Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = three-level NPC converter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 17358 KB  
Article
Comprehensive Performance Assessment of Conventional and Sequential Predictive Control for Grid-Tied NPC Inverters: A Hardware-in-the-Loop Study
by Jakson Bonaldo, Beichen Duan, Marco Rivera, K. V. Ling, Camila Fantin and Patrick Wheeler
Energies 2025, 18(12), 3132; https://doi.org/10.3390/en18123132 - 14 Jun 2025
Viewed by 492
Abstract
Model Predictive Control (MPC) has become very attractive for the efficient control of power converters. This paper compares Classical MPC (C-MPC) and Sequential MPC (S-MPC) for a three-level NPC converter. Although C-MPC is simple to implement, it faces challenges such as switching frequency [...] Read more.
Model Predictive Control (MPC) has become very attractive for the efficient control of power converters. This paper compares Classical MPC (C-MPC) and Sequential MPC (S-MPC) for a three-level NPC converter. Although C-MPC is simple to implement, it faces challenges such as switching frequency variations and complex weighting factor tuning. S-MPC addresses these issues by prioritizing control objectives sequentially, eliminating weighting factors, and simplifying controller design. Simulation results show that S-MPC improves the tracking of output currents, reduces harmonic distortion, and enhances the balancing of dc–link voltages under steady-state and transient conditions. These findings establish S-MPC as a robust alternative to C-MPC, improving power quality and system performance in multilevel converter applications. Full article
Show Figures

Figure 1

17 pages, 3888 KB  
Article
An Improved Space Vector PWM Algorithm with a Seven-Stage Switching Sequence for Three-Level Neutral Point Clamped Voltage Source Inverters
by Aleksandr N. Shishkov, Maxim M. Dudkin, Aleksandr S. Maklakov, Van Kan Le, Andrey A. Radionov and Vlada S. Balabanova
Energies 2025, 18(10), 2452; https://doi.org/10.3390/en18102452 - 10 May 2025
Viewed by 735
Abstract
The main purpose of this research is to develop an improved space vector pulse-width modulation (SVPWM) algorithm for three-level (3L) neutral point clamped (NPC) voltage source inverters (VSIs). The results of experiments conducted on the three-level power converter laboratory setup showed that the [...] Read more.
The main purpose of this research is to develop an improved space vector pulse-width modulation (SVPWM) algorithm for three-level (3L) neutral point clamped (NPC) voltage source inverters (VSIs). The results of experiments conducted on the three-level power converter laboratory setup showed that the proposed SVPWM algorithm with a seven-stage switching sequence (SS) can reduce a VSI’s switching frequency by 43.48% compared to the SVPWM algorithm with the base SS. It also improves the neutral point (NP) voltage balance in the VSI DC link by 4.2% by controlling the duty factor of distributed base vectors in each SVPWM period based on phase load currents. It reduced the values of the 5th- and 7th-order harmonics of the VSI output voltage by 19% and 15.7%, respectively. The results show that the usage of the improved SVPWM algorithm helps increase the efficiency of a 3L NPC VSI by 0.6% and reduce the higher harmonics. The obtained results confirm the efficiency of the suggested algorithm and its great potential for power converters in industry. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

15 pages, 3330 KB  
Article
Efficiency Performance of 7-Level Multiplexed and 3-Level Neutral Point Clamped (NPC) Converters
by Shafquat Hussain, Simone Cosso, Massimiliano Passalacqua, Luis Ramon Vaccaro, Andrea Formentini and Mario Marchesoni
Energies 2025, 18(9), 2161; https://doi.org/10.3390/en18092161 - 23 Apr 2025
Viewed by 486
Abstract
In medium-voltage AC applications, multilevel converters are essential due to their ability to achieve high efficiency and significantly reduce total harmonic distortion (THD), ensuring improved performance and power quality. This paper presents a detailed analysis of the efficiency, power loss, and THD characteristics [...] Read more.
In medium-voltage AC applications, multilevel converters are essential due to their ability to achieve high efficiency and significantly reduce total harmonic distortion (THD), ensuring improved performance and power quality. This paper presents a detailed analysis of the efficiency, power loss, and THD characteristics of multiplexed multilevel converters and neutral point clamped converters. Using MATLAB®Simulink 2024b, the switching and conduction losses of both multiplexed multilevel converters and NPC converters are calculated. The three-level NPC converter offers advantages of a simpler design, reduced component count, and cost effectiveness with the drawback of low voltage quality. Simulation results validate the THD, power losses, and efficiency for the conventional three-phase three-level NPC converter and the three-phase multiplexed multilevel converter, and a detailed comparison is performed. Full article
Show Figures

