Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (268)

Search Parameters:
Keywords = thin-film electrolyte

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1314 KiB  
Review
Electrochemical and Electroless Deposition of High-Entropy Alloy Thin Films: A Review of Plating Conditions, Properties, and Applications
by Ewa Rudnik
Appl. Sci. 2025, 15(14), 8009; https://doi.org/10.3390/app15148009 - 18 Jul 2025
Viewed by 365
Abstract
High-entropy alloys (HEAs) represent a breakthrough class of materials characterized by a unique combination of properties derived from their multielement compositions. This review explores the current advancements in both electrochemical and electroless deposition techniques for synthesizing HEA thin films. This paper discusses the [...] Read more.
High-entropy alloys (HEAs) represent a breakthrough class of materials characterized by a unique combination of properties derived from their multielement compositions. This review explores the current advancements in both electrochemical and electroless deposition techniques for synthesizing HEA thin films. This paper discusses the crucial plating conditions using aqueous or organic electrolytes and various current/potential modes that influence the formation, quality, and properties of these complex alloy coatings. Particular attention is given to their emerging applications in areas such as catalysis, protective coatings, microelectronics, and liquids’ separation. A comparison of electrochemical versus electroless methods reveals insights into the advantages and limitations of each technique for research and industrial use. This comprehensive review aims to guide further innovation in the development and application of HEA coatings. Full article
Show Figures

Figure 1

18 pages, 5941 KiB  
Article
Non-Calcined Metal Tartrate Pore Formers for Lowering Sintering Temperature of Solid Oxide Fuel Cells
by Mehdi Choolaei, Mohsen Fallah Vostakola and Bahman Amini Horri
Crystals 2025, 15(7), 636; https://doi.org/10.3390/cryst15070636 - 10 Jul 2025
Viewed by 301
Abstract
This paper investigates the application of non-calcined metal tartrate as a novel alternative pore former to prepare functional ceramic composites to fabricate solid oxide fuel cells (SOFCs). Compared to carbonaceous pore formers, non-calcined pore formers offer high compatibility with various ceramic composites, providing [...] Read more.
This paper investigates the application of non-calcined metal tartrate as a novel alternative pore former to prepare functional ceramic composites to fabricate solid oxide fuel cells (SOFCs). Compared to carbonaceous pore formers, non-calcined pore formers offer high compatibility with various ceramic composites, providing better control over porosity and pore size distribution, which allows for enhanced gas diffusion, reactant transport and gaseous product release within the fuel cells’ functional layers. In this work, nanocrystalline gadolinium-doped ceria (GDC) and Ni-Gd-Ce-tartrate anode powders were prepared using a single-step co-precipitation synthesis method, based on the carboxylate route, utilising ammonium tartrate as a low-cost, environmentally friendly precipitant. The non-calcined Ni-Gd-Ce-tartrate was used to fabricate dense GDC electrolyte pellets (5–20 μm thick) integrated with a thin film of Ni-GDC anode with controlled porosity at 1300 °C. The dilatometry analysis showed the shrinkage anisotropy factor for the anode substrates prepared using 20 wt. The percentages of Ni-Gd-Ce-tartrate were 30 wt.% and 40 wt.%, with values of 0.98 and 1.01, respectively, showing a significant improvement in microstructural properties and pore size compared to those fabricated using a carbonaceous pore former. The results showed that the non-calcined pore formers can also lower the sintering temperature for GDC to below 1300 °C, saving energy and reducing thermal stresses on the materials. They can also help maintain optimal material properties during sintering, minimising the risk of unwanted chemical reactions or contamination. This flexibility enables the versatile designing and manufacturing of ceramic fuel cells with tailored compositions at a lower cost for large-scale applications. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Graphical abstract

