Evaluation of Adhesion Properties of Electrodeposited Copper Thin Films: Theoretical and Experimental Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrodeposition Set-Up
- (1)
- 240 g L−1 CuSO4 × 5 H2O + 60 g L−1 H2SO4; (named as “electrolyte 1”);
- (2)
- 240 g L−1 CuSO4 × 5 H2O + 60 g L−1 H2SO4 + 0.124 g L−1 NaCl (named as “electrolyte 2”);
- (3)
- 240 g L−1 CuSO4 × 5 H2O + 60 g L−1 H2SO4 + 0.124 g L−1 NaCl + 1 g L−1 polyethylene glycol MW 6000 (named as “electrolyte 3”); and
- (4)
- 240 g L−1 CuSO4 × 5 H2O + 60 g L−1 H2SO4 + 0.124 g L−1 NaCl + 1 g L−1 PEG 6000 (polyethylene glycol) + 0.0015 g L−1 MPSA (3–mercapto–1–propanesulfonic acid) (named as “electrolyte 4”).
2.2. Characterization Methods
2.2.1. Surface Characterization of Electrodeposited Cu Films
2.2.2. Mechanical Characterization of Electrolytically Produced Cu Films—Microhardness and Adhesion Investigations
- (1)
- The microindentation adhesion test (mechanical/non-destructive method) considers a quantitative criterion called “critical reduced depth” or “parameter b”, which is obtained by application of the Chen–Gao (C–G) composite hardness model [37,38,39,40,41,42,43]. For the calculation of this criterion, it is necessary to know the intrinsic (real or absolute) hardness of the Cu films. The intrinsic hardness of the film is calculated from the measured or composite hardness of the film by application of an appropriate composite hardness model (CHM). A Vickers microhardness tester “Leitz Kleinert Prufer DURIMET I” (Leitz, Oberkochen, Germany) with applied loads (P) between 49 mN and 2.94 N and a dwell time of 25 s was used for the determination of the composite hardness of electrodeposited films. The definition of the composite or the measured hardness of a film is given in the Supplementary Materials.
- (2)
- The bidirectional bending test (mechanical/destructive method) records the number of cycles (NCs) up to the appearance of delamination of the film from the substrate. This adhesion test was conducted using the two-way bending method over a special metal construction shown in Figure 1. The samples are bent manually left and right up to the delamination of the film from the substrate. The moment the film peels off from the substrate is counted as a critical cycle, and the critical cycle number (NC) is noted. The dimensions of the construction of the special bending fixture (Figure 1a) are taken from the literature [7], but the real construction was realized in lab-made conditions (Figure 1b).
- (3)
- The scratch-tape adhesion test is a standard test method for measuring the adhesion of films thinner than 125 μm and belongs to a group of mechanical/destructive methods [8]. This test is qualitative and descriptive, and the test method B type—the cross-cut tape test—was used in this study. For metals and a film thickness thinner than 125 μm, lattice patterns with six slices in each direction were created on the film surface using a crosshatch kit. The size of every grid square was (1.0 × 1.0) mm2. Pressure-sensitive tape (3M Deutschland GmbH, Neuss, Germany) was placed over the lattice, and after 90 s, it was quickly removed from the lattice. The film adhesion was estimated on the basis of a contrast observed after delamination of the film from the substrate by an analysis of optical microscopy (OM) images. The films are categorized as follows: 5B (without delamination), 4B (less than 5% delaminated surface), 3B (5–15%), 2B (15–35%), 1B (35–65%), and 0B (greater than 65%) [8,55].
3. Results
3.1. Morphological, Topographic and Structural Analyses of Electrodeposited Cu Films
3.1.1. Morphological Analysis of Electrodeposited Cu Films
3.1.2. Topographic Analysis of Electrodeposited Cu Films
3.1.3. Structural Analysis of Electrodeposited Cu Films
3.2. Mechanical Characterization of Electrodeposited Cu Films—Analysis of Hardness and Adhesion Characteristics
4. Discussion of the Presented Results
5. Conclusions
- Fine-grained films with micro-sized grains were formed from electrolytes 1, 2, and 3. The roughness of the films changed as follows: electrolyte 3 > electrolyte 2 > electrolyte 1. The Cu film obtained from electrolyte 4 had nano-sized dimensions with a mirror-bright appearance.
