Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,256)

Search Parameters:
Keywords = three-dimensional (3D) imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4909 KiB  
Article
Rapid 3D Camera Calibration for Large-Scale Structural Monitoring
by Fabio Bottalico, Nicholas A. Valente, Christopher Niezrecki, Kshitij Jerath, Yan Luo and Alessandro Sabato
Remote Sens. 2025, 17(15), 2720; https://doi.org/10.3390/rs17152720 - 6 Aug 2025
Abstract
Computer vision techniques such as three-dimensional digital image correlation (3D-DIC) and three-dimensional point tracking (3D-PT) have demonstrated broad applicability for monitoring the conditions of large-scale engineering systems by reconstructing and tracking dynamic point clouds corresponding to the surface of a structure. Accurate stereophotogrammetry [...] Read more.
Computer vision techniques such as three-dimensional digital image correlation (3D-DIC) and three-dimensional point tracking (3D-PT) have demonstrated broad applicability for monitoring the conditions of large-scale engineering systems by reconstructing and tracking dynamic point clouds corresponding to the surface of a structure. Accurate stereophotogrammetry measurements require the stereo cameras to be calibrated to determine their intrinsic and extrinsic parameters by capturing multiple images of a calibration object. This image-based approach becomes cumbersome and time-consuming as the size of the tested object increases. To streamline the calibration and make it scale-insensitive, a multi-sensor system embedding inertial measurement units and a laser sensor is developed to compute the extrinsic parameters of the stereo cameras. In this research, the accuracy of the proposed sensor-based calibration method in performing stereophotogrammetry is validated experimentally and compared with traditional approaches. Tests conducted at various scales reveal that the proposed sensor-based calibration enables reconstructing both static and dynamic point clouds, measuring displacements with an accuracy higher than 95% compared to image-based traditional calibration, while being up to an order of magnitude faster and easier to deploy. The novel approach has broad applications for making static, dynamic, and deformation measurements to transform how large-scale structural health monitoring can be performed. Full article
(This article belongs to the Special Issue New Perspectives on 3D Point Cloud (Third Edition))
Show Figures

Figure 1

20 pages, 4468 KiB  
Article
A Matrix Effect Calibration Method of Laser-Induced Breakdown Spectroscopy Based on Laser Ablation Morphology
by Hongliang Pei, Qingwen Fan, Yixiang Duan and Mingtao Zhang
Appl. Sci. 2025, 15(15), 8640; https://doi.org/10.3390/app15158640 - 4 Aug 2025
Viewed by 122
Abstract
To improve the accuracy of three-dimensional (3D) reconstruction under microscopic conditions for laser-induced breakdown spectroscopy (LIBS), this study developed a novel visual platform by integrating an industrial CCD camera with a microscope. A customized microscale calibration target was designed to calibrate intrinsic and [...] Read more.
To improve the accuracy of three-dimensional (3D) reconstruction under microscopic conditions for laser-induced breakdown spectroscopy (LIBS), this study developed a novel visual platform by integrating an industrial CCD camera with a microscope. A customized microscale calibration target was designed to calibrate intrinsic and extrinsic camera parameters accurately. Based on the pinhole imaging model, disparity maps were obtained via pixel matching to reconstruct high-precision 3D ablation morphology. A mathematical model was established to analyze how key imaging parameters—baseline distance, focal length, and depth of field—affect reconstruction accuracy in micro-imaging environments. Focusing on trace element detection in WC-Co alloy samples, the reconstructed ablation craters enabled the precise calculation of ablation volumes and revealed their correlations with laser parameters (energy, wavelength, pulse duration) and the physical-chemical properties of the samples. Multivariate regression analysis was employed to investigate how ablation morphology and plasma evolution jointly influence LIBS quantification. A nonlinear calibration model was proposed, significantly suppressing matrix effects, achieving R2 = 0.987, and reducing RMSE to 0.1. This approach enhances micro-scale LIBS accuracy and provides a methodological reference for high-precision spectral analysis in environmental and materials applications. Full article
(This article belongs to the Special Issue Novel Laser-Based Spectroscopic Techniques and Applications)
Show Figures

