Relationship Between Intermuscular Synchronization of Upper Leg Muscles and Training Level in Karate Kumite Practitioners
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. TMG Indexes of Intermuscular Synchronization (IIS)
- -
- For the dominant leg:
- IIS_AVG_Tc_Q_D, which is calculated in the following way:(RF_Tc + VL_Tc + VM_Tc)/3, expressed in ms.
- IIS_cV_Tc_Q_D, which was calculated as a coefficient of variation and represents the quotient between the standard deviation and the average value of Tc for RF, VL, and VM of the dominant leg, expressed as a percentage.
- IIS_AVG_Tc_H_D, which is calculated in the following way:(BF_Tc + ST_Tc)/2, expressed in ms.
- IIS_cV_Tc_H_D, which is calculated as a coefficient of variation and represents the quotient between the standard deviation and the average value of Tc for the biceps femoris and semitendinosus of the dominant leg, expressed as a percentage.
- -
- For the non-dominant leg:
- IIS_AVG_Tc_Q_ND, which is calculated in the following way:(RF_Tc + VL_Tc + VM_Tc)/3, expressed in ms.
- IIS_cV_Tc_Q_ND, which was calculated as a coefficient of variation and represents the quotient between the standard deviation and the average value of Tc for the RF, VL, and VM of the non-dominant leg, expressed as a percentage.
- IIS_AVG_Tc_H_ND, which is calculated in the following way:(BF_Tc + ST_Tc)/2, expressed in ms.
- IIS_cV_Tc_H_ND, which was calculated as a coefficient of variation and represents the quotient between the standard deviation and the average value of Tc for the biceps femoris and semitendinosus of the non-dominant leg, expressed as a percentage.
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohr, M.; Nann, M.; von Tscharner, V.; Eskofier, B.; Nigg, B.M. Task-Dependent Intermuscular Motor Unit Synchronization between Medial and Lateral Vastii Muscles during Dynamic and Isometric Squats. PLoS ONE 2015, 10, e0142048. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.D.G.; Vaz, J.R.; Correia, P.F.; Valamatos, M.J.; Veloso, A.; Pezarat-Correia, P. Intermuscular Coordination in the Power Clean Exercise: Comparison between Olympic Weightlifters and Untrained Individuals-A Preliminary Study. Sensors 2021, 21, 1904. [Google Scholar] [CrossRef] [PubMed]
- Rabbi, M.F.; Davico, G.; Lloyd, D.G.; Carty, C.P.; Diamond, L.E.; Pizzolato, C. Muscle Synergy-Informed Neuromusculoskeletal Modelling to Estimate Knee Contact Forces in Children with Cerebral Palsy. Biomech. Model. Mechanobiol. 2024, 23, 1077–1090. [Google Scholar] [CrossRef]
- Safavynia, S.A.; Torres-Oviedo, G.; Ting, L.H. Muscle Synergies: Implications for Clinical Evaluation and Rehabilitation of Movement. Top. Spinal Cord Inj. Rehabil. 2011, 17, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Kobayashi, T.; Zhou, J.; Lam, W.K. Current application of continuous relative phase in running and jumping studies: A systematic review. Gait Posture 2021, 90, 215–233. [Google Scholar] [CrossRef]
- Whittle, C.; Jobson, S.A.; Smith, N. Validity of Calculating Continuous Relative Phase during Cycling from Measures Taken with Skin-Mounted Electro-Goniometers. Sensors 2022, 22, 4371. [Google Scholar] [CrossRef]
- O’Halloran, J.; Anderson, R. An Examination of Intrarower Coordination Movement Coupling Using Continuous Relative Phase. In Proceedings of the 25th International Symposium of Biomechanics in Sport, Ouro Preto, Brazil, 23–27 August 2007. [Google Scholar]
- Irwin, G.; Williams, G.K.R.; Kerwin, D.G.; von Lieres und Wilkau, H.v.L.U.; Newell, K.M. Learning the high bar longswing:II. energetics and the emergence of the coordination pattern. J. Sports Sci. 2021, 39, 2698–2705. [Google Scholar] [CrossRef] [PubMed]
- Komar, J.; Chow, J.Y.; Chollet, D.; Seifert, L. Neurobiological degeneracy: Supporting stability, flexibility and pluripotentility in complex motor skill. Acta Psychol. 2015, 154, 26–35. [Google Scholar] [CrossRef]
- De Luca, C.J.; Erim, Z. Common drive in motor units of a synergistic muscle pair. J. Neurophysiol. 2002, 87, 2200–2204. [Google Scholar] [CrossRef]
- Mellor, R.; Hodges, P.W. Effect of knee joint angle on motor unit synchronization. J. Orthop. Res. 2006, 24, 1420–1426. [Google Scholar] [CrossRef]
- Błaszczyszyn, M.; Szczęsna, A.; Pawlyta, M.; Marszałek, M.; Karczmit, D. Kinematic Analysis of Mae-Geri Kicks in Beginner and Advanced Kyokushin Karate Athletes. Int. J. Environ. Res. Public Health 2019, 16, 3155. [Google Scholar] [CrossRef] [PubMed]
- World Karate Federation Kumite Competition Rules 2024. Available online: https://www.wkf.net/pdf/WKF_Kumite_Competition_Rules_2024.pdf (accessed on 28 March 2025).