- The trend of change in hardness and adhesion of the films was as follows: electrolyte 3 > electrolyte 2 > electrolyte 1 > electrolyte 4.
- The best adhesion was exhibited by the film with the largest roughness, produced from electrolyte 3, and the worst adhesion was exhibited by the mirror-bright film produced from electrolyte 4.
- Good agreement in the estimation of film adhesion was achieved by application of combined theoretical and experimental (C–G CHM using Vickers microindentation results) methods and pure experimental (bidirectional bending test and scratch-tape adhesion test) methods.
- The different adhesion of the produced Cu films was explained and discussed by analysis of phenomena occurring on boundaries among grains (mechanical approach) and the effect of additives on the ED process (electrochemical approach).
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Awaja, F.; Gilbert, M.; Kelly, G.; Fox, B.; Pigram, P.J. Adhesion of polymers. Prog. Polym. Sci. 2009, 34, 948–968. [Google Scholar] [CrossRef]
- Poisson, C.; Hervais, V.; Lacrampe, M.F.; Krawczak, P. Optimization of PE/binder/PA extrusion blow-molded films. II. Adhesion properties improvement using binder/EVA blends. J. Appl. Polym. Sci. 2006, 101, 118–127. [Google Scholar] [CrossRef]
- Volinsky, A.A.; Moody, N.R.; Gerberich, W.W. Interfacial toughness measurements for thin films on substrates. Acta Mater. 2002, 50, 441–466. [Google Scholar] [CrossRef]
- Kendall, K.; Kendall, M.; Rehfeldt, F. Measurement Methods. In Adhesion of Cells, Viruses and Nanoparticles, 1st ed.; Springer: Dordrecht, The Netherlands, 2010; Volume 1, pp. 145–165. [Google Scholar] [CrossRef]
- Mittal, K.L. Adhesion Measurement of Thin Films. Electrocompon. Sci. Technol. 1976, 3, 21–42. [Google Scholar] [CrossRef]
- Mose, B.R.; Son, I.-S.; Shin, D.-K. Adhesion strength of die attach film for thin electronic package at elevated temperature. Microelectron. Reliab. 2018, 91, 15–22. [Google Scholar] [CrossRef]
- Zhu, Y.; Yu, Z.; Niu, Y.; Ding, W. Assessment of Adhesion of Electroplated Cu and Multilayered Cu Coatings by a Bidirectional Bend Test. J. Adhes. Sci. Technol. 2012, 26, 1645–1652. [Google Scholar] [CrossRef]
- ASTM D3359-02; International, Standard Test Methods for Measuring Adhesion by Tape Test. ASTM International: West Conshohocken, PA, USA. Available online: https://img.nbchao.com/upload/2017/9/1504756160372.pdf (accessed on 20 January 2025).
- El-Shabasy, M. Perspective of adhesion of thin films. Polytech. Elec. Eng. 1981, 25, 123–134. [Google Scholar]
- Shojaei, A.; Fathi, R.; Sheikh, N. Adhesion modification of polyethylenes for metallization using radiation-induced grafting of vinyl monomers. Surf. Coat. Technol. 2007, 201, 7519–7529. [Google Scholar] [CrossRef]
- Rudawska, A.; Danczak, I.; Müller, M.; Valasek, P. The effect of sandblasting on surface properties for adhesion. Int. J. Adhes. Adhes. 2016, 70, 176–190. [Google Scholar] [CrossRef]
- Saba, T.; Saad, K.S.K.; Rashid, A.B. Precise surface engineering: Leveraging chemical vapor deposition for enhanced biocompatibility and durability in biomedical implants. Heliyon 2024, 10, e37976. [Google Scholar] [CrossRef]
- Giroire, B.; Ali Ahmad, M.; Aubert, G.; Teule-Gay, L.; Michau, D.; Watkins, J.J.; Aymonier, C.; Poulon-Quintin, A. A comparative study of copper thin films deposited using magnetron sputtering and supercritical fluid deposition techniques. Thin Solid Films 2017, 643, 53–59. [Google Scholar] [CrossRef]
- Hojabri, A.; Hajakbari, F.; Moghri Moazzen, M.A.; Kadkhodaei, S. Effect of Thickness on Properties of Copper Thin Films Growth on Glass by DC Planar Magnetron Sputtering. J. Nanostruct. 2012, 2, 107–112. [Google Scholar]