Figure 1

21 pages, 5966 KiB  
Article
Study on Mechanism and Constitutive Modelling of Secondary Anisotropy of Surrounding Rock of Deep Tunnels
by Kang Yi, Peilin Gong, Zhiguo Lu, Chao Su and Kaijie Duan
Symmetry 2025, 17(8), 1234; https://doi.org/10.3390/sym17081234 - 4 Aug 2025
Viewed by 93
Abstract
Crack initiation, propagation, and slippage serve as the key mesoscopic mechanisms contributing to the deterioration of deep tunnel surrounding rocks. In this study, a secondary anisotropy of deep tunnels surrounding rocks was proposed: The axial-displacement constraint of deep tunnels forces cracks in the [...] Read more.
Crack initiation, propagation, and slippage serve as the key mesoscopic mechanisms contributing to the deterioration of deep tunnel surrounding rocks. In this study, a secondary anisotropy of deep tunnels surrounding rocks was proposed: The axial-displacement constraint of deep tunnels forces cracks in the surrounding rock to initiate, propagate, and slip in planes parallel to the tunnel axial direction. These cracks have no significant effect on the axial strength of the surrounding rock but significantly reduce the tangential strength, resulting in the secondary anisotropy. First, the secondary anisotropy was verified by a hybrid stress–strain controlled true triaxial test of sandstone specimens, a CT 3D (computed tomography three-dimensional) reconstruction of a fractured sandstone specimen, a numerical simulation of heterogeneous rock specimens, and field borehole TV (television) images. Subsequently, a novel SSA (strain-softening and secondary anisotropy) constitutive model was developed to characterise the secondary anisotropy of the surrounding rock and developed using C++ into a numerical form that can be called by FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions). Finally, effects of secondary anisotropy on a deep tunnel surrounding rock were analysed by comparing the results calculated by the SSA model and a uniform strain-softening model. The results show that considering the secondary anisotropy, the extent of strain-softening of the surrounding rock was mitigated, particularly the axial strain-softening. Moreover, it reduced the surface displacement, plastic zone, and dissipated plastic strain energy of the surrounding rock. The proposed SSA model can precisely characterise the objectively existent secondary anisotropy, enhancing the accuracy of numerical simulations for tunnels, particularly for deep tunnels. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

34 pages, 4238 KiB  
Review
Optical Fringe Projection: A Straightforward Approach to 3D Metrology
by Rigoberto Juarez-Salazar, Sofia Esquivel-Hernandez and Victor H. Diaz-Ramirez
Metrology 2025, 5(3), 47; https://doi.org/10.3390/metrology5030047 - 3 Aug 2025
Viewed by 118
Abstract
Optical fringe projection is an outstanding technology that significantly enhances three-dimensional (3D) metrology in numerous applications in science and engineering. Although the complexity of fringe projection systems may be overwhelming, current scientific advances bring improved models and methods that simplify the design and [...] Read more.
Optical fringe projection is an outstanding technology that significantly enhances three-dimensional (3D) metrology in numerous applications in science and engineering. Although the complexity of fringe projection systems may be overwhelming, current scientific advances bring improved models and methods that simplify the design and calibration of these systems, making 3D metrology less complicated. This paper provides an overview of the fundamentals of fringe projection profilometry, including imaging, stereo systems, phase demodulation, triangulation, and calibration. Some applications are described to highlight the usefulness and accuracy of modern optical fringe projection profilometers, impacting 3D metrology in different fields of science and engineering. Full article
(This article belongs to the Special Issue Advancements in Optical Measurement Devices and Technologies)
Show Figures