15 pages, 2767 KiB  
Article
Solid-to-Solid Manufacturing Processes for High-Performance Li-Ion Solid-State Batteries
by David Orisekeh, Byeong-Min Roh and Xinyi Xiao
Polymers 2025, 17(13), 1788; https://doi.org/10.3390/polym17131788 - 27 Jun 2025
Viewed by 637
Abstract
Batteries are used as energy storage devices in various equipment. Today, research is focused on solid-state batteries (SSBs), replacing the liquid electrolyte with a solid separator. The solid separators provide electrolyte stability, no leakage, and provide mechanical strength to the battery. Separators are [...] Read more.
Batteries are used as energy storage devices in various equipment. Today, research is focused on solid-state batteries (SSBs), replacing the liquid electrolyte with a solid separator. The solid separators provide electrolyte stability, no leakage, and provide mechanical strength to the battery. Separators are mostly manufactured by either traditional processes or 3D printing technologies. These processes involve making a slurry of plastic, active and conductive material and usually adding a plasticizer when making thin films or filaments for 3D printing. This study investigates the additive manufacturing of solid-state electrolytes (SSEs) by employing fused deposition modeling (FDM) with recyclable, bio-derived polylactic acid (PLA) filaments. Precise control of macro-porosity is achieved by systematically varying key process parameters, including raster orientation, infill percentage, and interlayer adhesion conditions, thereby enabling the formation of tunable, interconnected pore networks within the polymer matrix. Following 3D printing, these engineered porous frameworks are infiltrated with lithium hexafluorophosphate (LiPF6), which functions as the active ionic conductor. A tailored thermal sintering protocol is then applied to promote solid-phase fusion of the embedded salt throughout the macro-porous PLA scaffold, resulting in a mechanically robust and ionically conductive composite separator. The electrochemical ionic conductivity and structural integrity of the sintered SSEs are characterized through electrochemical impedance spectroscopy (EIS) and standardized mechanical testing to assess their suitability for integration into advanced solid-state battery architectures. The solid-state separator achieved an average ionic conductivity of 2.529 × 10−5 S·cm−1. The integrated FDM-sintering process enhances ion exchange at the electrode–electrolyte interface, minimizes material waste, and supports cost-efficient, fully recyclable component fabrication. Full article
Show Figures

