energies 2025, 18(4), 1005; https://doi.org/10.3390/en18041005 - 19 Feb 2025
Viewed by 399
Abstract
This article presents a novel four-port DC–DC converter designed to integrate photovoltaics, fuel cells, and supercapacitors with one DC charging single-output port with a reduced component count. The proposed converter ensures an efficient power management strategy to manage the load power demand and [...] Read more.
This article presents a novel four-port DC–DC converter designed to integrate photovoltaics, fuel cells, and supercapacitors with one DC charging single-output port with a reduced component count. The proposed converter ensures an efficient power management strategy to manage the load power demand and optimize the power flow from the sources. The power management controller helps enhance the performance of the system by dynamically prioritizing the sources based on their availability and the demand of the load. A comprehensive reliability analysis is conducted to measure the converter’s robustness under varying load conditions, proving its suitability for real-world applications. The proposed topology’s performance was validated in three different scenarios for 1 kW using a simulation tool, and experiments in the laboratory were conducted. The failure rate and efficiency of the system are analyzed, and the converter promises a 96.5% efficiency for 1 kW and a failure rate of 4.6216 × 106 failures per hour. The simulation and experimental results validate the converter’s performance, highlighting its superior efficiency, reliability, and scalability. Full article
Show Figures

Figure 1

30 pages, 13507 KiB  
Review
Solid-State Transformers: A Review—Part II: Modularity and Applications
by Dragoș-Mihail Predescu and Ștefan-George Roșu
Technologies 2025, 13(2), 50; https://doi.org/10.3390/technologies13020050 - 28 Jan 2025
Viewed by 3201
Abstract
The Solid-State Transformer (SST) is a complex conversion device that intends to replace the Low-Frequency Transformers (LFTs) used in various power applications with Medium- or High-Frequency Transformers (MFTs/HFTs) that integrate modular converter structures as their input and output stages. The purpose is to [...] Read more.
The Solid-State Transformer (SST) is a complex conversion device that intends to replace the Low-Frequency Transformers (LFTs) used in various power applications with Medium- or High-Frequency Transformers (MFTs/HFTs) that integrate modular converter structures as their input and output stages. The purpose is to obtain additional capabilities, such as power factor correction, voltage control, and interconnection of distributed supplies, among others, while reducing the overall volume. Given the expansive research conducted in this area in the past years, the volume of information available is large, so the main contribution of this paper is a new method of classification based on the modular construction of the SST derived from its applications and available constructive degrees of freedom. This paper can be considered the second part of a broader review in which the first part presented the fundamental converter roles and topologies. As a continuation, this paper aims to expand the definition of modularity to the entire SST structure and analyze how the converters can be combined in order to achieve the desired SST functionality. Three areas of interest are chosen: partitioning of power, phase modularity, and port configuration. The partitioning of power analyzes the fundamental switching cells and the arrangement of the converters across stages. Phase modularity details the construction of multiphase-system SSTs. Finally, the types of input/output ports, their placements, and roles are discussed. These characteristics are presented together with the applications in which they were suggested to give a broader context. Full article
(This article belongs to the Special Issue Next-Generation Distribution System Planning, Operation, and Control)
Show Figures

Figure 1

31 pages, 5397 KiB  
Article
Load Sensitivity Correlation Factor-Based Steady-State Power Flow Allocation Method for Independent DC Bus Structure Multiport Power Electronic Transformer
by Junchi Li, Junyong Wu, Fei Xiong and Liangliang Hao
Electronics 2025, 14(2), 279; https://doi.org/10.3390/electronics14020279 - 11 Jan 2025
Viewed by 1023
Abstract
The independent DC bus structure multiport power electronic transformer (IDBS-MPET) is a novel power electronic transformer designed to integrate multiple DC sources and DC loads. Due to the configuration of DC ports, which are directly constructed by the parallel connection of dual active [...] Read more.
The independent DC bus structure multiport power electronic transformer (IDBS-MPET) is a novel power electronic transformer designed to integrate multiple DC sources and DC loads. Due to the configuration of DC ports, which are directly constructed by the parallel connection of dual active bridge (DAB) converters, the distribution of DC sources and DC loads among the three phases becomes unbalanced. In cases where the load power at certain ports is too high, this imbalance may lead to the over-modulation of the front-end H-bridge (HB). Since the output power at a certain port in the IDBS-MPET is constrained by the loads at other ports, this paper proposes a multiport steady-state power flow allocation method. This method establishes the load sensitivity correlation factor to enable all the ports to adjust power cooperatively based on it. By applying the proposed steady-state power flow allocation method, iterative calculations continuously update the priority of all the ports and their load sensitivity correlation factors. This process ensures that the power flow converges to a steady-state solution. Simulation results for two different IDBS-MPETs demonstrate that the power flow at all the ports effectively meets load requirements, while the front-end HB avoids over-modulation, ensuring the safe and stable operation of the IDBS-MPET. The results validate the effectiveness of the proposed steady-state power flow allocation method. Full article
Show Figures