Figure 1

24 pages, 29785 KiB  
Article
Multi-Scale Feature Extraction with 3D Complex-Valued Network for PolSAR Image Classification
by Nana Jiang, Wenbo Zhao, Jiao Guo, Qiang Zhao and Jubo Zhu
Remote Sens. 2025, 17(15), 2663; https://doi.org/10.3390/rs17152663 - 1 Aug 2025
Viewed by 233
Abstract
Compared to traditional real-valued neural networks, which process only amplitude information, complex-valued neural networks handle both amplitude and phase information, leading to superior performance in polarimetric synthetic aperture radar (PolSAR) image classification tasks. This paper proposes a multi-scale feature extraction (MSFE) method based [...] Read more.
Compared to traditional real-valued neural networks, which process only amplitude information, complex-valued neural networks handle both amplitude and phase information, leading to superior performance in polarimetric synthetic aperture radar (PolSAR) image classification tasks. This paper proposes a multi-scale feature extraction (MSFE) method based on a 3D complex-valued network to improve classification accuracy by fully leveraging multi-scale features, including phase information. We first designed a complex-valued three-dimensional network framework combining complex-valued 3D convolution (CV-3DConv) with complex-valued squeeze-and-excitation (CV-SE) modules. This framework is capable of simultaneously capturing spatial and polarimetric features, including both amplitude and phase information, from PolSAR images. Furthermore, to address robustness degradation from limited labeled samples, we introduced a multi-scale learning strategy that jointly models global and local features. Specifically, global features extract overall semantic information, while local features help the network capture region-specific semantics. This strategy enhances information utilization by integrating multi-scale receptive fields, complementing feature advantages. Extensive experiments on four benchmark datasets demonstrated that the proposed method outperforms various comparison methods, maintaining high classification accuracy across different sampling rates, thus validating its effectiveness and robustness. Full article
Show Figures

Graphical abstract

19 pages, 1954 KiB  
Article
Image Sensor-Based Three-Dimensional Visible Light Positioning for Various Environments
by Xiangyu Liu, Junqi Zhang, Song Song and Lei Guo
Sensors 2025, 25(15), 4741; https://doi.org/10.3390/s25154741 - 1 Aug 2025
Viewed by 184
Abstract
Research on image sensor (IS)-based visible light positioning systems has attracted widespread attention. However, when the receiver is tilted or under a single LED, the positioning system can only achieve two-dimensional (2D) positioning and requires the assistance of inertial measurement units (IMU). When [...] Read more.
Research on image sensor (IS)-based visible light positioning systems has attracted widespread attention. However, when the receiver is tilted or under a single LED, the positioning system can only achieve two-dimensional (2D) positioning and requires the assistance of inertial measurement units (IMU). When the LED is not captured or decoding fails, the system’s positioning error increases further. Thus, we propose a novel three-dimensional (3D) visible light positioning system based on image sensors for various environments. Specifically, (1) we use IMU to obtain the receiver’s state and calculate the receiver’s 2D position. Then, we fit the height–size curve to calculate the receiver’s height, avoiding the coordinate iteration error in traditional 3D positioning methods. (2) When no LED or decoding fails, we propose a firefly-assisted unscented particle filter (FA-UPF) algorithm to predict the receiver’s position, achieving high-precision dynamic positioning. The experimental results show that the system positioning error under a single LED is within 10 cm, and the average positioning error through FA-UPF under no light source is 6.45 cm. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