Figure 1

15 pages, 2618 KiB  
Article
A Homogeneous Hexagonal-Structured Polymer Electrolyte Framework for High-Performance Polymer-Based Lithium Batteries Applicable at Room Temperature
by Seungjin Lee, Changseong Kim, Suyeon Kim, Gyungmin Hwang, Deokhee Yun, Ilhyeon Cho, Changseop Kim and Joonhyeon Jeon
Polymers 2025, 17(13), 1775; https://doi.org/10.3390/polym17131775 - 26 Jun 2025
Viewed by 460
Abstract
In polymer-based lithium batteries, polymer electrolytes (PEs) exhibit limited ionic conductivity at room temperature (25 °C). To address this issue, this paper describes a hexagonal-structure-based single-ion conducting gel polymer electrolyte (h-SICGPE) framework with a robust and efficient cross-linked polymer network, applicable [...] Read more.
In polymer-based lithium batteries, polymer electrolytes (PEs) exhibit limited ionic conductivity at room temperature (25 °C). To address this issue, this paper describes a hexagonal-structure-based single-ion conducting gel polymer electrolyte (h-SICGPE) framework with a robust and efficient cross-linked polymer network, applicable to polymer-based batteries even at 25 °C. The proposed cross-linked polymer network backbone of the h-SICGPE, as a semisolid-state thin film type, has the homogeneous honeycomb structure incorporating anion receptor(s) inside each of its hexagonal closed cells and is obtained by cross-linking between trimethylolpropane tris(3-mercaptopropionate) and poly(ethylene glycol) diacrylate in a newly synthesized anion–receptor solution. The excellent structural capability of the h-SICGPE incorporating Li+/TFSI can enhance ionic conductivity and electrochemical stability by suppressing crystallinity and expanding free volume. Further, the anion receptor in its free volume helps to effectively increase the lithium-ion transference number by immobilizing counter-anions. Experimental results demonstrate dramatically superior performance at 25 °C, such as ionic conductivity (2.46 mS cm−1), oxidative stability (4.9 V vs. Li/Li+), coulombic efficiency (97.65%), and capacity retention (88.3%). These results confirm the developed h-SICGPE as a promising polymer electrolyte for high-performance polymer-based lithium batteries operable at 25 °C. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 11303 KiB  
Article
Hierarchical Manganese-Doped Nickel–Cobalt Oxide Electrodes with Graphene for Use as High-Energy-Density Supercapacitors
by Kuan-Ching Lee, Guan-Ting Pan, Thomas Chung-Kuang Yang, Po-Cheng Shen, Kuan Lun Pan, Timm Joyce Tiong, Aleksandar N. Nikoloski and Chao-Ming Huang
Surfaces 2025, 8(3), 43; https://doi.org/10.3390/surfaces8030043 - 25 Jun 2025
Viewed by 399
Abstract
Thin films of manganese–nickel–cobalt oxide with graphene (G@MNCO) were deposited on copper foam using electrochemical deposition. NiCo2O4 is the main phase in these films. As the proportion of graphene in the precursor solution increases, the oxygen vacancies in the samples [...] Read more.
Thin films of manganese–nickel–cobalt oxide with graphene (G@MNCO) were deposited on copper foam using electrochemical deposition. NiCo2O4 is the main phase in these films. As the proportion of graphene in the precursor solution increases, the oxygen vacancies in the samples also increase. The microstructure of these samples evolves into hierarchical vertical flake structures. Cyclic voltammetry measurements conducted within the potential range of 0–1.2 V reveal that the electrode with the highest graphene content achieves the highest specific capacitance, approximately 475 F/g. Furthermore, it exhibits excellent cycling durability, maintaining 95.0% of its initial capacitance after 10,000 cycles. The superior electrochemical performance of the graphene-enhanced, manganese-doped nickel–cobalt oxide electrode is attributed to the synergistic contributions of the hierarchical G@MNCO structure, the three-dimensional Cu foam current collector, and the binder-free fabrication process. These features promote quicker electrolyte ion diffusion into the electrode material and ensure robust adhesion of the active materials to the current collector. Full article
(This article belongs to the Special Issue Surface Science in Electrochemical Energy Storage)
Show Figures

Figure 1

21 pages, 4466 KiB  
Article
Quality and Lifetime of Thin Parylene F-VT4 Coatings for Hermetic Encapsulation of Implantable Medical Devices
by Esmaeil Afshari, Rik Verplancke, Maarten Cauwe and Maaike Op de Beeck
Coatings 2025, 15(6), 648; https://doi.org/10.3390/coatings15060648 - 28 May 2025
Cited by 1 | Viewed by 2749
Abstract
This study comprehensively examines the barrier properties, aging behavior, and failure mechanisms of Parylene F-VT4 films, applied at four distinct thicknesses (0.3 µm, 0.6 µm, 0.9 µm, and 1.2 µm), as encapsulation layers for implantable medical devices. Parylene F-VT4, a fluorinated polymer known [...] Read more.
This study comprehensively examines the barrier properties, aging behavior, and failure mechanisms of Parylene F-VT4 films, applied at four distinct thicknesses (0.3 µm, 0.6 µm, 0.9 µm, and 1.2 µm), as encapsulation layers for implantable medical devices. Parylene F-VT4, a fluorinated polymer known for its mechanical flexibility, thermal stability, and chemical inertness, is a promising candidate for long-term hermetic encapsulation. Parylene F-VT4 was uniformly deposited via a dedicated chemical vapor deposition (CVD) process typically used for Parylene depositions. The investigation of the Parylene F-VT4 films included pinhole density characterization, electrochemical impedance spectroscopy (EIS), and testing of coating lifetime based on the resistance of Cu meanders protected by Parylene F-VT4 when immersed in phosphate-buffered saline (PBS) under accelerated aging conditions (PBS at 60 °C) over 550 days. The EIS results demonstrated that thicker coatings (1.2 µm) exhibited excellent barrier properties and resistance to electrolyte penetration, whereas thinner coatings (0.3 µm and 0.6 µm) showed more rapid degradation due to microvoids and pinholes. The temporal evaluation of EIS spectra highlighted the gradual decrease in impedance magnitude, indicating the ingress of ions and water into the coating. The lifetime in PBS at 60 °C was determined by resistance-based lifetime measurements on Cu meander structures coated with Parylene F-VT4 coatings. The lifetime at 37 °C was calculated, assuming an acceleration factor of 2 per 10 °C increase in temperature, yielding lifetimes of approximately 25 days, 6.4 months, 2.3 years, and 4.5 years for 0.3 µm, 0.6 µm, 0.9 µm, and 1.2 µm coatings, respectively. These findings highlight the critical relationship between thickness and durability, providing valuable insights into the long-term performance of thin Parylene F-VT4 films for implantable devices. Full article
(This article belongs to the Special Issue Thin Film Coatings for Medical Biosensing Applications)
Show Figures

