Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (400)

Search Parameters:
Keywords = thigh muscle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 225 KiB  
Article
Influence of Trace Mineral Sources and Levels on Growth Performance, Carcass Traits, Bone Characteristics, Oxidative Stress, and Immunity of Broiler
by Tassanee Trairatapiwan, Rachakris Lertpatarakomol, Sucheera Chotikatum, Achara Lukkananukool and Jamlong Mitchaothai
Animals 2025, 15(15), 2287; https://doi.org/10.3390/ani15152287 - 5 Aug 2025
Abstract
This study investigated the effects of reducing organic trace minerals below commercial inclusion levels and compared them with both low-dose and commercial levels of inorganic trace minerals, focusing on growth performance, carcass traits, tibia characteristics, oxidative stress (superoxide dismutase [SOD] and malondialdehyde [MDA]), [...] Read more.
This study investigated the effects of reducing organic trace minerals below commercial inclusion levels and compared them with both low-dose and commercial levels of inorganic trace minerals, focusing on growth performance, carcass traits, tibia characteristics, oxidative stress (superoxide dismutase [SOD] and malondialdehyde [MDA]), and immune response (serum IgG) in broilers. A total of 384 one-day-old Ross 308 chicks were randomly assigned to three dietary treatments: (1) commercial-level inorganic trace minerals (ILI; Zn 100 ppm; Cu 15 ppm; Fe 100 ppm; Mn 80 ppm; Se 0.2 ppm; I 3 ppm); (2) low-level organic trace minerals (LLO; Zn 30 ppm; Cu 4 ppm; Fe 11 ppm; Mn 30 ppm; Se 0.225 ppm; I 3 ppm), and (3) low-level inorganic trace minerals (LLI; Zn 30 ppm; Cu 4 ppm; Fe 11 ppm; Mn 30 ppm; Se 0.2 ppm; I 3 ppm). Each treatment consisted of eight replicates with 16 birds per replicate, and diets were provided in two phases: starter (days 1–21) and grower (days 22–35). The results showed that the LLO group demonstrated a significantly improved feed conversion ratio (FCR) during the starter phase, 2.4% better than that of the ILI and LLI groups (p = 0.02). Additionally, filet and thigh muscle yields in the LLO group were higher by 11.9% (p = 0.03) and 13.9% (p = 0.02), respectively, compared to the ILI group. Other carcass traits, as well as pH and drip loss, were not significantly affected. However, tibia breaking strength at day 35 was 15.1% lower in the LLO group compared to the ILI group (p = 0.02). No significant differences were observed in oxidative stress markers or IgG levels among groups. This study demonstrated that reducing the inclusion level of inorganic trace minerals did not negatively affect broiler growth performance, whereas supplementation with low levels of organic trace minerals improved both growth performance and carcass quality. Full article
(This article belongs to the Section Animal Nutrition)
22 pages, 1641 KiB  
Article
Site-Specific Trafficking of Lipid and Polar Metabolites in Adipose and Muscle Tissue Reveals the Impact of Bariatric Surgery-Induced Weight Loss: A 6-Month Follow-Up Study
by Aidan Joblin-Mills, Zhanxuan E. Wu, Garth J. S. Cooper, Ivana R. Sequeira-Bisson, Jennifer L. Miles-Chan, Anne-Thea McGill, Sally D. Poppitt and Karl Fraser
Metabolites 2025, 15(8), 525; https://doi.org/10.3390/metabo15080525 - 2 Aug 2025
Viewed by 233
Abstract
Background: The causation of type 2 diabetes remains under debate, but evidence supports both abdominal lipid and ectopic lipid overspill into tissues including muscle as key. How these depots differentially alter cardiometabolic profile and change during body weight and fat loss is not [...] Read more.
Background: The causation of type 2 diabetes remains under debate, but evidence supports both abdominal lipid and ectopic lipid overspill into tissues including muscle as key. How these depots differentially alter cardiometabolic profile and change during body weight and fat loss is not known. Methods: Women with obesity scheduled to undergo bariatric surgery were assessed at baseline (BL, n = 28) and at 6-month follow-up (6m_FU, n = 26) after weight loss. Fasting plasma (Pla), subcutaneous thigh adipose (STA), subcutaneous abdominal adipose, (SAA), and thigh vastus lateralis muscle (VLM) samples were collected at BL through surgery and at 6m_FU using needle biopsy. An untargeted liquid chromatography mass spectrometry metabolomics platform was used. Pla and tissue-specific lipid and polar metabolite profiles were modelled as changes from BL and 6m_FU. Results: There was significant body weight (−24.5 kg) loss at 6m_FU (p < 0.05). BL vs. 6m_FU tissue metabolomics profiles showed the largest difference in lipid profiles in SAA tissue in response to surgery. Conversely, polar metabolites were more susceptible to change in STA and VLM. In Pla samples, both lipid and polar metabolite profiles showed significant differences between timepoints. Jaccard–Tanimoto coefficient t-tests identified a sub-group of gut microbiome and dietary-derived omega-3-fatty-acid-containing lipid species and core energy metabolism and adipose catabolism-associated polar metabolites that are trafficked between sample types in response to bariatric surgery. Conclusions: In this first report on channelling of lipids and polar metabolites to alternative tissues in bariatric-induced weight loss, adaptive shuttling of small molecules was identified, further promoting adipose processing and highlighting the dynamic and coordinated nature of post-surgical metabolic regulation. Full article
Show Figures