Figure 1

21 pages, 40550 KiB  
Article
Method for Classification and Optimization of Modes in Triple-Active-Bridge Converter Based on Waveform Structural Characteristics Analysis
by Laiyong Zhang, Chunming Tu, Fan Xiao, Bei Liu and Peiqiang Li
Electronics 2025, 14(1), 187; https://doi.org/10.3390/electronics14010187 - 5 Jan 2025
Viewed by 843
Abstract
The working mode classification of a triple-active-bridge converter (TAB) is the prerequisite and foundation of modulation optimization research based on time-domain analysis. Currently, systematic research on mode classification is lacking. Inadequate screening of mode types can lead to local optima, preventing the achievement [...] Read more.
The working mode classification of a triple-active-bridge converter (TAB) is the prerequisite and foundation of modulation optimization research based on time-domain analysis. Currently, systematic research on mode classification is lacking. Inadequate screening of mode types can lead to local optima, preventing the achievement of global optimal control. To address this issue, this paper proposes a mode classification method for the TAB converter based on waveform structural characteristics, enabling effective mode classification and specific mode screening. Firstly, time-domain modeling is carried out for the three square waves output from the three ports. Then, the entire waveform within one period is decomposed into various sub-mode combinations. Subsequently, by analyzing the permutation and combination rules of sub-modes corresponding to different waveforms, the construction method of the TAB working mode is derived, and then all working modes of TAB can be screened using an iterative optimization algorithm. Finally, on this basis, through the specific combination of sub-modes, not only the local optimal working mode with relatively low current stress or RMS value can be selected according to the waveform and energy transmission law, but also the working mode with port power decoupling function can be selected. This method has the advantages of clear classification, multidimensional characteristics and expansibility. It not only effectively classifies the modes of the TAB converter, but also selects the locally optimal working mode, particularly those with power decoupling modulation characteristics. Simulation and experimental results validate the correctness and effectiveness of the theoretical analysis. Full article
Show Figures

Figure 1

25 pages, 9795 KiB  
Article
Research on the Integrated Converter and Its Control for Fuel Cell Hybrid Electric Vehicles with Three Power Sources
by Yuang Ma and Wenguang Luo
Electronics 2025, 14(1), 29; https://doi.org/10.3390/electronics14010029 - 25 Dec 2024
Cited by 1 | Viewed by 1050
Abstract
Separate DC-DC converters for each energy source are typically configured in fuel-cell hybrid vehicles. This results in a complex control structure of the powertrain system, low energy density of the converter, and high cost due to the large number of components. Conducting research [...] Read more.
Separate DC-DC converters for each energy source are typically configured in fuel-cell hybrid vehicles. This results in a complex control structure of the powertrain system, low energy density of the converter, and high cost due to the large number of components. Conducting research on DC-DC converters with good energy flow management and high integration is a trend to solve such problems. Based on the analysis of the basic functional structure of the converter, this paper designs a buffering unit circuit with energy collection and distribution functions and appropriately connects it with the pulse unit circuit of the converter. Through device optimization reuse and power transmission path integration, a class of non-isolated four-port DC-DC converters is constructed, which consists of an auxiliary energy charging module, input energy source control module, braking energy feedback module and forward bootstrap boost circuit. This converter has two bi-directional ports, a uni-directional input and a bi-directional output, for separate connection to the power batteries, supercapacitors, fuel cells and DC bus. It can adapt to the fluctuation of the vehicle’s driving condition while achieving dynamic and flexible regulation of power flow and can flexibly allocate power according to the load current and voltage level of energy. It can realize a total of 14 operation modes, including six output power supply operation modes, five auxiliary power charging operation modes, and three braking energy regeneration operation modes. Furthermore, the mathematical model of this converter is constructed using the state-average method and the small-signal modeling method in order to achieve the responsiveness and stability of switching multiple operating modalities. The PI control parameters are optimized using the particle swarm optimization algorithm to achieve optimized control of the converter. The simulation system is set up using MATLAB R2024a to verify that the proposed converter topology and algorithm can dynamically allocate appropriate current paths to manipulate the power flow under various operating conditions, effectively improving the utilization rate and efficiency of energy. The converter has the characteristics of high gain and high power density, which is suitable for three-energy fuel cell hybrid electric vehicles. Full article
Show Figures