- Popov, K.I.; Djokić, S.S.; Nikolić, N.D.; Jović, V.D. Morphology of Electrochemically and Chemically Deposited Metals; Springer International Publishing: New York, UY, USA, 2016. [Google Scholar]
- Kasach, A.A.; Kasprzhitskii, A.; Kharytonau, D.S.; Pospelau, A.V.; Kurilo, I.I.; Lazorenko, G. Electrocrystallization of Cu, Sn, and Cu-Sn alloys from sulfate electrolytes in the presence of thiourea and N-octylpyridinium bromide: Experimental and computational studies. Colloids Surf. A 2024, 685, 133321. [Google Scholar] [CrossRef]
- Lee, H.; Tsai, S.-T.; Wu, P.-H.; Dow, W.-P.; Chen, C.-M. Influence of additives on electroplated copper films and their solder joints. Mater. Charact. 2019, 147, 57–63. [Google Scholar] [CrossRef]
- Lowenheim, F.A. (Ed.) Modern Electroplating; Wiley: New York, UY, USA, 1974. [Google Scholar]
- Tadesse, B.; Horne, M.; Addai-Mensah, J. The effect of thiourea, l(−) cysteine and glycine additives on the mechanisms and kinetics of copper electrodeposition. J. Appl. Electrochem. 2013, 43, 1185–1195. [Google Scholar] [CrossRef]
- Shao, W.; Pattanaik, G.; Zangari, G. Influence of Chloride Anions on the Mechanism of Copper Electrodeposition from Acidic Sulfate Electrolytes. J. Electrochem. Soc. 2007, 154, D201–D207. [Google Scholar] [CrossRef]
- Kim, J.J.; Kim, S.-K.; Kim, Y.S. Catalytic behavior of 3-mercapto-1-propane sulfonic acid on Cu electrodeposition and its effect on Cu film properties for CMOS device metallization. J. Electroanal. Chem. 2003, 542, 61–66. [Google Scholar] [CrossRef]
- Muresan, L.M.; Varvara, S.C. Leveling and Brightening Mechanisms in Metal Electrodeposition. In Metal Electrodeposition; Nunez, M., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2005; pp. 1–45. [Google Scholar]
- Fabricius, G.; Kontturi, K.; Sundholm, G. Influence of thiourea and thiourea ageing on the electrodeposition of copper from acid sulfate solutions studied by the ring-disc technique. J. Appl. Electrochem. 1996, 26, 1179–1183. [Google Scholar] [CrossRef]
- Yokoi, M. Supression Effect and Additive Chemistry. In Copper Electrodeposition for Nanofabrication of Electronics Devices; Kondo, K., Alkolkar, R.N., Barkey, D.P., Yokoi, M., Eds.; Springer: New York, NY, USA, 2014; Volume 171, pp. 27–40. [Google Scholar]
- Bonou, L.; Eyraud, M.; Denoyel, R.; Massiani, Y. Influence of additives on Cu electrodeposition mechanisms in acid solution: Direct current study supported by non-electrochemical measurements. Electrochim. Acta 2002, 47, 4139–4148. [Google Scholar] [CrossRef]
- Datta, M.; Landolt, D. Fundamental aspects and applications of electrochemical microfabrication. Electrochim. Acta 2000, 45, 2535–2558. [Google Scholar] [CrossRef]
- Chen, H.M.; Parulekar, S.J.; Zdunek, A. Interactions of chloride and polyethylene glycol in acidic copper sulfate electrolyte. J. Electrochem. Soc. 2008, 155, D341. [Google Scholar] [CrossRef]
- Hebert, K.R. Role of chloride ions in suppression of copper electrodeposition by polyethylene glycol. J. Electrochem. Soc. 2005, 152, C283. [Google Scholar] [CrossRef]
- Garrido, M.H.; Pritzker, M.D. Voltammetric study of the inhibition effect of polyethylene glycol and chloride ions on copper deposition. J. Electrochem. Soc. 2008, 155, D332. [Google Scholar] [CrossRef]
- Shao, W.; Zangari, G. Dendritic growth and morphology selection in copper electrodeposition from acidic sulfate solutions containing chlorides. J. Phys. Chem. C 2009, 113, 10097–10102. [Google Scholar] [CrossRef]
- Plieth, W. Additives in the electrocrystallization process. Electrochim. Acta 1992, 37, 2115–2121. [Google Scholar] [CrossRef]