20 pages, 8446 KiB  
Article
Extraction of Corrosion Damage Features of Serviced Cable Based on Three-Dimensional Point Cloud Technology
by Tong Zhu, Shoushan Cheng, Haifang He, Kun Feng and Jinran Zhu
Materials 2025, 18(15), 3611; https://doi.org/10.3390/ma18153611 - 31 Jul 2025
Viewed by 151
Abstract
The corrosion of high-strength steel wires is a key factor impacting the durability and reliability of cable-stayed bridges. In this study, the corrosion pit features on a high-strength steel wire, which had been in service for 27 years, were extracted and modeled using [...] Read more.
The corrosion of high-strength steel wires is a key factor impacting the durability and reliability of cable-stayed bridges. In this study, the corrosion pit features on a high-strength steel wire, which had been in service for 27 years, were extracted and modeled using three-dimensional point cloud data obtained through 3D surface scanning. The Otsu method was applied for image binarization, and each corrosion pit was geometrically represented as an ellipse. Key pit parameters—including length, width, depth, aspect ratio, and a defect parameter—were statistically analyzed. Results of the Kolmogorov–Smirnov (K–S) test at a 95% confidence level indicated that the directional angle component (θ) did not conform to any known probability distribution. In contrast, the pit width (b) and defect parameter (Φ) followed a generalized extreme value distribution, the aspect ratio (b/a) matched a Beta distribution, and both the pit length (a) and depth (d) were best described by a Gaussian mixture model. The obtained results provide valuable reference for assessing the stress state, in-service performance, and predicted remaining service life of operational stay cables. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 6842 KiB  
Article
Inside the Framework: Structural Exploration of Mesoporous Silicas MCM-41, SBA-15, and SBA-16
by Agnieszka Karczmarska, Wiktoria Laskowska, Danuta Stróż and Katarzyna Pawlik
Materials 2025, 18(15), 3597; https://doi.org/10.3390/ma18153597 - 31 Jul 2025
Viewed by 270
Abstract
In the rapidly evolving fields of materials science, catalysis, electronics, drug delivery, and environmental remediation, the development of effective substrates for molecular deposition has become increasingly crucial. Ordered mesoporous silica materials have garnered significant attention due to their unique structural properties and exceptional [...] Read more.
In the rapidly evolving fields of materials science, catalysis, electronics, drug delivery, and environmental remediation, the development of effective substrates for molecular deposition has become increasingly crucial. Ordered mesoporous silica materials have garnered significant attention due to their unique structural properties and exceptional potential as substrates for molecular immobilization across these diverse applications. This study compares three mesoporous silica powders: MCM-41, SBA-15, and SBA-16. A multi-technique characterization approach was employed, utilizing low- and wide-angle X-ray diffraction (XRD), nitrogen physisorption, and transmission electron microscopy (TEM) to elucidate the structure–property relationships of these materials. XRD analysis confirmed the amorphous nature of silica frameworks and revealed distinct pore symmetries: a two-dimensional hexagonal (P6mm) structure for MCM-41 and SBA-15, and three-dimensional cubic (Im3¯m) structure for SBA-16. Nitrogen sorption measurements demonstrated significant variations in textural properties, with MCM-41 exhibiting uniform cylindrical mesopores and the highest surface area, SBA-15 displaying hierarchical meso- and microporosity confirmed by NLDFT analysis, and SBA-16 showing a complex 3D interconnected cage-like structure with broad pore size distribution. TEM imaging provided direct visualization of particle morphology and internal pore architecture, enabling estimation of lattice parameters and identification of structural gradients within individual particles. The integration of these complementary techniques proved essential for comprehensive material characterization, particularly for MCM-41, where its small particle size (45–75 nm) contributed to apparent structural inconsistencies between XRD and sorption data. This integrated analytical approach provides valuable insights into the fundamental structure–property relationships governing ordered mesoporous silica materials and demonstrates the necessity of combined characterization strategies for accurate structural determination. Full article
Show Figures

Graphical abstract

12 pages, 456 KiB  
Article
From Variability to Standardization: The Impact of Breast Density on Background Parenchymal Enhancement in Contrast-Enhanced Mammography and the Need for a Structured Reporting System
by Graziella Di Grezia, Antonio Nazzaro, Luigi Schiavone, Cisternino Elisa, Alessandro Galiano, Gatta Gianluca, Cuccurullo Vincenzo and Mariano Scaglione
Cancers 2025, 17(15), 2523; https://doi.org/10.3390/cancers17152523 - 30 Jul 2025
Viewed by 492
Abstract
Introduction: Breast density is a well-recognized factor in breast cancer risk assessment, with higher density linked to increased malignancy risk and reduced sensitivity of conventional mammography. Background parenchymal enhancement (BPE), observed in contrast-enhanced imaging, reflects physiological contrast uptake in non-pathologic breast tissue. [...] Read more.
Introduction: Breast density is a well-recognized factor in breast cancer risk assessment, with higher density linked to increased malignancy risk and reduced sensitivity of conventional mammography. Background parenchymal enhancement (BPE), observed in contrast-enhanced imaging, reflects physiological contrast uptake in non-pathologic breast tissue. While extensively characterized in breast MRI, the role of BPE in contrast-enhanced mammography (CEM) remains uncertain due to inconsistent findings regarding its correlation with breast density and cancer risk. Unlike breast density—standardized through the ACR BI-RADS lexicon—BPE lacks a uniform classification system in CEM, leading to variability in clinical interpretation and research outcomes. To address this gap, we introduce the BPE-CEM Standard Scale (BCSS), a structured four-tiered classification system specifically tailored to the two-dimensional characteristics of CEM, aiming to improve consistency and diagnostic alignment in BPE evaluation. Materials and Methods: In this retrospective single-center study, 213 patients who underwent mammography (MG), ultrasound (US), and contrast-enhanced mammography (CEM) between May 2022 and June 2023 at the “A. Perrino” Hospital in Brindisi were included. Breast density was classified according to ACR BI-RADS (categories A–D). BPE was categorized into four levels: Minimal (< 10% enhancement), Light (10–25%), Moderate (25–50%), and Marked (> 50%). Three radiologists independently assessed BPE in a subset of 50 randomly selected cases to evaluate inter-observer agreement using Cohen’s kappa. Correlations between BPE, breast density, and age were examined through regression analysis. Results: BPE was Minimal in 57% of patients, Light in 31%, Moderate in 10%, and Marked in 2%. A significant positive association was found between higher breast density (BI-RADS C–D) and increased BPE (p < 0.05), whereas lower-density breasts (A–B) were predominantly associated with minimal or light BPE. Regression analysis confirmed a modest but statistically significant association between breast density and BPE (R2 = 0.144), while age showed no significant effect. Inter-observer agreement for BPE categorization using the BCSS was excellent (κ = 0.85; 95% CI: 0.78–0.92), supporting its reproducibility. Conclusions: Our findings indicate that breast density is a key determinant of BPE in CEM. The proposed BCSS offers a reproducible, four-level framework for standardized BPE assessment tailored to the imaging characteristics of CEM. By reducing variability in interpretation, the BCSS has the potential to improve diagnostic consistency and facilitate integration of BPE into personalized breast cancer risk models. Further prospective multicenter studies are needed to validate this classification and assess its clinical impact. Full article
Show Figures