Figure 1

12 pages, 244 KiB  
Article
Shaping Goose Meat Quality: The Role of Genotype and Soy-Free Diets
by Patrycja Dobrzyńska, Łukasz Tomczyk, Jerzy Stangierski, Marcin Hejdysz and Tomasz Szwaczkowski
Appl. Sci. 2025, 15(15), 8230; https://doi.org/10.3390/app15158230 - 24 Jul 2025
Viewed by 260
Abstract
The aim of this study was to evaluate the influence of genotype and diet on geese from crossbreeding meat lines Tapphorn (T) and Eskildsen (E). This study was conducted on 240 crossbred geese assigned to two dietary groups: an SBM diet group fed [...] Read more.
The aim of this study was to evaluate the influence of genotype and diet on geese from crossbreeding meat lines Tapphorn (T) and Eskildsen (E). This study was conducted on 240 crossbred geese assigned to two dietary groups: an SBM diet group fed a standard soybean-based diet and an LPS diet group fed a yellow lupin-based diet. Birds were reared under identical management conditions and slaughtered at 17 weeks of age. The following traits were recorded: meat colour (CIELab), pH24, cooking loss, breast and thigh muscle texture (shear force and energy), and sensory traits. The results showed a significant effect of both genotype and diet on meat quality. The LPS diet lowered shear force and energy (by ~11%, p < 0.001), reduced cooking loss in breast muscles (by ~5%, p < 0.001), and improved the juiciness and flavour of thigh muscles. The ET genotype positively influenced the meat colour intensity (lower L*, higher a*), while the lupin-based diet improved technological parameters, especially the water-holding capacity. The results confirm that replacing soybean meal with yellow lupin protein is an effective nutritional strategy that can improve goose meat quality and sustainability without compromising the sensory quality. These outcomes support developing soy-free feeding strategies in goose production to meet consumer expectations and reduce reliance on imported feed. Full article
(This article belongs to the Section Food Science and Technology)
17 pages, 2002 KiB  
Article
Passive Blood-Flow-Restriction Exercise’s Impact on Muscle Atrophy Post-Total Knee Replacement: A Randomized Trial
by Alexander Franz, Luisa Heiß, Marie Schlotmann, Sanghyeon Ji, Andreas Christian Strauss, Thomas Randau and Frank Sebastian Fröschen
J. Clin. Med. 2025, 14(15), 5218; https://doi.org/10.3390/jcm14155218 - 23 Jul 2025
Viewed by 348
Abstract
Background/Objectives: Total knee arthroplasty (TKA) is commonly associated with postoperative muscle atrophy and weakness, while traditional rehabilitation is often limited by pain and patient compliance. Passive blood flow restriction (pBFR) training may offer a safe, low-threshold method to attenuate muscle loss in [...] Read more.
Background/Objectives: Total knee arthroplasty (TKA) is commonly associated with postoperative muscle atrophy and weakness, while traditional rehabilitation is often limited by pain and patient compliance. Passive blood flow restriction (pBFR) training may offer a safe, low-threshold method to attenuate muscle loss in this early phase. This pilot study examined the feasibility, safety, and early effects of pBFR initiated during hospitalization on muscle mass, swelling, and functional recovery after TKA. Methods: In a prospective, single-blinded trial, 26 patients undergoing primary or aseptic revision TKA were randomized to either a control group (CON: sham BFR at 20 mmHg) or intervention group (INT: pBFR at 80% limb occlusion pressure). Both groups received 50 min daily in-hospital rehabilitation sessions for five consecutive days. Outcomes, including lean muscle mass (DXA), thigh/knee circumference, 6 min walk test (6 MWT), handgrip strength, and patient-reported outcomes, were assessed preoperatively and at discharge, six weeks, and three months postoperatively. Linear mixed models with Bonferroni correction were applied. Results: The INT group showed significant preservation of thigh circumference (p = 0.002), reduced knee swelling (p < 0.001), and maintenance of lean muscle mass (p < 0.01), compared with CON, which exhibited significant declines. Functional performance improved faster in INT (e.g., 6 MWT increase at T3: +23.7%, p < 0.001; CON: −7.2%, n.s.). Quality of life improved in both groups, with greater gains in INT (p < 0.05). No adverse events were reported. Conclusions: Initiating pBFR training on the first postoperative day is feasible, safe, and effective in preserving muscle mass and reducing swelling after TKA. These findings extend prior BFR research by demonstrating its applicability in older, surgical populations. Further research is warranted to evaluate its integration with standard rehabilitation programs and long-term functional benefits. Full article
Show Figures