- Goethel, M.F.; Vilas-Boas, J.P.; Machado, L.; Ervilha, U.F.; Moreira, P.V.S.; Bendilatti, A.R.; Hamill, J.; Cardozo, A.C.; Gonçalves, M. Performance, Perceptual and Reaction Skills and Neuromuscular Control Indicators of High-Level Karate Athletes in the Exection of the Gyaku Tsuki Punch. Biomechanics 2023, 3, 415–424. [Google Scholar] [CrossRef]
- Przybylski, P.; Janiak, A.; Szewczyk, P.; Wielinski, D.; Domaszewska, K. Morphological and Motor Fitness Determinants of Shotokan Karate Performance. Int. J. Environ. Res. Public Health 2021, 18, 4423. [Google Scholar] [CrossRef]
- Berti, B.; Momi, D.; Sprugnoli, G.; Neri, F.; Bonifazi, M.; Rossi, A.; Muscettola, M.; Benocci, R.; Emiliano Santarnecchi, E.; Rossi, S. Peculiarities of Functional Connectivity—Including Cross-Modal Patterns in Professional Karate Athletes: Correlations with Cognitive and Motor Performances. Neural Plast. 2019, 2019, 66807978. [Google Scholar] [CrossRef]
- Hadad, A.; Ganz, N.; Intrator, N.; Maimon, N.; Molcho, L.; Hausdorff, J.M. Postural control in karate practitioners: Does practice make perfect? Gait Posture 2020, 77, 218–224. [Google Scholar] [CrossRef]
- Samadi, H.; Nikzad Abbasi, Z.; Khaleghi Tazji, M. The Effect of Eight Weeks of Kyokushin Karate Training on leg Muscle Activity and Medial Longitudinal arch Height of Adolescent Girls With Foot Pronation. Phys. Ther. 2023, 13, 203–214. [Google Scholar] [CrossRef]
- Quinzi, F.; Camomilla, V.; Felici, F.; Di Mario, A.; Sbriccoli, P. Differences in neuromuscular control between impact and no impact roundhouse kick in athletes of different skill levels. J. Electromyogr. Kinesiol. 2013, 23, 140–150. [Google Scholar] [CrossRef]
- VencesBrito, A.M.; Rodrigues Ferreira, M.A.; Cortes, N.; Fernandes, O.; Pezarat-Correia, P. Kinematic and electromyographic anayses of a karate punch. J. Electromyogr. Kinesiol. 2011, 21, 1023–1029. [Google Scholar] [CrossRef]
- Quinzi, F.; Camomilla, V.; Felici, F.; Di Mario, A.; Sbriccoli, P. Agonist and antagonist muscle activation in elite athletes: Influence of age. Eur. J. Appl. Physiol. 2014, 115, 47–56. [Google Scholar] [CrossRef]
- Costelloe, R.; Kingman, J.; Dyson, R. Speed and muscular coordination during the karate punch. J. Sports Sci. 2002, 20, 4–5. [Google Scholar]
- Almas, K.Z.; Lismadiana, L.; Tomoliyus, T.; Hariono, A.; Danardono, D.; Prabowo, T.A.; Hikmah, N. Contribution of coordination, balance, flexibility, arm muscle strengthto the ‘kizami-gyaku zuki’ punch: Analysis of female karate athletes. Eur. J. Phys. Educ. Sport Sci. 2023, 10, 23–35. [Google Scholar] [CrossRef]