Graphical abstract

21 pages, 8938 KiB  
Article
Evaluation of Adhesion Properties of Electrodeposited Copper Thin Films: Theoretical and Experimental Approach
by Ivana O. Mladenović, Jelena S. Lamovec, Dana G. Vasiljević-Radović, Rastko Vasilić, Vesna J. Radojević and Nebojša D. Nikolić
Materials 2025, 18(11), 2480; https://doi.org/10.3390/ma18112480 - 25 May 2025
Viewed by 603
Abstract
The adhesion of copper thin films galvanostatically electrodeposited on Cu cathodes from electrolytes without or with the addition of various additives, such as chloride ions, polyethylene glycol 6000 (PEG 6000), and 3–mercapto–1–propanesulfonic acid, has been investigated. Morphological and structural analyses of synthesized films [...] Read more.
The adhesion of copper thin films galvanostatically electrodeposited on Cu cathodes from electrolytes without or with the addition of various additives, such as chloride ions, polyethylene glycol 6000 (PEG 6000), and 3–mercapto–1–propanesulfonic acid, has been investigated. Morphological and structural analyses of synthesized films were performed using the SEM, AFM, and XRD methods, while the adhesion of the films was examined by applying the theoretical Chen–Gao (C–G) composite hardness model using results from Vickers microindentation, a bidirectional bending test, and a scratch-tape adhesion test. The morphologies of the films were either very smooth, with mirror-like brightness, obtained from the electrolyte containing all three additives, or microcrystalline, with different grain sizes, obtained from other electrolytes. The best adhesion was observed in the fine-grained film with numerous boundaries among grains, obtained with the addition of chloride ions and PEG 6000, while the mirror-bright film obtained with a combination of all three additives showed the worst adhesion. The boundaries among grains represented barriers that decreased the depth of penetration during microindentation and, consequently, increased the hardness and enhanced the adhesion of the film. The size of the grains—and hence, the number of grain boundaries—was regulated by the composition of the electrolytes achieved by the addition of additives. Good agreement was observed among the various methods used for the estimation of the adhesion properties of Cu films. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials (5th Edition))
Show Figures