Figure 1

25 pages, 30860 KB  
Article
Comparison of Induction Machine Drive Control Schemes on the Distribution of Power Losses in a Three-Level NPC Converter
by Carlos A. Reusser, Matías Parra, Gerardo Mino-Aguilar and Victor R. Gonzalez-Diaz
Machines 2025, 13(3), 227; https://doi.org/10.3390/machines13030227 - 12 Mar 2025
Cited by 1 | Viewed by 608
Abstract
Medium- and high-power drive applications have grown since the past decade as the most common solution for high demanding industrial processes. Multilevel converters, in particular the three-level neutral point clamped (3L-NPC) topology driving medium-voltage induction machines, has become the most commonly adopted solution. [...] Read more.
Medium- and high-power drive applications have grown since the past decade as the most common solution for high demanding industrial processes. Multilevel converters, in particular the three-level neutral point clamped (3L-NPC) topology driving medium-voltage induction machines, has become the most commonly adopted solution. In this context, several AC drive control schemes are suitable, such as scalar control (SC), field-oriented control (FOC), model predictive control (MPC), and direct torque control (DTC). Each of these control strategies exhibit a particular operational profile which affects the switching pattern of the converter semiconductors, thus conditioning the switching and conducting losses of these power devices. This work presents a comparison of the conduction and switching losses between different drives control schemes, such as scalar control, field-oriented control, direct torque control, and model predictive control, analyzing their impact on thermal efficiency in a 3L-NPC multilevel converter, under different loading operational conditions. This analysis allows for choosing the most suitable control strategy and switching frequency for a given operational profile. Full article
(This article belongs to the Special Issue New Trends of Permanent Magnet Machines)
Show Figures

Figure 1

15 pages, 5327 KB  
Article
Two-Step Process-Based Open-Circuit Fault Diagnosis for Three-Level NPC Converters
by Wenli Zhang, Bo Guan and Yujie Chang
Electronics 2025, 14(3), 542; https://doi.org/10.3390/electronics14030542 - 29 Jan 2025
Cited by 2 | Viewed by 879
Abstract
Fast open-circuit (OC) fault diagnosis is essential to ensure that a multilevel inverter operates under stable conditions. Conventional diagnosis methods either require additional hardware sensors or complex calculations. However, these conditions are difficult to realize in some low-cost application scenarios. For this reason, [...] Read more.
Fast open-circuit (OC) fault diagnosis is essential to ensure that a multilevel inverter operates under stable conditions. Conventional diagnosis methods either require additional hardware sensors or complex calculations. However, these conditions are difficult to realize in some low-cost application scenarios. For this reason, a two-step process-based OC fault diagnosis method is proposed according to available data that can be acquired using the existing sensors in the application. At the same time, the proposed method does not involve complex and precise calculation. By analyzing the effects of an OC fault on the AC-side three-phase current, the faulty bridge arm can be quickly located via the average current. Furthermore, through establishing the calculation model of the neutral point potential, an accurate diagnosis of faulty switching devices can be achieved quickly and easily based on the residuals. The proposed OC fault diagnosis method is also proved to be correct and effective based on simulation and experience. Full article
(This article belongs to the Topic Power Electronics Converters, 2nd Edition)
Show Figures