- Lima, F.G.C.; Mescheder, U.; Leiste, H.; Müller, C. Influence of current density on the adhesion of seedless electrodeposited copper layers on silicon. Surf. Coat. Technol. 2019, 375, 554–564. [Google Scholar] [CrossRef]
- Okamoto, N.; Wang, F.; Watanabe, T. Adhesion of Electrodeposited Copper, Nickel and Silver Films on Copper, Nickel and Silver Substrates. Mater. Trans. 2004, 45, 3330–3333. [Google Scholar] [CrossRef]
- Pshyk, O.; Wicher, B.; Palisaitis, J.; Hultman, L.; Greczynski, G. Advanced film/substrate interface engineering for adhesion improvement employing time- and energy-controlled metal ion irradiation. App. Surf. Sci. 2024, 669, 160554. [Google Scholar] [CrossRef]
- Lima, F.G.C.; Reinecke, H.; Mescheder, U. Adhesion of continuous and homogeneous electrodeposited copper layers on silicon. In Proceedings of the MikroSystemTechnik Kongress, Karlsruhe, Deutschland, 26–28 October 2015. [Google Scholar]
- Seo, B.; Kanematsu, H.; Nakamoto, M.; Miyabayashi, Y.; Tanaka, T. Copper Surface Treatment Method with Antibacterial Performance Using “Super-Spread Wetting” Properties. Materials 2022, 15, 392. [Google Scholar] [CrossRef]
- Chen, M.; Gao, J. The adhesion of copper films coated on silicon and glass substrates. Mod. Phys. Lett. B 2000, 14, 103–108. [Google Scholar] [CrossRef]
- Hou, Q.; Gao, J.; Li, S. Adhesion and its influence on micro-hardness of DLC and SiC films. Eur. Phys. J. B 1999, 8, 493–496. [Google Scholar] [CrossRef]
- He, J.L.; Li, W.Z.; Li, H.D. Hardness measurement of thin films: Separation from composite hardness. Appl. Phys. Lett. 1996, 69, 1402–1404. [Google Scholar] [CrossRef]
- Magagnin, L.; Cojocaru, P.; Raygani, A.; Brivio, D.; Secundo, F.; Turolla, A.; Ottolina, G. Galvanic Displacement of Nanostructured Gold for Flavoenzyme Adsorption in Biotechnology. ECS Trans. 2011, 33, 59. [Google Scholar] [CrossRef]
- Magagnin, L.; Maboudian, R.; Carraro, C. Adhesion evaluation of immersion plating copper films on silicon by microindentation measurements. Thin Solid Films 2003, 434, 100–105. [Google Scholar] [CrossRef]
- Algellai, A.A.; Tomić, N.; Vuksanović, M.M.; Dojčinović, M.; Volkov-Husović, T.; Turolla, A.; Radojević, V.; Jančić-Heinemann, R. Adhesion testing of composites based on Bis-GMA/TEGDMA monomers reinforced with alumina based fillers on brass substrate. Compos. Part B 2018, 140, 164–173. [Google Scholar] [CrossRef]
- Tomić, N.; Saleh, M.N.; Vuksanović, M.M.; Egelja, A.; Obradović, V.; Marinković, A.; Jančić-Heinemann, R. Tailored Adhesion Properties of Acrylate Adhesives on Al Alloys by the Addition of Mn-Al–LDH. Polymers 2021, 13, 1525. [Google Scholar] [CrossRef]
- Sushil, K.; Ramkumar, J.; Chandraprakash, C. Surface roughness analysis: A comprehensive review of measurement techniques, methodologies, and modeling. J. Micromanuf. 2025, in press. [Google Scholar] [CrossRef]
- Horcas, I.; Fernández, R. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705. [Google Scholar] [CrossRef]
- Linklater, D.P.; Haydous, F.; Xi, C.; Pergolesi, D.; Hu, J.; Ivanova, E.P.; Juodkazis, S.; Lippert, T.; Juodkazytė, J. Black-Si as a Photoelectrode. Nanomaterials 2020, 10, 873. [Google Scholar] [CrossRef]
- Nasehnejad, M.; Nabiyouni, G. Role of Substrate on the Fractal Characteristics of Nanostructure Surfaces of Electrodeposited Nickel Thin Films. Phys. Status Solidi B 2024, 261, 2400109. [Google Scholar] [CrossRef]
- Schmähling, J.; Hamprecht, F.A. Generalizing the Abbott–Firestone curve by two new surface descriptors. Wear 2007, 262, 1360–1371. [Google Scholar] [CrossRef]
- DIN 4777:1990-05; Determination of surface roughness parameters Rk, Rpk, RVK, Mr1, Mr2 serving to describe the material component of the roughness profile. Messung der profiltiefe Pt von Oberflachen: Berlin, Germany, 1990.