Figure 1

21 pages, 3464 KiB  
Review
Alternatives for Connecting Photovoltaic Generators to Power Systems with Three-Port and Partial Power Converters
by Donghui Ye and Sergio Martinez
Appl. Sci. 2024, 14(24), 11880; https://doi.org/10.3390/app142411880 - 19 Dec 2024
Cited by 2 | Viewed by 889
Abstract
Solar electricity has become one of the most important renewable power sources due to rapid developments in the manufacturing of photovoltaic (PV) cells and power electronic techniques as well as the consciousness of environmental protection. In general, PV panels are connected to DC-DC [...] Read more.
Solar electricity has become one of the most important renewable power sources due to rapid developments in the manufacturing of photovoltaic (PV) cells and power electronic techniques as well as the consciousness of environmental protection. In general, PV panels are connected to DC-DC converters and/or DC-AC inverters to implement the maximum power point tracking algorithm and to fulfill the load requirements. Thus, power conversion efficiency and power density need to be taken into consideration when designing PV systems. Three-port and partial power conversion technologies are proposed to improve the efficiency of a whole PV system and its power density. In this paper, three types of three-port converters (TPCs), including fully isolated, partly isolated, and non-isolated TPCs, are studied with detailed discussions of advantages, disadvantages, and comparisons. In addition, based on partial power conversion technologies, partial power two-port and three-port topologies are analyzed in detail. Their efficiency and power density can be further improved by the combination of three-port and partial power conversion technologies. Moreover, comparisons among seven different types of distributed PV systems are presented with their advantages and disadvantages. Compared to distributed PV systems without energy storage, distributed PV systems with hybridization of energy storage and with partial power regulation can use solar energy in a more efficient way. Full article
(This article belongs to the Special Issue Power Systems: Protection and Connection with Converters)
Show Figures

Figure 1

23 pages, 25964 KiB  
Article
Single-Stage MV-Connected Charger Using an Ac/Ac Modular Multilevel Converter
by Ygor Pereira Marca, Maurice G. L. Roes, Cornelis G. E. Wijnands, Jorge L. Duarte and Henk Huisman
Energies 2024, 17(12), 2998; https://doi.org/10.3390/en17122998 - 18 Jun 2024
Cited by 3 | Viewed by 1595
Abstract
Modular multilevel converters with non-sinusoidal ac voltage output can reduce cost and volume in medium-voltage-connected electric vehicle battery charging applications. The use of full-bridge submodules in such converters enables single-stage ac/ac voltage conversion, allowing a medium-voltage grid to be directly connected to a [...] Read more.
Modular multilevel converters with non-sinusoidal ac voltage output can reduce cost and volume in medium-voltage-connected electric vehicle battery charging applications. The use of full-bridge submodules in such converters enables single-stage ac/ac voltage conversion, allowing a medium-voltage grid to be directly connected to a medium-frequency isolation transformer. The application of a square wave voltage at the medium-frequency transformer’s single-phase port enhances the converter’s efficiency and power density in comparison to a sinusoidal voltage. This paper presents the analysis and modelling of a modular multilevel converter, comparing its operation with sinusoidal and square wave output voltages. A single control scheme for both output voltage waveforms is proposed for the three-phase and single-phase ac currents, circulating currents, and the energy stored in the submodule capacitors. The control strategy of the three-phase and single-phase port currents is verified through simulation and experiments using a scaled-down prototype, thereby validating its suitability for high-power bidirectional battery chargers. Full article
Show Figures