Figure 1

21 pages, 711 KiB  
Systematic Review
Recent Developments in Image-Based 3D Reconstruction Using Deep Learning: Methodologies and Applications
by Diana-Carmen Rodríguez-Lira, Diana-Margarita Córdova-Esparza, Juan Terven, Julio-Alejandro Romero-González, José Manuel Alvarez-Alvarado, José-Joel González-Barbosa and Alfonso Ramírez-Pedraza
Electronics 2025, 14(15), 3032; https://doi.org/10.3390/electronics14153032 - 30 Jul 2025
Viewed by 429
Abstract
Three-dimensional (3D) reconstruction from images has significantly advanced due to recent developments in deep learning, yet methodological variations and diverse application contexts pose ongoing challenges. This systematic review examines the state-of-the-art deep learning techniques employed for image-based 3D reconstruction from 2019 to 2025. [...] Read more.
Three-dimensional (3D) reconstruction from images has significantly advanced due to recent developments in deep learning, yet methodological variations and diverse application contexts pose ongoing challenges. This systematic review examines the state-of-the-art deep learning techniques employed for image-based 3D reconstruction from 2019 to 2025. Through an extensive analysis of peer-reviewed studies, predominant methodologies, performance metrics, sensor types, and application domains are identified and assessed. Results indicate multi-view stereo and monocular depth estimation as prevailing methods, while hybrid architectures integrating classical and deep learning techniques demonstrate enhanced performance, especially in complex scenarios. Critical challenges remain, particularly in handling occlusions, low-texture areas, and varying lighting conditions, highlighting the importance of developing robust, adaptable models. Principal conclusions highlight the efficacy of integrated quantitative and qualitative evaluations, the advantages of hybrid methods, and the pressing need for computationally efficient and generalizable solutions suitable for real-world applications. Full article
(This article belongs to the Special Issue 3D Computer Vision and 3D Reconstruction)
Show Figures

Figure 1

25 pages, 6401 KiB  
Article
Efficient Sampling Schemes for 3D Imaging of Radar Target Scattering Based on Synchronized Linear Scanning and Rotational Motion
by Changyu Lou, Jingcheng Zhao, Xingli Wu, Yuchen Zhang, Zongkai Yang, Jiahui Li and Jungang Miao
Remote Sens. 2025, 17(15), 2636; https://doi.org/10.3390/rs17152636 - 29 Jul 2025
Viewed by 258
Abstract
Three-dimensional (3D) radar imaging is essential for target detection and measurement of scattering characteristics. Cylindrical scanning, a prevalent spatial sampling technique, provides benefits in engineering applications and has been extensively utilized for assessing the radar stealth capabilities of large aircraft. Traditional cylindrical scanning [...] Read more.
Three-dimensional (3D) radar imaging is essential for target detection and measurement of scattering characteristics. Cylindrical scanning, a prevalent spatial sampling technique, provides benefits in engineering applications and has been extensively utilized for assessing the radar stealth capabilities of large aircraft. Traditional cylindrical scanning generally utilizes highly sampled full-coverage techniques, leading to an excessive quantity of sampling points and diminished image efficiency, constraining its use for quick detection applications. This work presents an efficient 3D sampling strategy that integrates vertical linear scanning with horizontal rotating motion to overcome these restrictions. A joint angle–space sampling model is developed, and geometric constraints are implemented to enhance the scanning trajectory. The experimental results demonstrate that, compared to conventional techniques, the proposed method achieves a 94% reduction in the scanning duration while maintaining a peak sidelobe level ratio (PSLR) of 12 dB. Furthermore, this study demonstrates that 3D imaging may be accomplished solely by a “V”-shaped trajectory, efficiently determining the minimal possible sampling aperture. This approach offers novel insights and theoretical backing for the advancement of high-efficiency, low-redundancy 3D radar imaging systems. Full article
(This article belongs to the Special Issue Recent Advances in SAR: Signal Processing and Target Recognition)
Show Figures