- Garcia-Retortillo, S.; Romero-Gómez, C.; Ivanov, P.C. Network of muscle fibers activation facilitates inter-muscular coordination, adapts to fatigue and reflects muscle function. Commun. Biol. 2023, 6, 891. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Retortillo, S.; Ivanov, P.C. Inter-muscular networks of synchronous muscle fiber activation. Front. Netw. Physiol. 2022, 2, 1059793. [Google Scholar] [CrossRef] [PubMed]
- Branco, M.A.C.; VencesBrito, A.M.V.; Rodrigues-Ferreira, M.A.; Branco, G.A.C.; Polak, E.; Cynarski, W.J.; Jacek, W. Effect of Aging on the Lower Limb Kinematics in Karate Practitioners: Comparing Athletes and Their Senseis. J. Healthc. Eng. 2019, 2019, 2672185. [Google Scholar] [CrossRef] [PubMed]
- Ardelean, V.P.; de Hillerin, P.J.; Andrei, V.L.; Bitang, V.; Dulceanu, C. Kinematic analysis of lower limbs movement insome karate techniques. In Proceedings of the 8th International Conference, Pitesti, Romania, 9–10 November 2018. [Google Scholar]
- Khanzadeh, S.; Sadeghi, H.; Choghagalani, S.K.; Hoseiynpour, S. Muscle stimulation timing while implementing Ura Mawashi Geri in Iranian elite women. J. Hum. Sport Exerc. 2015, 10, 677–686. [Google Scholar] [CrossRef]
- Quinzi, F.; Sbriccoli, P.; Alderson, J.; Di Mario, A.; Camomilla, V. Intra-limb coordination in karate kicking: Effect of impacting or not impacting a target. Hum. Mov. Sci. 2014, 33, 108–119. [Google Scholar] [CrossRef]
- Sterkowicz, S.; Franchini, E. Testing motor fitness in karate. Arch. Budo 2009, 5, 29–34. [Google Scholar]
- Probst, M.; Fletcher, R.M.; Seelig, D.S. A comparison of lower-body flexibility, strength, and knee stability between karate athletes and active controls. J. Strength Cond. Res. 2007, 21, 451–455. [Google Scholar] [CrossRef]
- Zago, M.; Mapelli, A.; Shirai, Y.F.; Ciprandi, D.; Lovecchio, N.; Galvani, C.; Sforza, C. Dynamic balance in elite karateka. J. Electromyogr. Kinesiol. 2015, 25, 894–900. [Google Scholar] [CrossRef]
- van Melick, N.; Meddeler, B.M.; Hoogeboom, T.J.; Nijhuis-van der Sanden, M.W.G.; van Cingel, R.E.H. How to determine leg dominance: The agreement between self-reported and observed performance in healthy adults. PLoS ONE 2017, 12, e0189876. [Google Scholar] [CrossRef]
- Jovanović, G.; Purić, B.; Ignjatović, R.D. Uticaj dominantne lateralizovanosti ekstremiteta i čula na diskalkuliju. Med. Čas. 2014, 48, 7–11. [Google Scholar]
- Toskić, L.; Dopsaj, M.; Stanković, V.; Marković, M. Concurrent and predictive validity of isokinetic dynamometry and tensiomyography in differently trained women and men. Isokinet. Exerc. Sci. 2019, 27, 31–39. [Google Scholar] [CrossRef]
- de Paula Simola, R.Á.; Raeder, C.; Wiewelhove, T.; Kellmann, M.; Meyer, T.; Pfeiffer, M.; Ferrauti, A. Muscle mechanical properties of strength and endurance athletes and changes after one week of intensive training. J. Electromyogr. Kinesiol. 2016, 30, 73–80. [Google Scholar] [CrossRef]