Figure 1

19 pages, 6482 KiB  
Article
A Three-Port DC-DC Converter with Partial Power Regulation for a Photovoltaic Generator Integrated with Energy Storage
by Donghui Ye and Sergio Martinez
Electronics 2024, 13(12), 2304; https://doi.org/10.3390/electronics13122304 - 12 Jun 2024
Cited by 6 | Viewed by 2141
Abstract
A novel integrated DC-DC converter is proposed for the first stage of two-stage grid connected photovoltaic (PV) systems with energy storage systems. The proposed three-port converter (TPC) consists of a buck–boost converter, interposed between the battery storage system and the DC-AC inverter, in [...] Read more.
A novel integrated DC-DC converter is proposed for the first stage of two-stage grid connected photovoltaic (PV) systems with energy storage systems. The proposed three-port converter (TPC) consists of a buck–boost converter, interposed between the battery storage system and the DC-AC inverter, in series with PV modules. The buck–boost converter in the proposed TPC is utilized for maximum power point tracking by regulating two power switches. The output power of the proposed converter is regulated by controlling the DC-AC converter. During the battery-charging mode, partial power regulation is employed with a direct power flow path (the series-connection of the PV panel, the battery and the output). As resistances in this path are almost negligible, the power conversion efficiency is higher than existing topologies. During battery-discharging mode, the power conversion is processed through a buck–boost converter with only two active power switches and one inductor. With fewer components, higher power conversion efficiency is also achieved. The circuit operation and analysis are presented in detail. To illustrate the simplicity of the converter control, the performance of the converter is tested with a straightforward maximum power point tracking on a PV system with battery cells. Simulation and experimental tests are carried out to demonstrate circuit operation and power conversion efficiency. Full article
(This article belongs to the Special Issue Optimal Integration of Energy Storage and Conversion in Smart Grids)
Show Figures

Figure 1

24 pages, 5450 KiB  
Article
Adaptive Quasi-Super-Twisting Sliding Mode Control for Flexible Multistate Switch
by Wenzhong Ma, Xiao Wang, Yusheng Wang, Wenyan Zhang, Hengshuo Li and Yaheng Zhu
Energies 2024, 17(11), 2643; https://doi.org/10.3390/en17112643 - 29 May 2024
Viewed by 1482
Abstract
The mathematical model of a flexible multistate switch (FMSS) exhibits nonlinear and strong coupling characteristics, whereas traditional power decoupling control makes it difficult to completely decouple the output power. The traditional proportional–integral control parameters are difficult to adjust, and their robustness and dynamic [...] Read more.
The mathematical model of a flexible multistate switch (FMSS) exhibits nonlinear and strong coupling characteristics, whereas traditional power decoupling control makes it difficult to completely decouple the output power. The traditional proportional–integral control parameters are difficult to adjust, and their robustness and dynamic performance are poor, which affects the stability of the voltage of the power distribution network and feeder power. To address these problems, this study first converted the original system into a linear system via coordinate transformation using feedback-accurate linearization to decouple active and reactive currents. Thereafter, a super-twisting sliding mode control (ST-SMC) algorithm was introduced, and an adaptive quasi-super-twisting sliding mode control (AQST-SMC) algorithm comprising the quasi-sliding mode function and adaptive proportional term was proposed. An FMSS double closed-loop controller was designed to achieve improved vibration suppression and convergence speed. A three-port FMSS simulation model was developed using MATLAB/Simulink, and the simulation results show that the proposed control strategy enhances the robustness and dynamic performance of the system. Full article
(This article belongs to the Special Issue Advanced Power Electronics Technology)
Show Figures