Graphical abstract

20 pages, 3178 KiB  
Article
Calcium Ion Sensors with Unrivaled Stability and Selectivity Using a Bilayer Approach with Ionically Imprinted Nanocomposites
by Antonio Ruiz-Gonzalez, Roohi Chhabra, Xun Cao, Yizhong Huang, Andrew Davenport and Kwang-Leong Choy
Nanomaterials 2025, 15(10), 741; https://doi.org/10.3390/nano15100741 - 15 May 2025
Viewed by 470
Abstract
Calcium ion sensors are essential in clinical diagnosis, particularly in the management of chronic kidney disease. Multiple approaches have been developed to measure calcium ions, including flame photometry and ion chromatography. However, these devices are bulky and require specialized staff for operation and [...] Read more.
Calcium ion sensors are essential in clinical diagnosis, particularly in the management of chronic kidney disease. Multiple approaches have been developed to measure calcium ions, including flame photometry and ion chromatography. However, these devices are bulky and require specialized staff for operation and evaluation. The integration of all-solid-state ion-selective determination allows the design of miniaturized and low-cost sensing that can be used for the continuous monitoring of electrolytes. However, clinical use has been limited due to the low electrochemical stability and selectivity and high noise rate. This manuscript reports for the first time a novel miniaturized Ca2+ ion-selective sensor, developed by using a two-layer nanocomposite thin film (5 µm thick). The device consists of functionalized silica nanoparticles embedded in a poly(vinyl chloride) (PVC) film, which was deposited onto a nanoporous zirconium silicate nanoparticle layer that served as the sensing surface. Systematic evaluation revealed that perfluoroalkane-functionalized silica nanoparticles enhanced Ca2+ selectivity by minimizing K+ diffusion, confirmed by both potentiometric measurements and quartz microbalance studies. The final sensor demonstrated a super-Nernstian sensitivity of 37 mV/Log[Ca2+], a low signal drift of 28 µV/s, a limit of detection of 1 µM, and exceptional selectivity against Na+, K+, and Mg2+ ions. Long-term testing showed stable performance over three months of continuous operation. Clinical testing was conducted on patients with chronic kidney disease. An accurate real-time monitoring of electrolyte dynamics in dialysate samples was observed, where final concentrations matched those observed in physiological conditions. Full article
Show Figures

Figure 1

34 pages, 8692 KiB  
Review
Recent Advances in Polyphenylene Sulfide-Based Separators for Lithium-Ion Batteries
by Lianlu Wan, Haitao Zhou, Haiyun Zhou, Jie Gu, Chen Wang, Quan Liao, Hongquan Gao, Jianchun Wu and Xiangdong Huo
Polymers 2025, 17(9), 1237; https://doi.org/10.3390/polym17091237 - 30 Apr 2025
Viewed by 828
Abstract
Polyphenylene sulfide (PPS)-based separators have garnered significant attention as high-performance components for next-generation lithium-ion batteries (LIBs), driven by their exceptional thermal stability (>260 °C), chemical inertness, and mechanical durability. This review comprehensively examines advances in PPS separator design, focusing on two structurally distinct [...] Read more.
Polyphenylene sulfide (PPS)-based separators have garnered significant attention as high-performance components for next-generation lithium-ion batteries (LIBs), driven by their exceptional thermal stability (>260 °C), chemical inertness, and mechanical durability. This review comprehensively examines advances in PPS separator design, focusing on two structurally distinct categories: porous separators engineered via wet-chemical methods (e.g., melt-blown spinning, electrospinning, thermally induced phase separation) and nonporous solid-state separators fabricated through solvent-free dry-film processes. Porous variants, typified by submicron pore architectures (<1 μm), enable electrolyte-mediated ion transport with ionic conductivities up to >1 mS·cm−1 at >55% porosity, while their nonporous counterparts leverage crystalline sulfur-atom alignment and trace electrolyte infiltration to establish solid–liquid biphasic conduction pathways, achieving ion transference numbers >0.8 and homogenized lithium flux. Dry-processed solid-state PPS separators demonstrate unparalleled thermal dimensional stability (<2% shrinkage at 280 °C) and mitigate dendrite propagation through uniform electric field distribution, as evidenced by COMSOL simulations showing stable Li deposition under Cu particle contamination. Despite these advancements, challenges persist in reconciling thickness constraints (<25 μm) with mechanical robustness, scaling solvent-free manufacturing, and reducing costs. Innovations in ultra-thin formats (<20 μm) with self-healing polymer networks, coupled with compatibility extensions to sodium/zinc-ion systems, are identified as critical pathways for advancing PPS separators. By addressing these challenges, PPS-based architectures hold transformative potential for enabling high-energy-density (>500 Wh·kg−1), intrinsically safe energy storage systems, particularly in applications demanding extreme operational reliability such as electric vehicles and grid-scale storage. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 4706 KiB  
Article
Quaternized Polysulfone as a Solid Polymer Electrolyte Membrane with High Ionic Conductivity for All-Solid-State Zn-Air Batteries
by Luis Javier Salazar-Gastélum, Alejandro Arredondo-Espínola, Sergio Pérez-Sicairos, Lorena Álvarez-Contreras, Noé Arjona and Minerva Guerra-Balcázar
Membranes 2025, 15(4), 102; https://doi.org/10.3390/membranes15040102 - 1 Apr 2025
Viewed by 1600
Abstract
Solid polymer electrolytes (SPEs) are gaining attention as viable alternatives to traditional aqueous electrolytes in zinc–air batteries (ZABs), owing to their enhanced performance and stability. In this study, anion-exchange solid polymer electrolytes (A-SPEs) were synthesized via electrophilic aromatic substitution and substitution reactions. Thin [...] Read more.
Solid polymer electrolytes (SPEs) are gaining attention as viable alternatives to traditional aqueous electrolytes in zinc–air batteries (ZABs), owing to their enhanced performance and stability. In this study, anion-exchange solid polymer electrolytes (A-SPEs) were synthesized via electrophilic aromatic substitution and substitution reactions. Thin films were prepared using the solvent casting method and characterized using proton nuclear magnetic resonance (¹H-NMR), Fourier-transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). The ion-exchange capacity (IEC), KOH uptake, ionic conductivity, and battery performance were also obtained by varying the degree of functionalization of the A-SPEs (30 and 120%, denoted as PSf30/PSf120, respectively). The IEC analysis revealed that PSf120 exhibited a higher quantity of functional groups, enhancing its hydroxide conductivity, which reached a value of 22.19 mS cm−1. In addition, PSf120 demonstrated a higher power density (70 vs. 50 mW cm−2) and rechargeability than benchmarked Fumapem FAA-3-50 A-SPE. Postmortem analysis further confirmed the lower formation of ZnO for PSf120, indicating the improved stability and reduced passivation of the zinc electrode. Therefore, this type of A-SPE could improve the performance and rechargeability of all-solid-state ZABs. Full article
(This article belongs to the Special Issue Recent Advances in Polymeric Membranes—Preparation and Applications)
Show Figures