Figure 1

22 pages, 3024 KiB  
Article
Effects of Ginger Supplementation on Markers of Inflammation and Functional Capacity in Individuals with Mild to Moderate Joint Pain
by Jacob Broeckel, Landry Estes, Megan Leonard, Broderick L. Dickerson, Drew E. Gonzalez, Martin Purpura, Ralf Jäger, Ryan J. Sowinski, Christopher J. Rasmussen and Richard B. Kreider
Nutrients 2025, 17(14), 2365; https://doi.org/10.3390/nu17142365 - 18 Jul 2025
Viewed by 1751
Abstract
Background: Ginger contains gingerols, shagaols, paradols, gingerdiones, and terpenes, which have been shown to display anti-inflammatory properties and inhibit pain receptors. For this reason, ginger has been marketed as a natural analgesic. This study examined whether a specialized ginger extract obtained through supercritical [...] Read more.
Background: Ginger contains gingerols, shagaols, paradols, gingerdiones, and terpenes, which have been shown to display anti-inflammatory properties and inhibit pain receptors. For this reason, ginger has been marketed as a natural analgesic. This study examined whether a specialized ginger extract obtained through supercritical CO2 extraction and subsequent fermentation affects pain perception, functional capacity, and markers of inflammation. Methods: Thirty men and women (56.0 ± 9.0 years, 164.4 ± 14 cm, 86.5 ± 20.9 kg, 31.0 ± 7.5 kg/m2) with a history of mild to severe joint and muscle pain as well as inflammation participated in a placebo-controlled, randomized, parallel-arm study. Participants donated fasting blood, completed questionnaires, rated pain in the thighs to standardized pressure, and then completed squats/deep knee bends, while holding 30% of body mass, for 3 sets of 10 repetitions on days 0, 30, and 56 of supplementation. Participants repeated tests after 2 days of recovery following each testing session. Participants were matched by demographics and randomized to ingest 125 mg/d of a placebo or ginger (standardized to contain 10% total gingerols and no more than 3% total shogaols) for 58 days. Data were analyzed by a general linear model (GLM) analysis of variance with repeated measures, mean changes from the baseline with 95% confidence intervals, and chi-squared analysis. Results: There was evidence that ginger supplementation attenuated perceptions of muscle pain in the vastus medialis; improved ratings of pain, stiffness, and functional capacity; and affected several inflammatory markers (e.g., IL-6, INF-ϒ, TNF-α, and C-Reactive Protein concentrations), particularly following two days of recovery from resistance exercise. There was also evidence that ginger supplementation increased eosinophils and was associated with less frequent but not significantly different use of over-the-counter analgesics. Conclusions: Ginger supplementation (125 mg/d, providing 12.5 mg/d of gingerols) appears to have some favorable effects on perceptions of pain, functional capacity, and inflammatory markers in men and women experiencing mild to moderate muscle and joint pain. Registered clinical trial #ISRCTN74292348. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

16 pages, 1788 KiB  
Article
Uncovering Sexual Differences in the External Morphology, Appendicular Muscles, and Internal Organs of a Fossorial Narrow-Mouth Frog (Kaloula borealis)
by Xiuping Wang, Meihua Zhang, Wenyi Zhang, Jianping Jiang and Bingjun Dong
Animals 2025, 15(14), 2118; https://doi.org/10.3390/ani15142118 - 17 Jul 2025
Viewed by 316
Abstract
Sexual dimorphism is prevalent among animals, influencing both functional morphological traits and behavioral performances. In this study, we investigated the sexual differences in the morphological parameters of Kaloula borealis (Anura, Microhylidae) during the breeding season using 48 specimens. Our results reveal that among [...] Read more.
Sexual dimorphism is prevalent among animals, influencing both functional morphological traits and behavioral performances. In this study, we investigated the sexual differences in the morphological parameters of Kaloula borealis (Anura, Microhylidae) during the breeding season using 48 specimens. Our results reveal that among the 16 external morphological traits, females had significantly larger snout-vent length and eye diameter than males. The former presumably contributes to enhancing fertility, while the latter is associated with larger body size. Males exhibited significantly greater head width and thigh width than females, which may be related to accessing a wider range of food sources and enhancing their locomotor ability, respectively. Among the 32 appendicular muscles, 10 displayed significant sexual dimorphism in dry mass, suggesting divergent reproductive strategies between the sexes. Among the eight internal organs analyzed, males possessed significantly heavier hearts and lungs than females, which is likely an adaptation to higher metabolic demands and calling behavior. Collectively, our findings demonstrate that sex-specific differences in external morphology, muscle mass, and internal organ mass reflect distinct ecological and reproductive adaptations between males and females and contribute to the phenotypic diversities in Anura. Full article
(This article belongs to the Section Herpetology)
Show Figures