- Jeknic, V.; Toskic, L.; Koropanovski, N. Descriptive model of mechanical characteristics of leg muscles in elite Karate athletes measured by TMG method. Serb. J. Sports Sci. 2020, 11, 55–61. [Google Scholar]
- Dopsaj, M.; Ivanovic, J.; Copic, N. Voluntary vs non-voluntary muscle contraction explosivity: RFD vs. RMTD as a possible new TMG parameter. In TMG: Today and Future—ISOT 2014, Rome, Italy, 24 October 2014; Universitatea dîn Craiova: Craiova, Romania, 2014. [Google Scholar]
- Hair, J.; Anderson, R.; Tatham, R.; Black, W. Multivariate Data Analysis, 5th ed.; Prentice Hall: Saddle River, NJ, USA, 1998. [Google Scholar]
- Olewnik, Ł.; Ruzik, K.; Szewczyk, B.; Podgórski, M.; Aragonés, P.; Karauda, P.; Tubbs, R.S.; Sanudo, J.R.; Pires, M.B.; Polguj, M. The relationship between additional heads of the quadriceps femoris, the vasti muscles, and the patellar ligament. Biomed. Res. Int. 2022, 2022, 9569101. [Google Scholar] [CrossRef] [PubMed]
- Zatsiorsky, V.; Kraemer, W.; Fry, A.C. Science and Practice of Strength Training, 3rd ed.; Human Kinetics: Champaign, IL, USA, 2020. [Google Scholar]
- Ahtiainen, J.P.; Häkkinen, K. Strength athletes are capable to produce greater muscle activation and neural fatigue during high-intensity resistance exercise than nonathletes. J. Strength Cond. Res. 2009, 23, 1129–1134. [Google Scholar] [CrossRef]
- Jemili, H.; Mejri, M.A.; Sioud, R.; Bouhlel, E.; Amri, M. Changes in muscle activity during karate guiaku-zuki-punch and kiza-mawashi-guiri-kick after specific training in elite athletes. Sci. Sports 2016, 32, 73–81. [Google Scholar] [CrossRef]
- Pozo, J.; Bastien, G.; Dierick, F. Execution time, kinetics, and kinematics of the mae-geri kick: Comparison of national and international standard karate athletes. J. Sports Sci. 2011, 29, 1553–1561. [Google Scholar] [CrossRef]
- Matsunaga, N.; Kaneoka, K. Comparison of Modular Control during Smash Shot between Advanced and Beginner Badminton Players. Appl. Bionics Biomech. 2018, 2018, 6592357. [Google Scholar] [CrossRef]
- Schuermans, J.; Van Tiggelen, D.; Danneels, L.; Witvrouw, E. Biceps femoris and semitendinosus—Teammates or competitors? New insights into hamstring injury mechanisms in male football players: A muscle functional MRI study. Br. J. Sports Med. 2014, 48, 1599–1606. [Google Scholar] [CrossRef]
- Hoelbling, D.; Baca, A.; Dabnichki, P. Sequential action, power generation and balance characteristics of a martial arts kick combination. Int. J. Perform. Anal. Sport. 2020, 20, 766–781. [Google Scholar] [CrossRef]
- Hirose, N.; Tsuruike, M.; Higashihara, A. Biceps Femoris Muscle is Activated by Performing Nordic Hamstring Exercise at a Shallow Knee Flexion Angle. J. Sports Sci Med. 2021, 20, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Sbriccoli, P.; Camomilla, V.; Di Mario, A.; Quinzi, F.; Figura, F.; Felici, F. Neuromuscular control adaptations in elite athletes: The case of top level karateka. Eur. J. Appl. Physiol. 2010, 108, 1269–1280. [Google Scholar] [CrossRef] [PubMed]
