Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (705)

Search Parameters:
Keywords = thermoplastic surfaces

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 1619 KB  
Article
Morphological and Performance Assessment of Commercial Menstrual and Incontinence Absorbent Hygiene Products
by Liesbeth Birchall, Millie Newmarch, Charles Cohen and Muhammad Tausif
Polymers 2026, 18(3), 318; https://doi.org/10.3390/polym18030318 - 24 Jan 2026
Viewed by 161
Abstract
Disposable absorbent hygiene products (AHPs) contain plastics that are challenging to recycle and not biodegradable, making a significant contribution to landfill. Decreasing the nonbiodegradable mass of products could reduce this burden. Despite this, public data on how AHP design and material selection relate [...] Read more.
Disposable absorbent hygiene products (AHPs) contain plastics that are challenging to recycle and not biodegradable, making a significant contribution to landfill. Decreasing the nonbiodegradable mass of products could reduce this burden. Despite this, public data on how AHP design and material selection relate to performance is limited. In this work, fifteen commercial AHPs were characterised using dimensional measurement, infrared spectroscopy, and imaging. Simulated urination, air permeability, and moisture management testing were used to assess expected leakage and user comfort. Sustainable materials currently in use were identified, and their performance compared to typical plastics, informing opportunities to replace or reduce nonbiodegradable materials. Polybutylene adipate terephthalate-based leakproof layers replaced polyolefins. Commercial alternatives to polyacrylate superabsorbent polymers (SAPs), with comparable absorption, were not seen. Although absorbency correlated with the mass of absorbants, SAPs reduced surface moisture after absorption and are known for high absorption capacity under pressure, preventing rewetting. Channels and side guards were observed to prevent side leakage and guide fluid distribution, potentially reducing the need for nonbiodegradable nonwoven and absorbant content by promoting efficient use of the full product mass. While synthetic nonwovens typically outperformed cellulosics, apertured and layered nonwovens were associated with improved moisture transport; polylactic acid rivalled typical thermoplastics as a bio-derived, compostable alternative. Although the need for biopolymer-based SAPs and foams remains, it is hoped that these findings will guide AHP design and promote research in sustainable materials. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
16 pages, 1961 KB  
Article
Solid Microneedles from Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate): A Solvent-Free, Biodegradable Platform for Drug Delivery
by Diana Araújo, Francisco Santos, Rui Igreja and Filomena Freitas
Pharmaceutics 2026, 18(1), 139; https://doi.org/10.3390/pharmaceutics18010139 - 22 Jan 2026
Viewed by 119
Abstract
Background: Solid microneedles (MNs) are effective transdermal delivery devices but are commonly fabricated from metallic or non-biodegradable materials, raising concerns related to sustainability, waste management, and processing constraints. This study aimed to evaluate the suitability of the biodegradable biopolyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (PHBHVHHx) as [...] Read more.
Background: Solid microneedles (MNs) are effective transdermal delivery devices but are commonly fabricated from metallic or non-biodegradable materials, raising concerns related to sustainability, waste management, and processing constraints. This study aimed to evaluate the suitability of the biodegradable biopolyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (PHBHVHHx) as a structuring material for solvent-free fabrication of solid MN arrays and to assess their mechanical performance, insertion capability, and drug delivery potential. Methods: PHBHVHHx MN arrays were fabricated by solvent-free micromolding at 200 °C. The resulting MNs were morphologically characterized by scanning electron microscopy. Mechanical properties were assessed by axial compression testing, and insertion performance was evaluated using a multilayer Parafilm skin simulant model. Diclofenac sodium was used as a model drug and applied via surface coating using a FucoPol-based formulation. In vitro drug release was assessed in phosphate-buffered saline under sink conditions and quantified by UV–Vis spectroscopy. Results: PHBHVHHx MN arrays consisted of sharp, well-defined conical needles (681 ± 45 µm length; 330 µm base diameter) with micro-textured surfaces. The MNs withstood compressive forces up to 0.25 ± 0.03 N/needle and achieved insertion depths of approximately 396 µm in the Parafilm model. Drug-coated MNs retained adequate mechanical integrity and exhibited a rapid release profile, with approximately 73% of diclofenac sodium released within 10 min. Conclusions: The results demonstrate that PHBHVHHx is a suitable biodegradable thermoplastic for the fabrication of solid MN arrays via a solvent-free process. PHBHVHHx MNs combine adequate mechanical performance, reliable insertion capability, and compatibility with coated drug delivery, supporting their potential as sustainable alternatives to conventional solid MN systems. Full article
(This article belongs to the Special Issue Biomaterials for Skin Drug Delivery)
Show Figures