Figure 1

13 pages, 3548 KiB  
Article
Analysis of Carcass and Meat Characteristics in Breast Muscle Between Hubbard White Broilers and Xueshan Chickens
by Fan Li, Xingyu Zhang, Jiajia Yu, Jiaxue Yuan, Yuanfeng Zhang, Huiting He, Qing Ma, Yinglin Lu, Xiaoe Xiang and Minli Yu
Animals 2025, 15(14), 2099; https://doi.org/10.3390/ani15142099 - 16 Jul 2025
Viewed by 334
Abstract
The focus on selecting broilers for rapid growth rates and enhanced breast muscle yield has resulted in a decline in meat quality. The differences in carcass characteristics and meat quality between Hubbard white broilers (HWs, a commercial breed) and Xueshan chickens (XSs, an [...] Read more.
The focus on selecting broilers for rapid growth rates and enhanced breast muscle yield has resulted in a decline in meat quality. The differences in carcass characteristics and meat quality between Hubbard white broilers (HWs, a commercial breed) and Xueshan chickens (XSs, an indigenous breed) at market age were analyzed to determine the potential mechanisms responsible for these differences. The results show that HWs exhibited significantly better carcass performance than XSs, including the larger weight of the carcass, the breast muscle, and the thigh muscle (p < 0.01). In addition, based on HE staining analysis, HWs’ breast muscles had a considerably larger average myofiber area and diameter than those of XSs (p < 0.01). Furthermore, the physical characteristics of the meat revealed that XSs had higher redness and yellowness and also higher lightness. HW meat had a higher pH and thermal loss, but a lower shear force and drip loss than XS meat (p < 0.01). The content of saturated fatty acids (SFAs) and polyunsaturated fatty acids (PUFAs) was, remarkably, lower in the breast muscles of HWs than of XSs (p < 0.01). In contrast, HWs had a larger concentration of monounsaturated fatty acids (MUFAs) than XSs (p < 0.01). Finally, the breast muscles of XSs had lower levels of mRNA expression for genes linked to lipid metabolism, such as fatty acid binding protein 4 (Fabp4) and peroxisome proliferator-activated receptor alpha (Pparα), and had higher levels of the phosphofructokinase muscle type (Pfkm) compared to HWs (p < 0.01). These results indicate that a lower carcass yield was observed in XSs compared with HWs, but that XSs showed better performance in terms of meat quality than HW. Full article
(This article belongs to the Special Issue Advances in Genetic Analysis of Important Traits in Poultry)
Show Figures

Figure 1

16 pages, 622 KiB  
Article
Relationship Between Intermuscular Synchronization of Upper Leg Muscles and Training Level in Karate Kumite Practitioners
by Velimir Jeknić, Milivoj Dopsaj and Nenad Koropanovski
J. Funct. Morphol. Kinesiol. 2025, 10(3), 234; https://doi.org/10.3390/jfmk10030234 - 20 Jun 2025
Viewed by 352
Abstract
Objectives: This study aimed to compare the involuntary stimulated neuromuscular response of thigh muscles in karate subgroups and non-athletes. We investigated whether karate training creates neuromuscular adaptations and if the synchronization of knee flexor and extensor muscles in karate practitioners is level-dependent. [...] Read more.
Objectives: This study aimed to compare the involuntary stimulated neuromuscular response of thigh muscles in karate subgroups and non-athletes. We investigated whether karate training creates neuromuscular adaptations and if the synchronization of knee flexor and extensor muscles in karate practitioners is level-dependent. Methods: The study included 7 elite karate athletes (KE), 14 sub-elite karate athletes (KSE), 16 individuals with basic karate training (KB), and 14 non–athletes (NA). Tensiomyographic (TMG) measurements were obtained from the rectus femoris, vastus medialis, vastus lateralis, biceps femoris, and semitendinosus muscles. Indexes of Intermuscular Synchronization (IIS) were calculated for contraction time (Tc), total contraction time (TcT), and rate of muscle tension development (RMTD) as variables for the observed muscles of a given muscle group (extensors of the dominant leg, flexors of the dominant leg, extensors of the non-dominant leg, and flexors of the non-dominant leg). Results: Statistically significant differences were observed in the intermuscular synchronization indexes between karate experience levels and non-athletes. Compared to non-athletes, elite (KE), sub-elite (KSE), and beginner karateka (KB) all demonstrated shorter contraction time indexes in dominant knee extensors (p = 0.042, 0.040, and 0.013, respectively). In the non-dominant flexors, KE exhibited significantly better synchronization than KSE (p = 0.001), KB (p = 0.033), and NA (p = 0.002). For the total contraction time index, both KSE and KB outperformed NA in dominant extensors (p = 0.023 and p = 0.008), while KE showed superiority in non-dominant extensors and flexors compared to all other groups (p-values ranging from 0.002 to 0.038). Significant RMTD differences were found in the dominant leg between KE and KSE (p = 0.036) and KE and KB (p = 0.001), as well as in the non-dominant leg between KE and KB (p = 0.011) and KE and NA (p = 0.025). These findings were accompanied by statistical powers exceeding 0.80 in most cases, underscoring the robustness of the observed differences. Conclusions: These findings highlight that muscle coordination patterns, as revealed through non-invasive TMG-based indexes, are sensitive to training level and laterality in karate practitioners. Importantly, elite athletes demonstrated more synchronized activation in key muscle groups, suggesting a neuromuscular adaptation specific to high-level combat sports. From a biomechanical perspective, improved intermuscular synchronization may reflect optimized neural strategies for stability, speed, and efficiency—key components in competitive karate. Thus, this method holds promise not only for performance diagnostics but also for refining individualized training strategies in combat sports and broader athletic contexts. Full article
(This article belongs to the Special Issue Innovative Approaches in Monitoring Individual Sports)
Show Figures