- Alinaghipour, M.; Zareian, E. Point Losing KPIs in Final Competitions of Karate World Championships—2014 and 2016. Int. J. Sports Sci. 2019, 9, 101–107. [Google Scholar]
- Jeknić, V.; Dopsaj, M.; Toskić, L.; Koropanovski, N. Muscle Contraction Adaptations in Top-Level Karate Athletes Assessed by Tensiomyography. Int. J. Environ. Res. Public Health 2022, 19, 10309. [Google Scholar] [CrossRef]
- Marina, M.; Torrado, P.; Bou-Garcia, S.; Baudry, S.; Duchateau, J. Changes of agonist and synergist muscles activity during a sustained submaximal brake-pulling gesture. J. Electromyogr. Kinesiol. 2022, 65, 102677. [Google Scholar] [CrossRef]
- Nguyen, H.B.; Lee, S.W.; Harris-Love, M.L.; Lum, P.S. Neural coupling between homologous muscles during bimanual tasks: Effects of visual and somatosensory feedback. J. Neurophysiol. 2017, 117, 655–664. [Google Scholar] [CrossRef]
- Danna-Dos-Santos, A.; Boonstra, T.W.; Degani, A.M.; Cardoso, V.S.; Magalhaes, A.T.; Mochizuki, L.; Leonard, C.T. Multi-muscle control during bipedal stance: An EMG–EMG analysis approach. Exp. Brain Res. 2014, 232, 75–87. [Google Scholar] [CrossRef]
- Tapajcikova, T.; Líška, D.; Batalik, L.; Tucker, C.P.; Kobesova, A. Levels of Gnostic Functions in Top Karate Athletes—A Pilot Study. Mot. Control 2022, 2, 258–277. [Google Scholar] [CrossRef]
- Zipser-Mohammadzada, F.; Scheffers, M.F.; Conway, B.A.; Halliday, D.M.; Zipser, C.M.; Curt, A.; Schubert, M. Intramuscular coherence enables robust assessment of modulated supra-spinal input in human gait: An inter-dependence study of visual task and walking speed. Exp. Brain Res. 2023, 241, 1675–1689. [Google Scholar] [CrossRef]
- Kenville, R.; Maudrich, T.; Vidaurre, C.; Maudrich, D.; Villringer, A.; Ragert, P.; Nikulin, V.V. Intermuscular coherence between homologous muscles during dynamic and static movement periods of bipedal squatting. J. Neurophysiol. 2020, 124, 1045–1055. [Google Scholar] [CrossRef] [PubMed]
- de Vries, I.E.J.; Daffertshofer, A.; Stegeman, D.F.; Boonstra, T.W. Functional connectivity in the neuromuscular system underlying bimanual coordination. J. Neurophysiol. 2016, 116, 2576–2585. [Google Scholar] [CrossRef] [PubMed]
Age | BH (cm) | BM (kg) | BMI (kg/m²) | ||
---|---|---|---|---|---|
Elite karate athletes (n = 7) | Average | 28.67 | 184.63 | 86.43 | 25.38 |
SD | 2.66 | 2.76 | 7.02 | 2.38 | |
cV% | 9.27 | 1.49 | 8.12 | 9.38 | |
Min | 26.00 | 181.50 | 75.40 | 22.37 | |
Max | 32.00 | 188.20 | 94.00 | 28.38 | |
Range | 6.00 | 6.70 | 18.60 | 6.01 | |
Sub-elite karate athletes (n = 14) | Average | 21.79 | 180.56 | 77.12 | 23.67 |