Figure 1

16 pages, 29661 KB  
Article
6.5 kV SiC PiN and JBS Diodes’ Comparison in Hybrid and Full SiC Switch Topologies
by Lucas Barroso Spejo, Lars Knoll and Renato Amaral Minamisawa
Electronics 2024, 13(22), 4548; https://doi.org/10.3390/electronics13224548 - 19 Nov 2024
Cited by 2 | Viewed by 1752
Abstract
This work investigates the performance of state-of-the-art non-commercial 6.5 kV Silicon Carbide (SiC) PiN and Junction Barrier Schottky (JBS) diodes in hybrid (Si IGBT with SiC diode) and full SiC (SiC MOSFET with SiC diode) switch topologies. The static and dynamic performance has [...] Read more.
This work investigates the performance of state-of-the-art non-commercial 6.5 kV Silicon Carbide (SiC) PiN and Junction Barrier Schottky (JBS) diodes in hybrid (Si IGBT with SiC diode) and full SiC (SiC MOSFET with SiC diode) switch topologies. The static and dynamic performance has been systematically evaluated at distinct temperatures, gate resistances and currents for each configuration. The SiC PiN diode presented higher current density capability and lower leakage current density than the JBS diode. Moreover, in most cases, the SiC PiN diode-based topologies demonstrated slightly higher total switching losses compared to the SiC JBS diode-based equivalent configurations. A loadability analysis in a three-level NPC converter is presented to evaluate the potential of each configuration in a converter application. The SiC PiN technology presented a 25% power extension compared to the SiC JBS technology with similar efficiency at typical industrial drives switching frequency operation when comparing same-active-area diode technologies. Finally, a long-term reliability test (H3TRB) is presented to demonstrate the SiC PiN diode technology’s potential for operation in harsh environments. Such characteristics show the advantage of the 6.5 kV SiC PiN diode when a high current density (>100 A/cm2), high efficiency and reliability are required. Full article
(This article belongs to the Special Issue Advances in Power Converter Design, Control and Applications)
Show Figures

Figure 1

16 pages, 6739 KB  
Article
Research on High-Frequency Isolated NPC Three-Level Inverter for Frequency Conversion and Speed Regulation
by Yiying Wang, Longyu Gao, Lifen Ma, Yang Liu, Yanhui Wu and Jikun Dai
Appl. Sci. 2024, 14(21), 9673; https://doi.org/10.3390/app14219673 - 23 Oct 2024
Viewed by 1364
Abstract
Mining frequency converters are the primary means for achieving variable frequency speed regulation of electromechanical equipment in coal mines, offering energy-saving benefits for coal mining enterprises. The common power supply method involves converting high voltage to low voltage using power frequency transformers before [...] Read more.
Mining frequency converters are the primary means for achieving variable frequency speed regulation of electromechanical equipment in coal mines, offering energy-saving benefits for coal mining enterprises. The common power supply method involves converting high voltage to low voltage using power frequency transformers before supplying equipment. However, this integration of power frequency transformers with supply devices occupies significant space, making it unsuitable for confined underground environments. Additionally, they suffer from poor output waveform quality and high harmonic content. To tackle these challenges, this paper presents a three-stage topology for high-frequency isolated frequency conversion and speed regulation, utilizing three-phase uncontrolled rectification, a single active isolated DC/DC converter, and an NPC three-level inverter. The control strategies for each stage are discussed in detail. Simulations and experimental results confirm the validity and feasibility of the proposed design, demonstrating enhanced stability and dynamic performance of the three-stage high-frequency isolated frequency converter. Full article
Show Figures