- ISO 13565-2; Geometrical Product Specifications (GPS) - Surface Texture: Profile Method - Surfaces Having Stratified Functional Properties - Part 2: Height Characterization Using the Linear Material Ratio Curve. German Institute for Standardization: Berlin, Germany, 1998.
- Nath, D.; Singh, F.; Das, R. X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles- a comparative study. Mater. Chem. Phys. 2020, 239, 122021. [Google Scholar] [CrossRef]
- Holzwarth, U.; Gibson, N. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat. Nanotech. 2011, 6, 534. [Google Scholar] [CrossRef]
- Petch, N.J. The cleavage strength of polycrystals. J. Iron Steel Inst. 1953, 174, 25–28. [Google Scholar] [CrossRef]
- Hakamada, M.; Nakamoto, Y.; Matsumoto, H.; Iwasaki, H.; Chen, Y.; Kusuda, H.; Mabuchi, M. Relationship between hardness and grain size in electrodeposited copper films. Mater. Sci. Eng. A 2007, 457, 120–126. [Google Scholar] [CrossRef]
- Cotrut, C.M.; Ungureanu, E.; Ionescu, I.C.; Zamfir, R.I.; Kiss, A.E.; Parau, A.C.; Vladescu, A.; Vranceanu, D.M.; Saceleanu, A. Influence of Magnesium Content on the Physico-Chemical Properties of Hydroxyapatite Electrochemically Deposited on a Nanostructured Titanium Surface. Coatings 2022, 12, 1097. [Google Scholar] [CrossRef]
- Hamdi, A.; Merghache, S.M.; Aliouane, T. Effect of cutting variables on bearing area curve parameters (BAC-P) during hard turning process. Arch. Mech. Eng. 2020, 67, 73–95. [Google Scholar] [CrossRef]
- ISO 13565-1:1996; Geometrical Product Specifications (GPS)—Surface Texture: Profile Method; Surfaces Having Stratified Functional Properties—Part 1: Filtering and General Measurement Conditions. International Organization for Standardization: Geneve, Switzerland, 1996. Available online: https://cdn.standards.iteh.ai/samples/22279/5cca79ba9c3c46dab61cb99781384d01/ISO-13565-1-1996.pdf (accessed on 27 January 2025).