Figure 1

12 pages, 3213 KiB  
Article
Three-Dimensionally Printed Metal-Coated Flow-Field Plate for Lightweight Polymer Electrolyte Membrane Fuel Cells
by Dasol Kim, Geonhwi Kim, Juho Na, Hyeok Kim, Jaeyeon Kim, Guyoung Cho and Taehyun Park
Energies 2025, 18(6), 1533; https://doi.org/10.3390/en18061533 - 20 Mar 2025
Viewed by 589
Abstract
This study investigates the potential for affordable and lightweight polymer electrolyte membrane fuel cells (PEMFCs) using lightweight flow-field plates, also referred to as bipolar plates. A comparative analysis was conducted on the performance of metal-coated and uncoated three-dimensional (3D)-printed flow-field plates, as well [...] Read more.
This study investigates the potential for affordable and lightweight polymer electrolyte membrane fuel cells (PEMFCs) using lightweight flow-field plates, also referred to as bipolar plates. A comparative analysis was conducted on the performance of metal-coated and uncoated three-dimensional (3D)-printed flow-field plates, as well as that of a conventional graphite flow-field plate. The fabrication of these lightweight flow-field plates involved the application of sputtering and 3D printing technologies. The polarization curves and corresponding electrochemical impedance spectra of PEMFCs with metal-coated 3D-printed, uncoated 3D-printed, and graphite flow-field plates were measured. The results demonstrate that the metal-coated 3D-printed flow-field plate exhibits a gravimetric power density of 5.21 mW/g, while the graphite flow-field plate registers a value of 2.78 mW/g, representing an 87.4% improvement in gravimetric power density for the metal-coated 3D-printed flow-field plate compared to the graphite flow-field plate. These findings suggest the feasibility of reducing the weight of PEMFCs using metal-coated 3D-printed flow-field plates. Full article
(This article belongs to the Special Issue Sustainable Development of Fuel Cells and Hydrogen Technologies)
Show Figures