Figure 1

36 pages, 28072 KB  
Article
Four-Wire Three-Level NPC Shunt Active Power Filter Using Model Predictive Control Based on the Grid-Tied PV System for Power Quality Enhancement
by Zoubida Amrani, Abdelkader Beladel, Abdellah Kouzou, Jose Rodriguez and Mohamed Abdelrahem
Energies 2024, 17(15), 3822; https://doi.org/10.3390/en17153822 - 2 Aug 2024
Cited by 2 | Viewed by 1970
Abstract
The primary objective of this paper focuses on developing a control approach to improve the operational performance of a three-level neutral point clamped (3LNPC) shunt active power filter (SAPF) within a grid-tied PV system configuration. Indeed, this developed control approach, based on the [...] Read more.
The primary objective of this paper focuses on developing a control approach to improve the operational performance of a three-level neutral point clamped (3LNPC) shunt active power filter (SAPF) within a grid-tied PV system configuration. Indeed, this developed control approach, based on the used 3LNPC-SAPF topology, aims to ensure the seamless integration of a photovoltaic system into the three-phase four-wire grid while effectively mitigating grid harmonics, grid current unbalance, ensuring grid unit power factor by compensating the load reactive power, and allowing power sharing with the grid in case of an excess of generated power from the PV system, leading to overall high power quality at the grid side. This developed approach is based initially on the application of the four-wire instantaneous p-q theory for the identification of the reference currents that have to be injected by the 3LNPC-SAPF in the grid point of common coupling (PCC). Whereas, the 3LNPC is controlled based on using the finite control set model predictive control (FCS-MPC), which can be accomplished by determining the convenient set of switch states leading to the voltage vector, which is the most suitable to ensure the minimization of the selected cost function. Furthermore, the used topology requires a constant DC-link voltage and balanced split-capacitor voltages at the input side of the 3LNPN. Hence, the cost function is adjusted by the addition of another term with a selected weighting factor related to these voltages to ensure their precise control following the required reference values. However, due to the random changes in solar irradiance and, furthermore, to ensure efficient operation of the proposed topology, the PV system is connected to the 3LNPN-SAPF via a DC/DC boost converter to ensure the stability of the 3LNPN input voltage within the reference value, which is achieved in this paper based on the use of the maximum power point tracking (MPPT) technique. For the validation of the proposed control technique and the functionality of the used topology, a set of simulations has been presented and investigated in this paper following different irradiance profile scenarios such as a constant irradiance profile and a variables irradiance profile where the main aim is to prove the effectiveness and flexibility of the proposed approach under variable irradiance conditions. The obtained results based on the simulations carried out in this study demonstrate that the proposed control approach with the used topology under different loads such as linear, non-linear, and unbalanced can effectively reduce the harmonics, eliminating the unbalance in the currents and compensating for the reactive component contained in the grid side. The obtained results prove also that the proposed control ensures a consistent flow of power based on the sharing principle between the grid and the PV system as well as enabling the efficient satisfaction of the load demand. It can be said that the proposal presented in this paper has been proven to have many dominant features such as the ability to accurately estimate the power sharing between the grid and the PV system for ensuring the harmonics elimination, the reactive power compensation, and the elimination of the neutral current based on the zero-sequence component compensation, even under variable irradiance conditions. This feature makes the used topology and the developed control a valuable tool for power quality improvement and grid stability enhancement with low cost and under clean energy. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