Figure 1

15 pages, 2602 KiB  
Article
The Role of Muscle Density in Predicting the Amputation Risk in Peripheral Arterial Disease: A Tissue Composition Study Using Lower Extremity CT Angiography
by Yueh-Hung Lin, Pei-Shan Tsai, Chung-Lieh Hung, Mirza Faisal Beg, Hung-I Yeh, Chun-Ho Yun and Ming-Ting Wu
Diagnostics 2025, 15(11), 1439; https://doi.org/10.3390/diagnostics15111439 - 5 Jun 2025
Viewed by 506
Abstract
Objectives: Peripheral arterial disease (PAD) is a common vascular condition with amputation as a major complication. While muscle volume and vascular severity is often considered in risk prediction, the prognostic value of muscle density remains underexplored. Methods: In this exploratory study, we [...] Read more.
Objectives: Peripheral arterial disease (PAD) is a common vascular condition with amputation as a major complication. While muscle volume and vascular severity is often considered in risk prediction, the prognostic value of muscle density remains underexplored. Methods: In this exploratory study, we retrospectively analyzed 134 patients undergoing lower-limb computed tomography angiography between January 2018 and December 2023. Muscle density (MD), muscle volume, intermuscular adipose tissue (IMAT), and vascular severity scores were quantified using deep learning software. Patients were stratified into non-PAD, mild PAD, and critical limb ischemia (CLI) groups. Multivariate Cox regression assessed associations with amputation risk. Results: PAD patients, especially those with CLI, had lower muscle volumes (e.g., total leg: 7945.3 ± 2012.5 cm3 in CLI vs. 11,161.6 ± 4670.4 cm3 in non-PAD), lower muscle densities (e.g., lower leg: 34.0 ± 10.5 HU in CLI vs. 44.1 ± 6.9 HU in non-PAD), higher intermuscular adipose tissue volume percentage (e.g., total leg: 15.6 ± 5.4% in CLI vs. 10.5 ± 3.6% in non-PAD), and higher vascular severity scores (e.g., total leg: 12.6 ± 5.0 in CLI vs. 0.1 ± 0.3 in non-PAD), compared to non-PAD individuals. Only muscle density (MD) including that of abdominal muscle, thigh muscle, and lower leg muscle remained significant predictors of amputation risk after adjusting for confounders. Multivariate Cox regression models, adjusted for demographics and comorbidities, revealed that lower MD of abdomen (<18.7 HU; HR, 6.50, 95% CI, 1.95–21.77), thigh (<27.8 HU; HR, 5.00, 95% CI, 1.60–15.66), and lower leg (<32.4 HU; HR, 6.89, 95% CI, 2.17–21.93) muscles were independently associated with increased amputation risk. Conclusions: Muscle density, reflecting muscle quality rather than quantity, was an independent predictor of amputation risk in PAD. These findings highlight the prognostic value of muscle quality and support the integration of advanced imaging techniques, such as automated CTA-based body composition analysis, for risk stratification in PAD patients. Full article
(This article belongs to the Special Issue Diagnosis and Management of Vascular Diseases)
Show Figures