Figure 1

27 pages, 11489 KiB  
Article
Optimized and Sustainable PV Water Pumping System with Three-Port Converter, a Case Study: The Al-Kharijah Oasis
by Mohamed Selmy, Mohsen Z. El sherif, Miral Salah Noah and Islam M. Abdelqawee
Electricity 2024, 5(2), 227-253; https://doi.org/10.3390/electricity5020012 - 4 May 2024
Cited by 1 | Viewed by 1809
Abstract
In this paper an efficient, compact, and cheap power source design for an off-grid PV water pumping system is investigated. The proposed system consists of a PV array, battery, three-port converter (TPC), three-phase voltage source inverter, and induction motor pump. Power is extracted [...] Read more.
In this paper an efficient, compact, and cheap power source design for an off-grid PV water pumping system is investigated. The proposed system consists of a PV array, battery, three-port converter (TPC), three-phase voltage source inverter, and induction motor pump. Power is extracted from PV sources during the daytime and used to charge batteries through the three-port converter, then used later to supply load during the nighttime. An intelligent MPPT method is used to obtain PV maximum power; a jellyfish optimization technique with different control algorithms is used to optimize and tune controllers’ parameters among the system. Different modes for the TPC are discussed depending on PV power availability. The proposed system is simulated to assess system performance under different conditions; also the system is efficient with reduced number of components than conventional converters. A complete unified power management over PV input port, battery port, and load port has occurred for all operation modes. At all operation modes, the system has been feeding load without any unmet loads. A real case study in Al-Kharijah oasis is studied and simulation results are listed; for the Dom case DC bus ripple factor voltage percentage equals 0.8%, in the Dim case equals 3%, and in the Siso mode equals 9%. Full article
(This article belongs to the Topic Integration of Renewable Energy)
Show Figures

Figure 1

23 pages, 5419 KiB  
Article
Five-Port Isolated Bidirectional DC-DC Converter for Interfacing a Hybrid Photovoltaic–Fuel Cell–Battery System with Bipolar DC Microgrids
by Tahsin Koroglu, Elanur Ekici and M. Mustafa Savrun
Electronics 2024, 13(6), 1036; https://doi.org/10.3390/electronics13061036 - 10 Mar 2024
Cited by 5 | Viewed by 2300
Abstract
This paper introduces a novel five-port, three-input, dual-output isolated bidirectional dc-dc converter (FPIBC) topology with an effective controller for power-sharing and voltage-balancing in bipolar dc microgrids (BPDCMGs). The proposed converter acts as the interface for the integration of a hybrid generation system comprising [...] Read more.
This paper introduces a novel five-port, three-input, dual-output isolated bidirectional dc-dc converter (FPIBC) topology with an effective controller for power-sharing and voltage-balancing in bipolar dc microgrids (BPDCMGs). The proposed converter acts as the interface for the integration of a hybrid generation system comprising a solid oxide fuel cell (SOFC), a photovoltaic (PV) system, and a battery into BPDCMGs. It employs a reduced number of circuit elements compared with similar multiport converter topologies suggested for BPDCMG applications. Symmetrical bipolar output voltages are ensured by a voltage-balancing circuit composed of a fully controlled switch and four diodes. The FPIBC is equipped with different controllers for output voltage regulation and balancing, power sharing, maximum power point tracking of the PV, the optimum operating region of the SOFC, and constant-current, constant-voltage charging of the battery. To verify the viability and effectiveness of the proposed system, a simulation model was developed with a 4.2 kW SOFC, a 3.7 kW PV, and a 140 V 10.8 Ah battery in MATLAB/Simulink. The performance of the FPIBC was evaluated through extensive case studies with different operational modes, including battery charge/discharge states and SOFC and PV parameter changes under varying load conditions. In addition, the proposed system was examined using a daily dynamic load profile. According to the simulation results, a peak efficiency of 97.28% is achieved and the voltage imbalance between the output ports is maintained below 0.5%. It is shown that the FPIBC has advantages over previous converters in terms of the number of ports, number of circuit elements, bipolar output voltage, bidirectional power flow, and efficiency. Full article
Show Figures

Figure 1

Back to TopTop