19 pages, 6658 KB  
Article
A Three-Level Neutral-Point-Clamped Converter Based Standalone Wind Energy Conversion System Controlled with a New Simplified Line-to-Line Space Vector Modulation
by Tarak Ghennam, Lakhdar Belhadji, Nassim Rizoug, Bruno Francois and Seddik Bacha
Energies 2024, 17(9), 2214; https://doi.org/10.3390/en17092214 - 4 May 2024
Cited by 1 | Viewed by 1730
Abstract
Wind power systems, which are currently being constructed for the electricity worldwide market, are mostly based on Doubly Fed Induction Generators (DFIGs). To control such systems, multilevel converters are increasingly preferred due to the well-known benefits they provide. This paper deals with the [...] Read more.
Wind power systems, which are currently being constructed for the electricity worldwide market, are mostly based on Doubly Fed Induction Generators (DFIGs). To control such systems, multilevel converters are increasingly preferred due to the well-known benefits they provide. This paper deals with the control of a standalone DFIG-based Wind Energy Conversion System (WECS) by using a three-level Neutral-Point-Clamped (NPC) converter. The frequency and magnitude of the stator output voltage of the DFIG are controlled and fixed at nominal values despite the variable rotor speed, ensuring a continuous AC supply for three-phase loads. This task is achieved by controlling the DFIG rotor currents via a PI controller combined with a new Simplified Direct Space Vector Modulation strategy (SDSVM), which is applied to the three-level NPC converter. This strategy is based on the use of a line-to-line three-level converter space vector diagram without using Park transformation and then simplifying it to that of a two-level converter. The performance of the proposed SDSVM technique in terms of controlling the three-level NPC-converter-based standalone WECS is demonstrated through simulation results. The whole WECS control and the SDSVM strategy are implemented on a dSPACE DS 1104 board that drives a DFIG-based wind system test bench. The obtained experimental results confirm the validity and performance in terms of control. Full article
Show Figures

Figure 1

17 pages, 5828 KB  
Article
Quantitative Analysis of Balancing Range for Single-Phase 3L-NPC Converters
by Ziying Wang, Ning Jiao, Shunliang Wang, Junpeng Ma, Rui Zhang and Tianqi Liu
Energies 2024, 17(6), 1464; https://doi.org/10.3390/en17061464 - 19 Mar 2024
Viewed by 1399
Abstract
Multiple techniques have been suggested to achieve control balance in single-phase three-level neutral-point clamped (3L-NPC) converters. Nevertheless, there is a deficiency of quantitative calculations related to the extent of balancing. Operating beyond the balancing range may result in a sequence of safety incidents. [...] Read more.
Multiple techniques have been suggested to achieve control balance in single-phase three-level neutral-point clamped (3L-NPC) converters. Nevertheless, there is a deficiency of quantitative calculations related to the extent of balancing. Operating beyond the balancing range may result in a sequence of safety incidents. This paper presents a conceptualization of the 3L-NPC converter as two cascaded H-bridges. By employing power conservation principles, the balancing range for the NPC converter is derived, and two novel methods are investigated to broaden the balance range in accordance with the calculated balance range. A comparison is made among the balancing ranges under different balancing control methods. This study establishes a theoretical foundation to ensure the secure and stable operation of the NPC converter. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

28 pages, 11596 KB  
Article
Airport Microgrid and Its Incorporated Operations
by Chang-Ming Liaw, Chen-Wei Yang and Pin-Hong Jhou
Aerospace 2024, 11(3), 192; https://doi.org/10.3390/aerospace11030192 - 28 Feb 2024
Cited by 2 | Viewed by 2235
Abstract
This paper presents the development of an airport bipolar DC microgrid and its interconnected operations with the utility grid, electric vehicle (EV), and more electric aircraft (MEA). The microgrid DC-bus voltage is established by the main sources, photovoltaic (PV) and fuel cell (FC), [...] Read more.
This paper presents the development of an airport bipolar DC microgrid and its interconnected operations with the utility grid, electric vehicle (EV), and more electric aircraft (MEA). The microgrid DC-bus voltage is established by the main sources, photovoltaic (PV) and fuel cell (FC), via unidirectional three-level (3L) boost converters. The proposed one-cycle control (OCC)-based current control scheme and quantitative and robust voltage control scheme are proposed to yield satisfactory responses. Moreover, the PV maximum power point tracking (MPPT) with FC energy-supporting approach is developed to have improved renewable energy extraction characteristics. The equipped hybrid energy storage system (HESS) consists of an energy-type battery and a power-type flywheel; each device is interfaced to the common DC bus via its own 3L bidirectional interface converter. The energy-coordinated operation is achieved by the proposed droop control. A dump load leg is added to avoid overvoltage due to an energy surplus. The grid-connected energy complementary operation is conducted using a neutral point clamped (NPC) 3L three-phase inverter. In addition to the energy support from grid-to-microgrid (G2M), the reverse mcrogrid-to-grid (M2G) operation is also conductible. Moreover, microgrid-to-vehicle (M2V) and vehicle-to-microgrid (V2M) bidirectional operations can also be applicable. The droop control is also applied to perform these interconnected operations. For the grounded aircraft, bidirectional microgrid-to-aircraft (M2A)/aircraft-to-microgrid (A2M) operations can be performed. The aircraft ground power unit (GPU) function can be preserved by the developed microgrid. The MEA on-board facilities can be powered by the microgrid, including the 115 V/400 Hz AC bus, the 270 V DC bus, the switched-reluctance motor (SRM) drive, etc. Full article
(This article belongs to the Special Issue Electric Power Systems and Components for All-Electric Aircraft)
Show Figures