Graphical abstract

15 pages, 4112 KiB  
Article
Carbon-Coated CF-Si/Al Anodes for Improved Lithium-Ion Battery Performance
by Liangliang Zeng, Peng Li, Mi Ouyang, Shujuan Gao and Kun Liang
Batteries 2025, 11(3), 114; https://doi.org/10.3390/batteries11030114 - 18 Mar 2025
Viewed by 990
Abstract
Despite their high specific capacity, magnetron-sputtered Si/Al thin films face rapid capacity decay due to stress-induced cracking, delamination, and detrimental electrolyte reactions. This study introduces a carbon-coated composite anode that overcomes these limitations, delivering superior reversible capacity, exceptional rate capability, and stable cycling [...] Read more.
Despite their high specific capacity, magnetron-sputtered Si/Al thin films face rapid capacity decay due to stress-induced cracking, delamination, and detrimental electrolyte reactions. This study introduces a carbon-coated composite anode that overcomes these limitations, delivering superior reversible capacity, exceptional rate capability, and stable cycling performance. An electrochemical evaluation reveals that the CF-Si/Al@C-500-1h composite exhibits marked enhancements in capacity retention (43.5% after 100 cycles at 0.6 A·g−1) and rate capability, maintaining 579.1 mAh·g−1 at 3 A·g−1 (1 C). The carbon layer enhances electrical conductivity, buffers volume expansion during lithiation/delithiation, and suppresses silicon aggregation and electrolyte side reactions. Coupled with an aluminum framework, this architecture ensures robust structural integrity and efficient lithium-ion transport. These advancements position CF-Si/Al@C-500-1h as a promising anode material for next-generation lithium-ion batteries, while insights into scalable fabrication and carbon integration strategies pave the way for practical applications. Full article
(This article belongs to the Special Issue Two-Dimensional Materials for Battery Applications)
Show Figures

Figure 1

8 pages, 917 KiB  
Communication
The Use of Electrochemical Impedance Spectroscopy as a Screening Method for Determination of Hydrolytic Stability of Poly(ethyl 2-cyanoacrylate)
by Kevin Raheem, Anthony Betts, John Cassidy and Bernard Ryan
Corros. Mater. Degrad. 2025, 6(1), 13; https://doi.org/10.3390/cmd6010013 - 14 Mar 2025
Viewed by 755
Abstract
The hydrolytic stability of thin poly(ethyl 2-cyanoacrylate), PECA, adhesive films on grit-blasted mild steel substrates was investigated using electrochemical impedance spectroscopy (EIS). Using this novel approach for such adhesive films, the effects of two additives, salicylic acid (SA) and phthalic anhydride (PA), were [...] Read more.
The hydrolytic stability of thin poly(ethyl 2-cyanoacrylate), PECA, adhesive films on grit-blasted mild steel substrates was investigated using electrochemical impedance spectroscopy (EIS). Using this novel approach for such adhesive films, the effects of two additives, salicylic acid (SA) and phthalic anhydride (PA), were studied, specifically measuring their influence on polymer film/surface impedance and capacitance changes over a period of 14 days. Results indicate that SA decreased the polymer film hydrolytic stability rapidly, resulting in a substantial drop in impedance modulus from ~10 kΩcm2 to ~10 Ωcm2 at 100 Hz due to electrolyte ingress, whilst the PA-containing film modulus also diminished from ~4 MΩcm2 to ~1 kΩcm2 at 100 Hz. Furthermore, the capacitance values of the SA-containing films rose (up to ~100 µFcm−2), demonstrating the onset of a charge transfer (corrosion) process within the first 12 h exposure to a saline electrolyte. In contrast, the PA-containing film’s transition from a film-dominated capacitance (~0.01 µFcm−2) to a larger double-layer capacitance took (~1 µFcm−2) took several days and was accounted for by differences in the additive’s chemistry, demonstrating the ability of EIS to detect changes in both bulk film (e.g., moisture ingress and bond scission) and metal-film interfacial processes (e.g., onset of corrosion) in real time. Comparison was also made with a standard industry combined tensile test/hydrolytic accelerated ageing regime. Unlike, EIS this did not, however, give useful time-dependent information, although after 6 weeks a decrease in bond strength occurred in the order PA-containing film < PECA< SA-containing film in agreement with the EIS results, thus demonstrating the effectiveness of EIS for monitoring the degradation of such thin film adhesives. Full article
Show Figures