SD | 3.12 | 9.07 | 6.89 | 1.61 | |
cV% | 14.31 | 5.02 | 8.94 | 6.80 | |
Min | 18.00 | 161.40 | 63.00 | 19.38 | |
Max | 27.00 | 193.10 | 87.90 | 25.47 | |
Range | 9.00 | 31.70 | 24.90 | 6.09 | |
Basic karate group (n = 16) | Average | 20.13 | 183.44 | 80.88 | 24.05 |
SD | 0.96 | 8.44 | 9.17 | 2.27 | |
cV% | 4.76 | 4.60 | 11.34 | 9.45 | |
Min | 19.00 | 168.50 | 69.30 | 18.40 | |
Max | 23.00 | 197.10 | 98.00 | 26.77 | |
Range | 4.00 | 28.60 | 28.70 | 8.36 | |
Non–athletes (n = 14) | Average | 26.07 | 180.70 | 82.77 | 25.28 |
SD | 3.75 | 7.23 | 13.30 | 3.44 | |
cV% | 14.39 | 4.00 | 16.07 | 13.61 | |
Min | 19.00 | 170.50 | 60.80 | 19.30 | |
Max | 30.00 | 196.00 | 106.30 | 31.80 | |
Range | 11.00 | 25.50 | 45.50 | 12.50 |
Groups | ANOVA | |||||||
---|---|---|---|---|---|---|---|---|
Karate Elite | Karate Sub-Elite | Karate Basic | Non-Athletes | F | Sig. | Part. Eta2 | Power | |
IIS_AVG_Tc_Q_D | 25.14 ± 2.07 * | 25.34 ± 2.07 § | 24.97 ± 3.64 Ø | 28.69 ± 3.71 | 4.400 | 0.008 | 0.219 | 0.845 |
IIS _cV_Tc_Q_D | 9.13 ± 5.11 * | 15.95 ± 8.32 | 17.29 ± 6.50 | 20.76 ± 12.53 | 2.807 | 0.050 | 0.149 | 0.624 |
IIS_AVG_Tc_H_D | 31.35 ± 7.58 | 39.03 ± 7.48 | 35.70 ± 8.45 | 35.45 ± 8.97 | 1.400 | 0.254 | 0.082 | 0.348 |
IIS _cV_Tc_H_D | 36.38 ± 20.48 | 25.93 ± 14.21 | 23.48 ± 14.35 | 22.55 ± 18.13 | 1.274 | 0.294 | 0.075 | 0.318 |
Groups | ANOVA | |||||||
---|---|---|---|---|---|---|---|---|
Karate Elite | Karate Sub-Elite | Karate Basic | Non-Athletes | F | Sig. | Part. Eta2 | Power | |
IIS_AVG_Tc_Q_ND | 23.81 ± 1.74 | 24.48 ± 3.18 § | 24.90 ± 5.42 | 28.62 ± 3.00 | 3.889 | 0.015 | 0.199 | 0.793 |
IIS _cV_Tc_Q_ND | 10.07 ± 4.59 | 14.55 ± 6.54 | 17.43 ± 9.16 | 18.45 ± 10.97 | 1.752 | 0.169 | 0.101 | 0.428 |
IIS_AVG_Tc_H_ND | 27.87 ± 5.96 ¥@* | 42.15 ± 9.29 | 38.05 ± 8.47 | 41.78 ± 5.50 | 6.298 | 0.001 | 0.287 | 0.952 |
IIS _cV_Tc_H_ND | 22.92 ± 15.96 | 23.40 ± 22.74 | 28.88 ± 17.27 | 24.83 ± 17.69 | 0.277 | 0.842 | 0.017 | 0.099 |
Groups | ANOVA | |||||||
---|---|---|---|---|---|---|---|---|
Karate Elite | Karate Sub-Elite | Karate Basic | Non-Athletes | F | Sig. | Part. Eta2 | Power | |
IIS_AVG_TcT_Q_D | 48.37 ± 3.20 | 47.40 ± 2.76 § | 47.03 ± 4.62 Ø | 51.92 ± 4.36 | 4.613 | 0.007 | 0.227 | 0.863 |
IIS _cV_TcT_Q_D | 10.38 ± 8.47 | 11.36 ± 6.05 | 11.67 ± 4.74 | 13.45 ± 7.93 | 0.417 | 0.741 | 0.026 | 0.127 |
IIS_AVG_TcT_H_D | 53.85 ± 8.69 | 62.79 ± 8.41 | 58.92 ± 10.29 | 61.30 ± 11.47 | 1.393 | 0.256 | 0.082 | 0.346 |
IIS _cV_TcT_H_D | 23.65 ± 15.03 | 18.94 ± 9.85 | 16.28 ± 9.81 | 17.10 ± 3.58 | 0.706 | 0.553 | 0.043 | 0.188 |
Groups | ANOVA | |||||||
---|---|---|---|---|---|---|---|---|
Karate Elite | Karate Sub-Elite | Karate Basic | Non-Athletes | F | Sig. | Part. Eta2 | Power | |