Figure 1

16 pages, 5409 KB  
Article
A Basic Design Tool for Grid-Connected AC–DC Converters Using Silcon Carbide MOSFETs
by Myoungho Kim and Hyeok-Jin Yun
Electronics 2023, 12(23), 4828; https://doi.org/10.3390/electronics12234828 - 29 Nov 2023
Cited by 2 | Viewed by 2612
Abstract
The design and optimization of power converters is a key factor in the growth and development of the power electronics field. However, the process of designing a power converter is not straightforward, and engineers often rely on experience and intuition, sometimes requiring time-consuming [...] Read more.
The design and optimization of power converters is a key factor in the growth and development of the power electronics field. However, the process of designing a power converter is not straightforward, and engineers often rely on experience and intuition, sometimes requiring time-consuming computer simulations. This paper presents a tool for the basic design of grid-connected AC–DC converters. The design tool takes specifications and operating conditions for two-level and three-level NPC converter topologies and derives a draft design. The tool calculates the input filter’s electrical parameters, the converter’s losses, the temperature rise of the power semiconductor devices, and the ripple current and voltage of the DC-link capacitor. In order to validate the proposed design tool, four AC–DC converters using SiC MOSFETs were designed. Based on the design results, simulation models and prototypes were fabricated to verify the performance and confirm that the proposed design tool can be used in the basic design process of converters. Full article
(This article belongs to the Special Issue Applications and Design of Power Electronic Converters)
Show Figures

Figure 1

6 pages, 3795 KB  
Proceeding Paper
Nonlinear Control Design of Three-Level Neutral-Point-Clamped-Based High-Voltage Direct Current Systems for Enhanced Availability during AC Faults with Semi-Experimental Validation
by Ilyass El Myasse, Aziz Watil, Abdelmounime El Magri and Ambe Harrison
Eng. Proc. 2023, 56(1), 35; https://doi.org/10.3390/ASEC2023-15336 - 26 Oct 2023
Cited by 6 | Viewed by 994
Abstract
This research paper addresses the issue of enhancing the operational availability of NPC three-level converter-based high-voltage direct current (HVDC) transport systems during alternating current (AC) grid fault conditions. During short-circuit faults in power transmission lines, voltage sags can occur, causing fluctuations in the [...] Read more.
This research paper addresses the issue of enhancing the operational availability of NPC three-level converter-based high-voltage direct current (HVDC) transport systems during alternating current (AC) grid fault conditions. During short-circuit faults in power transmission lines, voltage sags can occur, causing fluctuations in the DC link voltage of converter systems. These voltage sags have the potential to induce a reversed power flow and trip the VSC-HVDC transmission system. The objective of this paper is to develop a nonlinear control technique that investigates the fault ride-through (FRT) capability of VSC-HVDC transmission system characteristics during voltage sag events. To achieve this, we conduct semi-experimental investigations using Processor-in-the-Loop (PIL) simulations and analyze the results. Symmetrical and asymmetrical voltage sag events with different remaining voltages are applied to an AC grid, and their effects are observed for varying durations. The proposed nonlinear control technique aims to mitigate the impact of voltage sags on the operational availability of HVDC transport systems. By analyzing the semi-experimental results, we aim to gain insights into the FRT capability of the VSC-HVDC transmission system. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