- Mladenović, I.O.; Bošković, M.V.; Vuksanović, M.M.; Nikolić, N.D.; Lamovec, J.S.; Vasiljević-Radović, D.G.; Radojević, V.J. Structural, Mechanical and Electrical Characteristics of Copper Coatings Obtained by Various Electrodeposition Processes. Electronics 2022, 11, 443. [Google Scholar] [CrossRef]
- Mladenović, I.O.; Nikolić, N.D. Influence of Parameters and Regimes of the Electrodeposition on Hardness of Copper Coatings. Metals 2023, 13, 683. [Google Scholar] [CrossRef]
- Mladenović, I.O.; Nikolić, N.D.; Lamovec, J.S.; Vasiljević-Radović, D.; Radojević, V. Application of the Composite Hardness Models in the Analysis of Mechanical Characteristics of Electrolytically Deposited Copper Coatings: The Effect of the Type of Substrate. Metals 2021, 11, 111. [Google Scholar] [CrossRef]
- Lamovec, J.; Jović, V.; Randjelović, D.; Aleksić, R.; Radojević, V. Analysis of the composite and film hardness of electrodeposited nickel coatings on different substrates. Thin Solid Films 2008, 516, 8646–8654. [Google Scholar] [CrossRef]
- Li, H.; Bradt, R.C. Knoop microhardness anisotropy of single-crystal LaB6. Mater. Sci. Eng. A 1991, 142, 51–61. [Google Scholar] [CrossRef]
- Mladenović, I.; Lamovec, J.; Jović, V.; Radojević, V. Synergetic effect of additives on the hardness and adhesion of thin electrodeposited copper films. Serb. J. Elctr. Eng. 2017, 14, 1–11. [Google Scholar] [CrossRef]
- Korsunsky, A.M.; McGurk, M.R.; Bull, S.J.; Page, T.F. On the hardness of coated systems. Surf. Coat. Technol. 1998, 99, 171–183. [Google Scholar] [CrossRef]
- Tuck, J.R.; Korunsky, A.M.; Bull, S.J.; Davidson, R.I. On the application of the work-of-indentation approach to depth-sensing indentation experiments in coated systems. Surf. Coat. Technol. 2001, 137, 217–224. [Google Scholar] [CrossRef]
- Mladenović, I.O.; Lamovec, J.S.; Vasiljević-Radović, D.; Vuković, N.; Radojević, V.; Nikolić, N.D. Correlation between morphology and hardness of electrolytically produced copper thin films. J. Solid State Electrochem. 2025, 29, 1431–1448. [Google Scholar] [CrossRef]
- Zhang, J.M.; Ma, F.; Xu, K.W. Calculation of the surface energy of FCC metals with modified embedded-atom method. Appl. Surf. Sci. 2004, 229, 34–42. [Google Scholar] [CrossRef]
- Hall, E.O. The Deformation and Ageing of Mild Steel: III Discussion of Results. Proc. Phys. Soc. Sec. B 1951, 64, 747–753. [Google Scholar] [CrossRef]
- Mishra, R.; Basu, B.; Balasubramaniam, R. Effect of grain size on the tribological behaviour of nanocrystalline nickel. Mater. Sci. Eng. A 2004, 373, 370–373. [Google Scholar] [CrossRef]
- Joseph, A.; Kirubasankar, B.; Mathew, A.M.K.; Narayanasamy, M.; Yan, C.; Angaiah, S. Influence of pulse reverse current parameters on electrodeposition of copper-graphene nanocomposite coating. Appl. Surf. Sci. Adv. 2021, 5, 100116. [Google Scholar] [CrossRef]
- Trejo, G.; Ruiz, H.; Borges, R.O.; Meas, Y. Influence of polyethoxylated additives on zinc electrodeposition from acidic solutions. J. Appl. Electrochem. 2001, 31, 685–692. [Google Scholar] [CrossRef]
- Kelly, J.J.; West, A.C. Copper Deposition in the Presence of Polyethylene Glycol I. Quartz Crystal Microbalance Study. J. Electrochem. Soc. 1998, 145, 3472–3476. [Google Scholar] [CrossRef]
- Willey, M.J.; West, A.C. Microfluidic Studies of Adsorption and Desorption of Polyethylene Glycol during Copper Electrodeposition. J. Electrochem. Soc. 2006, 153, C728. [Google Scholar] [CrossRef]
- Laftah, W.A.; Rahman, W.A.W.A. Polymers for anti-fouling applications: A review. Environ. Sci. Adv. 2025. [Google Scholar] [CrossRef]
- Petrík, J.; Blaško, P.; Vasilňaková, A.; Demeter, P.; Futáš, P. Indentation size effect of heat treated aluminum alloy. Acta Met. Slovaca 2019, 25, 166–173. [Google Scholar] [CrossRef]