Figure 1

27 pages, 7457 KiB  
Article
Three-Dimensional Imaging of High-Contrast Subsurface Anomalies: Composite Model-Constrained Dual-Parameter Full-Waveform Inversion for GPR
by Siyuan Ding, Deshan Feng, Xun Wang, Tianxiao Yu, Shuo Liu and Mengchen Yang
Appl. Sci. 2025, 15(15), 8401; https://doi.org/10.3390/app15158401 - 29 Jul 2025
Viewed by 131
Abstract
Civil engineering structures with damage, defects, or subsurface utilities create a high-contrast exploration environment. These anomalies of interest exhibit different electromagnetic properties from the surrounding medium, and ground-penetrating radar (GPR) has the potential to accurately locate and map their three-dimensional (3D) distributions. However, [...] Read more.
Civil engineering structures with damage, defects, or subsurface utilities create a high-contrast exploration environment. These anomalies of interest exhibit different electromagnetic properties from the surrounding medium, and ground-penetrating radar (GPR) has the potential to accurately locate and map their three-dimensional (3D) distributions. However, full-waveform inversion (FWI) for GPR data struggles to simultaneously reconstruct high-resolution 3D images of both permittivity and conductivity models. Considering the magnitude and sensitivity disparities of the model parameters in the inversion of GPR data, this study proposes a 3D dual-parameter FWI algorithm for GPR with a composite model constraint strategy. It balances the gradient updates of permittivity and conductivity models through performing total variation (TV) regularization and minimum support gradient (MSG) regularization on different parameters in the inversion process. Numerical experiments show that TV regularization can optimize permittivity reconstruction, while MSG regularization is more suitable for conductivity inversion. The TV+MSG composite model constraint strategy improves the accuracy and stability of dual-parameter inversion, providing a robust solution for the 3D imaging of subsurface anomalies with high-contrast features. These outcomes offer researchers theoretical insights and a valuable reference when investigating scenarios with high-contrast environments. Full article
Show Figures

Figure 1

16 pages, 1758 KiB  
Case Report
3D Printing Today, AI Tomorrow: Rethinking Apert Syndrome Surgery in Low-Resource Settings
by Maria Bajwa, Mustafa Pasha and Zafar Bajwa
Healthcare 2025, 13(15), 1844; https://doi.org/10.3390/healthcare13151844 - 29 Jul 2025
Viewed by 239
Abstract
Background/Objectives: This case study presents the first documented use of a low-cost, simulated, patient-specific three-dimensional (3D) printed model to support presurgical planning for an infant with Apert syndrome in a resource-limited setting. The primary objectives are to (1) demonstrate the value of 3D [...] Read more.
Background/Objectives: This case study presents the first documented use of a low-cost, simulated, patient-specific three-dimensional (3D) printed model to support presurgical planning for an infant with Apert syndrome in a resource-limited setting. The primary objectives are to (1) demonstrate the value of 3D printing as a simulation tool for preoperative planning in low-resource environments and (2) identify opportunities for future AI-enhanced simulation models in craniofacial surgical planning. Methods: High-resolution CT data were segmented using InVesalius 3, with mesh refinement performed in ANSYS SpaceClaim (version 2021). The cranial model was fabricated using fused deposition modeling (FDM) on a Creality Ender-3 printer with Acrylonitrile Butadiene Styrene (ABS) filament. Results: The resulting 3D-printed simulated model enabled the surgical team to assess cranial anatomy, simulate incision placement, and rehearse osteotomies. These steps contributed to a reduction in operative time and fewer complications during surgery. Conclusions: This case demonstrates the value of accessible 3D printing as a simulation tool in surgical planning within low-resource settings. Building on this success, the study highlights potential points for AI integration, such as automated image segmentation and model reconstruction, to increase efficiency and scalability in future 3D-printed simulation models. Full article
Show Figures