18 pages, 7060 KB  
Article
Torque Increase Strategy for Induction Motor in the Field-Weakening Region Based on Model Predictive Control
by Jingtao Huang, Shuai Liu, Peng Zhang and Yanan Wang
Actuators 2023, 12(10), 395; https://doi.org/10.3390/act12100395 - 22 Oct 2023
Cited by 4 | Viewed by 3138
Abstract
In the field-weakening region, the traditional field-weakening method for induction motor drives based on model predictive control (MPC) is to take a no-load operation as the premise and adjust the flux reference in the cost function proportional to the inverse of the rotor [...] Read more.
In the field-weakening region, the traditional field-weakening method for induction motor drives based on model predictive control (MPC) is to take a no-load operation as the premise and adjust the flux reference in the cost function proportional to the inverse of the rotor speed, which leads to poor torque output. This paper presents a novel field-weakening method for IM drives based on MPC. Considering the induction motor field-weakening limiting conditions and according to the speed adaptive field-weakening strategy with a voltage closed-loop, the speed adaptive field-weakening controllers were designed to optimize the references of the excitation current and torque current. In the rotor field-orientation d–q coordinate system, the stator flux amplitude and torque reference values were optimized by the optimal distribution current. Then, according to the dead-beat control principle, they were converted into an equivalent stator flux vector reference. Moreover, the stator voltage vector reference can be obtained. For an induction motor fed by a three-level neutral point clamped (3L-NPC) inverter, the cost function was constructed by combining all the constraints, including the voltage vector, the neutral potential balance, and the switching frequency. In this way, the high-performance field-weakening operation for the induction motor based on a model predictive control can be realized. The simulation and experiment results show that the proposed method can increase the torque output by 22% in the field-weakening region; at the same time, the steady characteristics and the dynamic response performance can be maintained well. Full article
(This article belongs to the Special Issue Applications of Intelligent Control in Actuators Systems)
Show Figures

Figure 1

18 pages, 5800 KB  
Article
Optimal Design of a Hybrid Power System for a Remote Fishpond Based on Hydro-Turbine Performance Parameters
by Milan Tomović, Milena Gajić, Dardan Klimenta and Miroljub Jevtić
Electronics 2023, 12(20), 4254; https://doi.org/10.3390/electronics12204254 - 14 Oct 2023
Cited by 3 | Viewed by 1532
Abstract
This paper proposes an optimal solution for the design of a hybrid power system that will supply a remote fishpond in eastern Serbia. In terms of structure, this off-grid system should be a hydro-photovoltaic-diesel-converter-battery setup. The optimization objectives are to minimize total net [...] Read more.
This paper proposes an optimal solution for the design of a hybrid power system that will supply a remote fishpond in eastern Serbia. In terms of structure, this off-grid system should be a hydro-photovoltaic-diesel-converter-battery setup. The optimization objectives are to minimize total net present cost (NPC) and greenhouse gas (GHG) emissions and to maximize total annual electricity generation based on the modification of hydro-turbine performance. This study considers the following three cases of a hydro-turbine with fixed propeller blades: having fixed guide vanes, for the annual average flow rate-Case 1; having adjustable guide vanes, for smaller flow rates-Case 2 and having adjustable guide vanes, for higher flow rates-Case 3. The optimization is performed using HOMER Pro v. 3.16.2 software. The results show that the total NPC, levelized cost of energy (COE) and GHG emissions in Case 3 are 16.6%, 16.8% and 13.1% lower than in Case 1, and 8.1%, 8% and 11.7% lower than in Case 2, respectively. It is also found that the total annual electricity generation and power output from the entire system in Case 3 are 33.3% and 1.2% higher than in Case 1, and 11.9% higher and not different than in Case 2, respectively. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

Back to TopTop