Figure 1

12 pages, 809 KiB  
Article
The Role of Whey Protein in Maintaining Fat-Free Mass and Promoting Fat Loss After 18 Months of Bariatric Surgery
by Hirla Karen Fialho Henriques, Fabiana Martins Kattah, Matheus Soares Piccolo, Elandia Aparecida dos Santos, Lucas Haniel de Araújo Ventura, Flávia Rodrigues Cerqueira, Claudia Maria Andrade Fernandes Vieira and Jacqueline Isaura Alvarez Leite
Obesities 2025, 5(2), 42; https://doi.org/10.3390/obesities5020042 - 5 Jun 2025
Viewed by 1200
Abstract
Introduction: Adequate protein intake is essential for maintaining lean body mass during weight loss, particularly for patients undergoing bariatric surgery (BS). Whey protein supplementation may help meet daily protein requirements. This study aimed to assess the effects of whey protein supplementation on weight [...] Read more.
Introduction: Adequate protein intake is essential for maintaining lean body mass during weight loss, particularly for patients undergoing bariatric surgery (BS). Whey protein supplementation may help meet daily protein requirements. This study aimed to assess the effects of whey protein supplementation on weight loss and body composition in women during the medium-term postoperative phase following BS. Methods: In a double-blind, controlled study over four weeks, 24 women received 30 g of whey protein (Whey group), while 19 received 30 g of maltodextrin (Malto group). Body composition, energy expenditure, muscle thickness, muscle strength, walking performance, and dietary intake were evaluated. Results: Compared to the Malto group, the Whey group showed greater reductions in body weight (median: −0.6 kg vs. −0.2 kg, respectively) and fat mass (median: −1.1 kg vs. −0.25 kg, respectively), along with an increase in fat-free mass (−0.7 kg vs. 0.6 kg, respectively). Muscle thickness improved in the Whey compared to the Malto group in the abdominal (0.07 mm vs. −0.04 mm, respectively) and thigh (0.4 mm vs. −0.15 mm, respectively) regions. Additionally, muscle mass reduction was less pronounced in the Whey group (−3 kg vs. −0.13 kg). No significant differences were observed in handgrip strength, gait speed, or nutrient intake. Conclusions: Whey protein supplementation may be beneficial, as it enhances weight loss and preserves fat-free and muscle mass more effectively than a diet without this supplementation in women during the stabilization phase or late postoperative period of BS. Full article
Show Figures

Figure 1

15 pages, 755 KiB  
Article
Role of Electrically Evoked Muscle Hypertrophy on Spasticity in Persons with Spinal Cord Injury
by Momal A. Wasim, Ahmad M. Alazzam and Ashraf S. Gorgey
J. Clin. Med. 2025, 14(11), 3972; https://doi.org/10.3390/jcm14113972 - 4 Jun 2025
Viewed by 626
Abstract
Study Design: Pilot randomized clinical trial. Objective: To examine the effect of electrically evoked muscle hypertrophy on indices of spasticity, as measured by Biodex after spinal cord injury (SCI). Setting: Medical research center. Methods: Thirteen males with chronic SCI were [...] Read more.
Study Design: Pilot randomized clinical trial. Objective: To examine the effect of electrically evoked muscle hypertrophy on indices of spasticity, as measured by Biodex after spinal cord injury (SCI). Setting: Medical research center. Methods: Thirteen males with chronic SCI were randomized into sixteen weeks of either surface neuromuscular resistance training (NMES-RT) + testosterone treatment (TT) (n = 7) or a TT-only group (n = 6). A Biodex isokinetic dynamometer was used to measure knee extensor and flexor muscle spasticity at the beginning (baseline; BL) and at the end (post-intervention; PI) of 16 weeks. The passive tension of the right knee extensor and flexor muscle groups were evaluated at angles of 5°, 30°, 60°, 90°, 180°, and 270° per second (sec). Dual energy X-ray absorptiometry and magnetic resonance imaging were used to measure leg lean mass and thigh muscle cross-sectional areas (CSAs). Results: Robust muscle hypertrophy was noted in leg lean mass [11%, p = 0.023] as well as whole thigh [17%, p = 0.001] and knee extensor muscle [28%, p = 0.001] CSAs in the NMES-RT+TT compared to the TT-only group. There was no difference in extensor or flexor spasticity between the NMES-RT+TT or TT-only groups at different angular velocities following 16 weeks of intervention. Collapsing the extensor passive torques indicated an (24–28%) increase (p < 0.004) in response to angular velocities at BL and following PI measurements [180 deg/sec (23%; p = 0.03) and 270 deg/sec (32%; p = 0.009)] compared to 5 deg/sec. The extensor slope showed a non-significant (p > 0.05) decrease of 15–28% across all angular velocities. The catch-AB slopes were non-significantly lower in the TT-only group compared to the NMES-RT+TT at higher speeds [90 deg/sec and 270 deg/sec] and attained a trend towards lower passive torque at 180 deg/sec [180 deg/sec: 15.5%, p = 0.05]. Conclusions: Evoking skeletal muscle hypertrophy did not increase spasticity indices at different angular velocities following sixteen weeks of NMES-RT+TT or TT in persons with chronic SCI. Augmenting muscle hypertrophy is likely to attenuate the hyper reflexive slope of the extensor spasticity. The findings may suggest that evoking muscle hypertrophy following NMES-RT does not increase indices of spasticity after SCI. The clinical implications are highly important in managing spasticity after SCI. Full article
(This article belongs to the Section Clinical Rehabilitation)
Show Figures