Figure 1

16 pages, 4603 KB  
Article
Modeling and Evaluation of Customizable Immobilization Masks for Precision Radiotherapy
by Diana Adlienė, Antonio Jreije, Paulius Griškevičius, Neringa Keršienė and Rūta Nedzinskienė
Polymers 2026, 18(2), 287; https://doi.org/10.3390/polym18020287 - 21 Jan 2026
Viewed by 121
Abstract
Accurate immobilization is critical in head and neck (H&N) radiotherapy to ensure precise dose delivery while minimizing irradiation of surrounding healthy tissues. However, conventional thermoplastic masks cannot secure 100% replicas of the patient’s surface and are often limited by mechanical weakness, patient discomfort, [...] Read more.
Accurate immobilization is critical in head and neck (H&N) radiotherapy to ensure precise dose delivery while minimizing irradiation of surrounding healthy tissues. However, conventional thermoplastic masks cannot secure 100% replicas of the patient’s surface and are often limited by mechanical weakness, patient discomfort, and workflow inefficiencies. Recently, the best replicas of the patient’s face have been obtained by exploring personal CT or MRI scans of patients that are used for manufacturing of immobilization masks. This study aimed to design and evaluate customizable immobilization masks using acrylonitrile butadiene styrene (ABS)-based composites reinforced with bismuth oxide (Bi2O3) and to compare their mechanical performance against commercial thermoplastic masks. ABS and ABS/Bi2O3 composite filaments (5, 10, and 20 wt%) were fabricated and characterized by tensile testing. A patient-specific virtual mask was modeled and subjected to finite element analysis (FEA) under clinically relevant loading scenarios, including neck flexion and lateral bending. Results were benchmarked against two commercial thermoplastic masks. ABS and ABS-based composites exhibited significantly higher stiffness (1.7–2.5 GPa) and yield strength (20–25 MPa) compared to commercial thermoplastics (0.25–0.3 GPa, ~7 MPa; p < 0.001). FEA simulations revealed markedly reduced displacement in ABS masks (1–5 mm at 2 mm thickness; <1 mm at 4 mm thickness) relative to commercial masks, which exceeded 20 mm under lateral load. Hybrid configurations with reinforced edges further optimized rigidity while limiting material usage. Customized ABS-based immobilization masks outperform conventional thermoplastics in mechanical stability and displacement control, with the potential to reduce planning margins and improve patient comfort. In addition, ABS-based masks can be recycled, and Bi2O3-filled composites can be reused for printing new immobilization masks, thus contributing to a reduced amount of plastic waste. These findings support their promise as next-generation immobilization devices for precision radiotherapy, warranting further clinical validation, workflow integration and sustainable implementation within a circular economy. Full article
(This article belongs to the Special Issue Polymeric Materials and Their Application in 3D Printing, 3rd Edition)
Show Figures

Graphical abstract

17 pages, 4177 KB  
Article
Inline Profiling of Reactive Thermoplastic Pultruded GFRP Rebars: A Study on the Influencing Factors
by Moritz Fünkner, Georg Zeeb, Michael Wilhelm, Peter Eyerer and Frank Henning
J. Compos. Sci. 2026, 10(1), 55; https://doi.org/10.3390/jcs10010055 - 19 Jan 2026
Viewed by 176
Abstract
Compared to reinforcing concrete with steel bars, rebars—made of fiber-reinforced plastic—have a high potential for resource savings in the construction industry due to their corrosion resistance. For the large-volume market of reinforcement elements, efficient manufacturing processes must be developed to ensure the best [...] Read more.
Compared to reinforcing concrete with steel bars, rebars—made of fiber-reinforced plastic—have a high potential for resource savings in the construction industry due to their corrosion resistance. For the large-volume market of reinforcement elements, efficient manufacturing processes must be developed to ensure the best possible bond behavior between concrete and rebar. In contrast to established FRP-rebars made with thermosetting materials, the use of a thermoplastic matrix enables surface profiling without severing the edge fibers as well as subsequent bending of the bar. The rebars to be produced in this study are based on the process of reactive thermoplastic pultrusion of continuously glass fiber reinforced aPA6. Their surface must enable a mechanical interlocking between the reinforcement bar and concrete. Concepts for a profiling device have been methodically developed and evaluated. The resulting concept of a double wheel embossing unit with a variable infeed and an infrared preheating section is built as a prototype, implemented in a pultrusion line, and further optimized. For a comprehensive understanding of the embossing process, reinforcement bars are manufactured, characterized, and evaluated under parameter variation according to a statistical experimental plan. The present study demonstrates the relationship between the infeed, preheating temperature, and haul-off speed with respect to the embossing depth, which is equivalent to the rib height. No degradation of the Young’s modulus was observed as a result of the profiling process. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