IIS_AVG_TcT_Q_ND | 45.07 ± 2.77 * | 45.68 ± 4.50 § | 46.41 ± 6.67 Ø | 52.20 ± 4.03 | 5.474 | 0.003 | 0.259 | 0.919 |
IIS _cV_TcT_Q_ND | 5.91 ± 2.60 | 9.54 ± 4.98 | 11.56 ± 6.42 | 13.18 ± 6.83 | 2.740 | 0.054 | 0.149 | 0.627 |
IIS_AVG_TcT_H_ND | 49.41 ± 6.71 ¥@* | 65.64 ± 10.84 | 61.19 ± 9.29 | 65.82 ± 7.86 | 6.070 | 0.001 | 0.279 | 0.945 |
IIS _cV_TcT_H_ND | 14.65 ± 9.22 | 17.01 ± 16.32 | 19.91 ± 11.22 | 19.87 ± 15.03 | 0.341 | 0.795 | 0.021 | 0.112 |
Groups | ANOVA | |||||||
---|---|---|---|---|---|---|---|---|
Karate Elite | Karate Sub-Elite | Karate Basic | Non-Athletes | F | Sig. | Part. Eta2 | Power | |
IIS_AVG_RMTD_Q_D | 0.27 ± 0.06 | 0.25 ± 0.05 | 0.24 ± 0.09 | 0.21 ± 0.07 | 1.576 | 0.208 | 0.091 | 0.388 |
IIS _cV_RMTD_Q_D | 16.20 ± 10.74 ¥@ | 34.85 ± 11.94 | 43.20 ± 16.36 | 32.80 ± 14.34 | 6.105 | 0.001 | 0.280 | 0.946 |
IIS_AVG_RMTD_H_D | 0.21 ± 0.04 * | 0.20 ± 0.04 § | 0.18 ± 0.07 | 0.13 ± 0.04 | 5.350 | 0.003 | 0.255 | 0.912 |
IIS _cV_RMTD_H_D | 18.98 ± 12.96 | 16.57 ± 7.86 | 21.32 ± 14.14 | 19.46 ± 16.68 | 0.316 | 0.814 | 0.020 | 0.107 |
Groups | ANOVA | |||||||
---|---|---|---|---|---|---|---|---|
Karate Elite | Karate Sub-Elite | Karate Basic | Non-Athletes | F | Sig. | Part. Eta2 | Power | |
IIS_AVG_RMTD_Q_ND | 0.29 ± 0.05 @* | 0.21 ± 0.06 | 0.19 ± 0.08 | 0.20 ± 0.06 | 3.980 | 0.013 | 0.203 | 0.803 |
IIS _cV_RMTD_Q_ND | 16.32 ± 5.87 | 22.66 ± 14.73 | 27.94 ± 22.86 | 25.97 ± 21.30 | 0.686 | 0.565 | 0.042 | 0.184 |
IIS_AVG_RMTD_H_ND | 0.22 ± 0.04 * | 0.19 ± 0.04 | 0.18 ± 0.07 | 0.14 ± 0.06 | 3.713 | 0.018 | 0.192 | 0.772 |
IIS _cV_RMTD_H_ND | 18.28 ± 14.16 | 21.37 ± 13.92 | 26.49 ± 17.23 | 18.53 ± 16.79 | 0.783 | 0.510 | 0.048 | 0.205 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeknić, V.; Dopsaj, M.; Koropanovski, N. Relationship Between Intermuscular Synchronization of Upper Leg Muscles and Training Level in Karate Kumite Practitioners. J. Funct. Morphol. Kinesiol. 2025, 10, 234. https://doi.org/10.3390/jfmk10030234
Jeknić V, Dopsaj M, Koropanovski N. Relationship Between Intermuscular Synchronization of Upper Leg Muscles and Training Level in Karate Kumite Practitioners. Journal of Functional Morphology and Kinesiology. 2025; 10(3):234. https://doi.org/10.3390/jfmk10030234
Chicago/Turabian StyleJeknić, Velimir, Milivoj Dopsaj, and Nenad Koropanovski. 2025. "Relationship Between Intermuscular Synchronization of Upper Leg Muscles and Training Level in Karate Kumite Practitioners" Journal of Functional Morphology and Kinesiology 10, no. 3: 234. https://doi.org/10.3390/jfmk10030234
APA StyleJeknić, V., Dopsaj, M., & Koropanovski, N. (2025). Relationship Between Intermuscular Synchronization of Upper Leg Muscles and Training Level in Karate Kumite Practitioners. Journal of Functional Morphology and Kinesiology, 10(3), 234. https://doi.org/10.3390/jfmk10030234