Graphical abstract

18 pages, 7293 KiB  
Article
Comparative Transcriptomic Analysis Between High- and Low-Growth-Rate Meat-Type Rabbits Reveals Key Pathways Associated with Muscle Development
by Chao Yang, Lingxi Zhu, Li Tang, Xiangyu Zhang, Min Lei, Xiaohong Xie, Cuixia Zhang, Dingsheng Yuan, Congyan Li and Ming Zhang
Animals 2025, 15(11), 1585; https://doi.org/10.3390/ani15111585 - 29 May 2025
Viewed by 538
Abstract
Rabbit meat constitutes a high-protein, low-fat nutritional resource demonstrating rising consumption, particularly within the Asia-Pacific region. Consequently, muscle growth and developmental pattern in meat rabbits represent critical economic considerations. To elucidate the primary signaling pathways governing muscle development, we first performed comparative body [...] Read more.
Rabbit meat constitutes a high-protein, low-fat nutritional resource demonstrating rising consumption, particularly within the Asia-Pacific region. Consequently, muscle growth and developmental pattern in meat rabbits represent critical economic considerations. To elucidate the primary signaling pathways governing muscle development, we first performed comparative body weight analyses between two rabbit breeds exhibiting divergent growth rates: the fast-growing Checkered Giant (Ju) and slow-growing Sichuan Ma rabbit. Subsequent, post-natal qualities of thigh and longissimus dorsi muscle fiber were quantified across three developmental phases (28, 56, and 84 days post-natal). The results showed the body weight of Ju rabbit was significantly higher than that of Ma rabbit beyond 3 weeks post-natal (p < 0.05), while Ma rabbit exhibited larger muscle fiber areas in both tissues at 56 days (p < 0.05). The transcriptome analysis showed that 284 and 305 differentially expressed genes (DEGs) (|log2FC| > 1, padj < 0.05) were identified in thigh muscle and longissimus dorsi muscle, respectively. GO (Gene Ontology) analysis of DEGs indicated DEGs in the thigh muscle were enriched in these terms related to biological processes of muscle cell migration and smooth muscle cell migration, cellular components of sarcomere, myofibril, and actin filament bundle, while DEGs in longissimus dorsi muscle were enriched in these terms associated with biological processes of muscle cell migration, smooth muscle cell migration and muscle structure development, cellular component of actin cytoskeleton, contractile fiber, myofibril, myosin complex and molecular function of actin filament binding. Integrated GO, KEGG and PPI analyses of co-expressive DEGs implicated the HIF-1 signaling pathway and Glycolysis/Gluconeogenesis in muscular development. Different expression of energy metabolism hub-genes might be the primary reason for interbreed muscle developmental disparities. Full article
Show Figures

Figure 1

16 pages, 1561 KiB  
Article
An Investigation into the Effects of Frailty and Sarcopenia on Postoperative Anesthesia Recovery and Complications Among Geriatric Patients Undergoing Colorectal Malignancy Surgery
by Rüştü Özdemir and Ferda Yaman
Medicina 2025, 61(6), 969; https://doi.org/10.3390/medicina61060969 - 23 May 2025
Viewed by 448
Abstract
Backgrounds and Objectives: In this study, we aimed to assess preoperative frailty among hospitalized patients over 60 undergoing colorectal cancer surgery. We investigated the impacts of frailty and sarcopenia on postoperative recovery, complications, and discharge time, while also identifying a cost-effective, bedside-accessible USG [...] Read more.
Backgrounds and Objectives: In this study, we aimed to assess preoperative frailty among hospitalized patients over 60 undergoing colorectal cancer surgery. We investigated the impacts of frailty and sarcopenia on postoperative recovery, complications, and discharge time, while also identifying a cost-effective, bedside-accessible USG parameter for diagnosing sarcopenia among patients assessed using the “Sonographic Thigh Adjustment Ratio” method. Materials and Methods: In this prospective study, we investigated the impacts of frailty and sarcopenia on the postoperative outcomes of 42 geriatric patients (with American Society of Anesthesiologists (ASA) scores of I–III) undergoing colorectal cancer surgery under general anesthesia. Frailty was assessed using the FRAIL scale, and sarcopenia was evaluated using the STAR (sonographic thigh adjustment ratio). Ultrasonographic measurements of rectus femoris and vastus intermedius muscle thicknesses were taken, and thigh lengths (TLs) were recorded. Ratios, including rectus femoris thickness/TL (RFT/TL), vastus intermedius thickness/TL (VIT/TL), and total muscle thickness/TL (TMT/TL), were calculated. Postoperative anesthesia recovery was monitored using the Modified Aldrete Score, indicating the time until discharge from the recovery unit. Complications were classified using the Clavien–Dindo system, and hospital discharge times were noted. Results: We observed significant differences between frailty status and ASA scores, as well as between age and frailty status. Muscle thickness significantly differed between the frail and pre-frail patients. Among the sarcopenic patients, age differences were significant. In men, VIT/TL was significantly correlated with sarcopenia diagnosis, whereas, in women, RFT/TL, VIT/TL, and TMT/TL were all correlated with sarcopenia. Conclusions: Based on our results, we conclude that VIT/TL measurement can serve as a predictive marker for preoperative sarcopenia, optimizing patient health before surgery. Full article
(This article belongs to the Section Intensive Care/ Anesthesiology)
Show Figures