Figure 1

12 pages, 3130 KiB  
Article
Fabrication of TiO2 Nanotube Arrays by Progressive Anodization of Ti Thin Film on Insulated Substrates
by Chao-Ching Chiang, Jian-Sian Li, Hsiao-Hsuan Wan, Fan Ren and Josephine F. Esquivel-Upshaw
Materials 2025, 18(6), 1219; https://doi.org/10.3390/ma18061219 - 9 Mar 2025
Cited by 1 | Viewed by 943
Abstract
Titanium (Ti) thin films deposited on insulated substrates were progressively anodized and formed titanium dioxide (TiO2) nanotube arrays on the surface through a customized anodization tool designed to improve the uniformity and diameters of the nanotubes. With a motorized vertical moving [...] Read more.
Titanium (Ti) thin films deposited on insulated substrates were progressively anodized and formed titanium dioxide (TiO2) nanotube arrays on the surface through a customized anodization tool designed to improve the uniformity and diameters of the nanotubes. With a motorized vertical moving arm attached to the anode, the sample was gradually submerged into the electrolyte at a controlled speed alongside the continuous anodization from the edge to the center to prevent the discontinuation of the conductive Ti layer and its nanotube surface. The effects of Ti deposition rate, anodization voltage, NH4F concentration, and post-etching conditions on nanotube morphology were also explored. Scanning electron microscopy (SEM) analysis revealed that smaller Ti grain sizes, higher anodization voltages, higher electrolyte concentrations, and optimized post-etching times produce uniform, mature nanotubes with larger diameters, which are crucial for practical applications. This work enhances the applicability of nanotube surfaces with non-conductive substrates, such as Zirconia dental implants, and establishes a foundation for future process optimizations. Full article
(This article belongs to the Special Issue Materials for Prosthodontics, Implantology, and Digital Dentistry)
Show Figures

Figure 1

15 pages, 11484 KiB  
Article
Improvement of Interphase Stability of Hard Carbon for Sodium-Ion Battery by Ionic Liquid Additives
by Dexi Meng, Zongkun Bian, Kailimai Su, Yan Wang, Zhibin Lu, Enlin Cai and Junwei Lang
Batteries 2025, 11(3), 102; https://doi.org/10.3390/batteries11030102 - 8 Mar 2025
Viewed by 1914
Abstract
Hard carbon (HC), which is one of the anode materials widely used in commercial sodium-ion batteries at present, suffers from a thick and unstable solid electrolyte interface (SEI) layer formed by the self-reduction in traditional carbonate-based electrolytes on its surface. This phenomenon impacts [...] Read more.
Hard carbon (HC), which is one of the anode materials widely used in commercial sodium-ion batteries at present, suffers from a thick and unstable solid electrolyte interface (SEI) layer formed by the self-reduction in traditional carbonate-based electrolytes on its surface. This phenomenon impacts the battery’s Coulomb efficiency, cycle stability, and rate performance. In this paper, a pyrrolidinium-type di-cation ionic liquid, butyl-1,4-di(methylpyrrolidinium) di[hexafluorophosphate] (C4di[mPy].di[PF6]), is studied as an electrolyte additive to improve the interphase stability of the HC anode. The PF6 in C4di[mPy].di[PF6] enhances the coordination number between Na+ and PF6, and C4di[mPy]2+ is preferentially reduced, jointly participating in the construction of stable, thin, dense and NaF-rich SEI films, thus laying the foundation for improving battery performance. As a result, in the carbonate electrolyte containing 2 wt% C4di[mPy].di[PF6], the reversible capacity of the HC/Na half-cell is increased by 14.7%, and the capacity retention rate remains at 90.4% after 400 cycles. This work provides reference for future research and design of high-performance ion liquid additives. Full article
Show Figures

Graphical abstract

Back to TopTop