21 pages, 5291 KB  
Article
Green Surface Engineering of Spun-Bonded Nonwovens Using Polyphenol-Rich Berry Extracts for Bioactive and Functional Applications
by Karolina Gzyra-Jagieła, Bartosz Kopyciński, Piotr Czarnecki, Sławomir Kęska, Natalia Słabęcka, Anna Bednarowicz, Nina Tarzyńska, Dorota Zielińska, Longina Madej-Kiełbik and Patryk Śniarowski
Eng 2026, 7(1), 49; https://doi.org/10.3390/eng7010049 - 16 Jan 2026
Viewed by 311
Abstract
In response to the growing demand for environmentally friendly and sustainable yet functional technical textiles, this research developed a spun-bonded nonwoven from the biodegradable thermoplastic starch-based biopolymer BIOPLAST®, incorporating fruit extracts as natural sources of polyphenolic compounds and surface-active additives. Extracts [...] Read more.
In response to the growing demand for environmentally friendly and sustainable yet functional technical textiles, this research developed a spun-bonded nonwoven from the biodegradable thermoplastic starch-based biopolymer BIOPLAST®, incorporating fruit extracts as natural sources of polyphenolic compounds and surface-active additives. Extracts from Vaccinium myrtillus L. and Sambucus nigra L. were applied onto a nonwoven’s surface via aerographic spraying using a water/ethanol system. The resulting materials were characterized in terms of morphology, physicochemical and mechanical behavior, surface characteristics, and stability under accelerated ageing and hydrolytic conditions. Treatment with the extracts increased the tensile strength by roughly 38% and elongation at break by about 50%, and it changed the surface from hydrophobic (contact angle of 115°) to hydrophilic, with contact angles of 83° for the blueberry-modified nonwoven and 55° for the elderberry-modified nonwoven. The modified nonwovens also showed sustained release of polyphenolic compounds over 72 h, which is beneficial for biomedical, healthcare, and cosmetic applications, where short-term use, controlled release of active compounds, and bioactivity are more important than long-term durability. Overall, the results indicate that BIOPLAST®-based spun-bonded nonwovens can serve as fully bio-based carriers for fruit extracts in MedTech-related technical textiles, offering a straightforward way to introduce additional functionality into biodegradable nonwovens. Full article
Show Figures

Figure 1

25 pages, 7696 KB  
Article
Thermoplastic Starch Composites with Highly Exfoliated Nano-Clay Fillers and Excellent Barrier Properties
by Veronika Gajdosova, Beata Strachota, Vaclav Pokorny, Libuse Brozova, Jan Kozisek, Ewa Pavlova, Zdenek Stary, Miroslav Slouf and Adam Strachota
Materials 2026, 19(2), 347; https://doi.org/10.3390/ma19020347 - 15 Jan 2026
Viewed by 268
Abstract
Thermoplastic starch (TPS) nanocomposites with unprecedentedly high loadings of up to 15 wt.% of the nano-clays Laponite (LAP; a synthetic product capable of good dispersion in suitable media) or Montmorillonite (MMT; modified with dialkyldimethylammonium chloride) were prepared by means of our new, two-step [...] Read more.
Thermoplastic starch (TPS) nanocomposites with unprecedentedly high loadings of up to 15 wt.% of the nano-clays Laponite (LAP; a synthetic product capable of good dispersion in suitable media) or Montmorillonite (MMT; modified with dialkyldimethylammonium chloride) were prepared by means of our new, two-step TPS preparation protocol. In both the TPS/LAP and TPS/MMT composites, we achieved perfect dispersion and extensive exfoliation of the nano-clays, resulting in pronounced improvements in mechanical performance (modulus increased up to one order of magnitude) and in excellent gas-barrier properties (extremely small permeabilities for O2, CO2, and even H2). MMT, owing to its larger platelet size and to the formation of partially exfoliated multi-layer structures, generated a percolating filler network that provided particularly strong reinforcement, especially at 15 wt.% loading. LAP, though more completely exfoliated, generated a somewhat smaller mechanical reinforcement, but it more strongly increased processing viscosity due to its high specific surface area, which generated highly stable physical crosslinking that persisted even at processing temperatures of T ≥ 120 °C. Efficient matrix–filler interactions were confirmed by thermogravimetric analysis, where the better-exfoliated LAP generated a higher stabilization. The combination of strong mechanical reinforcement with outstanding gas-barrier properties makes the TPS/MMT and TPS/LAP nanocomposites attractive for food-packaging applications, where their natural origin, non-toxicity, bio-degradability, and abundance of nanocomposite components are an additional bonus. Full article
Show Figures