Figure 1

22 pages, 2142 KiB  
Article
Influence of Structured Medium- and Long-Chain Triglycerides on Muscular Recovery Following Damaging Resistance Exercise
by Carina M. Velasquez, Christian Rodriguez, Kealey J. Wohlgemuth, Grant M. Tinsley and Jacob A. Mota
Nutrients 2025, 17(10), 1604; https://doi.org/10.3390/nu17101604 - 8 May 2025
Viewed by 736
Abstract
Background/Objectives: Structured medium- and long-chain triglycerides (sMLCT) may be a superior vehicle for medium-chain fatty acid delivery to peripheral tissues, such as skeletal muscle. Limited information is available concerning the effect of sMLCT on muscular performance or recovery after a muscle-damaging exercise [...] Read more.
Background/Objectives: Structured medium- and long-chain triglycerides (sMLCT) may be a superior vehicle for medium-chain fatty acid delivery to peripheral tissues, such as skeletal muscle. Limited information is available concerning the effect of sMLCT on muscular performance or recovery after a muscle-damaging exercise protocol. The purpose of this study was to establish the effect of a novel formulation of sMLCT on muscular performance and recovery. Methods: Forty female adults (mean ± SD age = 22 ± 3 years; body mass index = 23.5 ± 3.4 kg/m2) were randomized into one of two study groups, placebo control [CON; n = 20] or sMLCT [n = 20], and completed five total visits to the laboratory. The baseline (i.e., pre-exercise) assessments of muscle performance, size, and soreness were compared to assessments immediately following exercise and 24, 48, and 72 h post-exercise. Results: No statistically significant condition × time interactions were noted for strength outcomes, although trends for condition × time interactions were present for torque over 25 ms (p = 0.06) and peak torque (p = 0.05). Similarly, no condition x time interactions were present for ultrasound echo intensity, the subjective ratings of soreness and pain, thigh circumference, leg volume, and vertical jump performance. Conclusions: Within the context of the current study, the ingestion of sMLCT did not significantly influence the rate of muscle strength recovery following muscle damaging resistance exercise. Full article
(This article belongs to the Special Issue Effect of Dietary Intake on Athletic Performance)
Show Figures

Figure 1

17 pages, 1003 KiB  
Systematic Review
Muscle Activity and Biomechanics of Sprinting: A Meta-Analysis Review
by Przemysław Pietraszewski, Adam Maszczyk, Adam Zając and Artur Gołaś
Appl. Sci. 2025, 15(9), 4959; https://doi.org/10.3390/app15094959 - 30 Apr 2025
Cited by 2 | Viewed by 4988
Abstract
This meta-analysis investigated muscle activity and sprint biomechanics by reviewing EMG, kinematic, and kinetic studies, with a focus on changes across sprint phases and the effects of fatigue. Following PRISMA 2020 guidelines, twelve studies were selected from databases such as PubMed and Scopus, [...] Read more.
This meta-analysis investigated muscle activity and sprint biomechanics by reviewing EMG, kinematic, and kinetic studies, with a focus on changes across sprint phases and the effects of fatigue. Following PRISMA 2020 guidelines, twelve studies were selected from databases such as PubMed and Scopus, analyzing lower limb muscles (e.g., biceps femoris, semitendinosus, gluteus maximus) and biomechanical variables like step length, stride frequency, and ground reaction forces. Using random-effects models and meta-regression, the analysis revealed that increased sprint speed is associated with greater activation of the posterior thigh muscles and gluteus maximus. The biceps femoris peaks in the late swing phase (~110% MVC), while the gluteus maximus is most active in early stance. Sprinting faster typically results in a 15–20% increase in step length and moderate changes in stride frequency. Fatigue causes earlier muscle activation, reduced hip and knee flexion, and longer ground contact times, which may impair efficiency and raise injury risk. A strong linear relationship (R2 = 0.881, p < 0.001) was found between sprint speed and muscle activation, with activation increasing by ~6.3% MVC per 1 m/s. These findings highlight the importance of hamstring and gluteal strength, as well as fatigue resistance, in sprint training and injury prevention. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

Back to TopTop