- Wang, W.; Tao, J.; Tong, K.; Xu, Z.; Zhong, F.; Dong, J.; Chen, Y.; Fu, Z.; Qin, C. Effects of Four Sulfonate-Containing Additives and Hydroxyethyl Cellulose on the Properties of Electrolytic Copper Foils. Molecules 2025, 30, 229. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, H. Effects of organic additives on preferred plane and residual stress of copper electroplated on polyimide. Mater. Chem. Phys. 2010, 120, 341–347. [Google Scholar] [CrossRef]
- Zhang, B.; Sun, W.C.; Liu, E.Y.; Xu, Y.F.; Zhou, M.R.; Cai, H.; Zhang, J.L.; Jia, T.Z. Influences of composite additives and technological parameters on the microstructure and properties of electrolytic copper foil. Mater. Sci. Eng. Technol. 2025, 56, 235–250. [Google Scholar] [CrossRef]
- Augustin, A.; Huilgol, P.; Udupa, K.R.; Bhat, K.U. Effect of current density during electrodeposition on microstructure and hardness of textured Cu coating in the application of antimicrobial Al touch surface. J. Mech. Behav. Biomed. Mater. 2016, 63, 352–360. [Google Scholar] [CrossRef]
- Tantavichet, N.; Pritzker, M.D. Effect of plating mode, thiourea and chloride on the morphology of copper deposits produced in acidic sulphate solutions. Electrochim. Acta 2005, 50, 1849–1861. [Google Scholar] [CrossRef]
- Mladenović, I.O.; Lamovec, J.S.; Vasiljević Radović, D.G.; Vasilić, R.; Radojević, V.J.; Nikolić, N.D. Morphology, Structure and Mechanical Properties of Copper Coatings Electrodeposited by Pulsating Current (PC) Regime on Si(111). Metals 2020, 10, 488. [Google Scholar] [CrossRef]
Electrolyte | Ra (nm) | Rq (nm) | Rpk (nm) | Rk (nm) | Rvk (nm) | hav (nm) |
---|---|---|---|---|---|---|
1 | 153.0 | 199.9 | 307.1 | 446.1 | 837.0 | 517.86 |
2 | 180.0 | 223.7 | 490.1 | 587.0 | 511.4 | 780.36 |
3 | 194.3 | 257.1 | 422.3 | 505.6 | 1197.1 | 651.67 |
4 | 46.09 | 58.97 | 91.0 | 108.1 | 101.7 | 144.68 |
Electrolyte | Korsunsky Composite Hardness Model | ||
---|---|---|---|
Fitting Parameter (k′) and Errors (SE and RSE) | Hardness of the Film | ||
k′ (SE) | RSE | Hf (GPa) | |
1 | 19.84278 (2.48141) | 0.98478 | 1.7021 |
2 | 23.58663 (3.81798) | 0.97084 | 2.3156 |
3 | 39.91077 (3.48558) | 0.99406 | 3.2161 |
4 | 13.15879 (1.68219) | 0.98335 | 1.1475 |
Electrolyte | Adhesion Parameter, b | The Critical Cycle Number, NC | The Value of Test Method B |
---|---|---|---|
1 | 14.439 | 21.5 | 5B |
2 | 19.347 | 24 | 5B |
3 | 22.267 | 40 | 5B |
4 | 11.376 | 13 | 5B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mladenović, I.O.; Lamovec, J.S.; Vasiljević-Radović, D.G.; Vasilić, R.; Radojević, V.J.; Nikolić, N.D. Evaluation of Adhesion Properties of Electrodeposited Copper Thin Films: Theoretical and Experimental Approach. Materials 2025, 18, 2480. https://doi.org/10.3390/ma18112480
Mladenović IO, Lamovec JS, Vasiljević-Radović DG, Vasilić R, Radojević VJ, Nikolić ND. Evaluation of Adhesion Properties of Electrodeposited Copper Thin Films: Theoretical and Experimental Approach. Materials. 2025; 18(11):2480. https://doi.org/10.3390/ma18112480
Chicago/Turabian StyleMladenović, Ivana O., Jelena S. Lamovec, Dana G. Vasiljević-Radović, Rastko Vasilić, Vesna J. Radojević, and Nebojša D. Nikolić. 2025. "Evaluation of Adhesion Properties of Electrodeposited Copper Thin Films: Theoretical and Experimental Approach" Materials 18, no. 11: 2480. https://doi.org/10.3390/ma18112480
APA StyleMladenović, I. O., Lamovec, J. S., Vasiljević-Radović, D. G., Vasilić, R., Radojević, V. J., & Nikolić, N. D. (2025). Evaluation of Adhesion Properties of Electrodeposited Copper Thin Films: Theoretical and Experimental Approach. Materials, 18(11), 2480. https://doi.org/10.3390/ma18112480