Figure 1

13 pages, 4474 KiB  
Article
Imaging on the Edge: Mapping Object Corners and Edges with Stereo X-Ray Tomography
by Zhenduo Shang and Thomas Blumensath
Tomography 2025, 11(8), 84; https://doi.org/10.3390/tomography11080084 - 29 Jul 2025
Viewed by 165
Abstract
Background/Objectives: X-ray computed tomography (XCT) is a powerful tool for volumetric imaging, where three-dimensional (3D) images are generated from a large number of individual X-ray projection images. However, collecting the required number of low-noise projection images is time-consuming, limiting its applicability to scenarios [...] Read more.
Background/Objectives: X-ray computed tomography (XCT) is a powerful tool for volumetric imaging, where three-dimensional (3D) images are generated from a large number of individual X-ray projection images. However, collecting the required number of low-noise projection images is time-consuming, limiting its applicability to scenarios requiring high temporal resolution, such as the study of dynamic processes. Inspired by stereo vision, we previously developed stereo X-ray imaging methods that operate with only two X-ray projections, enabling the 3D reconstruction of point and line fiducial markers at significantly faster temporal resolutions. Methods: Building on our prior work, this paper demonstrates the use of stereo X-ray techniques for 3D reconstruction of sharp object corners, eliminating the need for internal fiducial markers. This is particularly relevant for deformation measurement of manufactured components under load. Additionally, we explore model training using synthetic data when annotated real data is unavailable. Results: We show that the proposed method can reliably reconstruct sharp corners in 3D using only two X-ray projections. The results confirm the method’s applicability to real-world stereo X-ray images without relying on annotated real training datasets. Conclusions: Our approach enables stereo X-ray 3D reconstruction using synthetic training data that mimics key characteristics of real data, thereby expanding the method’s applicability in scenarios with limited training resources. Full article
Show Figures

Figure 1

23 pages, 12630 KiB  
Article
Security-Enhanced Three-Dimensional Image Hiding Based on Layer-Based Phase-Only Hologram Under Structured Light Illumination
by Biao Zhu, Enhong Chen, Yiwen Wang and Yanfeng Su
Photonics 2025, 12(8), 756; https://doi.org/10.3390/photonics12080756 - 28 Jul 2025
Viewed by 247
Abstract
In this paper, a security-enhanced three-dimensional (3D) image hiding and encryption method is proposed by combining a layer-based phase-only hologram (POH) under structured light illumination with chaotic encryption and digital image watermarking technology. In the proposed method, the original 3D plaintext image is [...] Read more.
In this paper, a security-enhanced three-dimensional (3D) image hiding and encryption method is proposed by combining a layer-based phase-only hologram (POH) under structured light illumination with chaotic encryption and digital image watermarking technology. In the proposed method, the original 3D plaintext image is firstly encoded into a layer-based POH and then further encrypted into an encrypted phase with the help of a chaotic random phase mask (CRPM). Subsequently, the encrypted phase is embedded into a visible ciphertext image by using a digital image watermarking technology based on discrete wavelet transform (DWT) and singular value decomposition (SVD), leading to a 3D image hiding with high security and concealment. The encoding of POH and the utilization of CRPM can substantially enhance the level of security, and the DWT-SVD-based digital image watermarking can effectively hide the information of the 3D plaintext image in a visible ciphertext image, thus improving the imperceptibility of valid information. It is worth noting that the adopted structured light during the POH encoding possesses many optical parameters, which are all served as the supplementary keys, bringing about a great expansion of key space; meanwhile, the sensitivities of the wavelength key and singular matrix keys are also substantially enhanced thanks to the introduction of structured light, contributing to a significant enhancement of security. Numerical simulations are performed to demonstrate the feasibility of the proposed 3D image hiding method, and the simulation results show that the proposed method exhibits high feasibility and apparent security-enhanced effect as well as strong robustness. Full article
Show Figures

Figure 1

Back to TopTop