Graphical abstract

18 pages, 4211 KB  
Article
Fabrication and Drag Reduction Performance of Flexible Bio-Inspired Micro-Dimple Film
by Yini Cai, Yanjun Lu, Haopeng Gan, Yan Yu, Xiaoshuang Rao and Weijie Gong
Micromachines 2026, 17(1), 85; https://doi.org/10.3390/mi17010085 - 8 Jan 2026
Viewed by 252
Abstract
The flexible micro-structured surface found in biological skins exhibits remarkable drag reduction properties, inspiring applications in the aerospace industry, underwater exploration, and pipeline transportation. To address the challenge of efficiently replicating such structures, this study presents a composite flexible polymer film with a [...] Read more.
The flexible micro-structured surface found in biological skins exhibits remarkable drag reduction properties, inspiring applications in the aerospace industry, underwater exploration, and pipeline transportation. To address the challenge of efficiently replicating such structures, this study presents a composite flexible polymer film with a bio-inspired micro-dimple array, fabricated via an integrated process of precision milling, polishing, and micro-injection molding using thermoplastic polyurethane (TPU). We systematically investigated the influence of key injection parameters on the shape accuracy and surface quality of the film. The experimental results show that polishing technology can significantly reduce mold core surface roughness, thereby enhancing film replication accuracy. Among the parameters, melt temperature and holding time exerted the most significant effects on shape precision PV and bottom roughness Ra, while injection speed showed the least influence. Under optimized conditions of a melt temperature of 180 °C, injection speed of 60 mm/s, holding pressure of 7 MPa, and holding time of 13 s, the film achieved a micro-structure shape accuracy of 13.502 μm and bottom roughness of 0.033 μm. Numerical simulation predicted a maximum drag reduction rate of 10.26%, attributable to vortex cushion effects within the dimples. This performance was experimentally validated in a flow velocity range of 0.6–2 m/s, with the discrepancy between simulated and measured drag reduction kept within 5%, demonstrating the efficacy of the proposed manufacturing route for flexible bio-inspired drag reduction film. Full article
Show Figures

Figure 1

16 pages, 2316 KB  
Article
A Temperature-Dependent Visco-Hyperelastic Constitutive Model for Carbon Fiber/Polypropylene Prepreg
by Haochen Zhu and Mingrui Liu
J. Compos. Sci. 2026, 10(1), 12; https://doi.org/10.3390/jcs10010012 - 1 Jan 2026
Viewed by 253
Abstract
This study first heat-treats the surface of plain-woven carbon fibers to remove the surface sizing. The treated carbon fibers were then hot-pressed with polypropylene films to produce a carbon fiber/polypropylene prepreg. The resulting prepreg was subjected to uniaxial and off-axis tensile tests, providing [...] Read more.
This study first heat-treats the surface of plain-woven carbon fibers to remove the surface sizing. The treated carbon fibers were then hot-pressed with polypropylene films to produce a carbon fiber/polypropylene prepreg. The resulting prepreg was subjected to uniaxial and off-axis tensile tests, providing fundamental data for constructing a constitute model for the carbon fiber/polypropylene prepreg. The relative error between the model predictions and experimental data is maintained within ±10%. Based on the experimental results, a temperature-dependent viscoelastic–hyperelastic constitutive model for carbon fiber/polypropylene is proposed. This model decomposes the unit volume strain energy function into four components: matrix isochoric deformation energy, fiber tensile strain energy, fiber–fiber shear strain energy, and fiber-matrix shear strain energy. The matrix energy is strain rate-dependent, exhibiting viscoelastic mechanical behavior. The material parameters of the constitutive model were identified by fitting the experimental data. The model was implemented in MATLABR2024a, and off-axis tensile tests were performed at temperatures ranging from 423 K to 453 K. Numerical simulations were compared with experimental results to validate the model. This work provides guidance for the development and validation of constitutive models for thermoplastic polypropylene prepregs. Full article
Show Figures

Figure 1

22 pages, 4113 KB  
Review
Emerging Roles of Metal–Organic Frameworks as Flame Retardants: Recent Advances and Future Perspectives in Thermoplastic Polymers
by Jiayi Ding, Zihan Zhang, Zhi Wang, Yichao Lin, Ye-Tang Pan and Kun Yao
Materials 2026, 19(1), 150; https://doi.org/10.3390/ma19010150 - 31 Dec 2025
Viewed by 418
Abstract
Metal–organic frameworks (MOFs), assembled from inorganic metal centers (metal ions or clusters) and organic ligands, possess distinctive features such as structural designability, high surface area, and tunable functionalities. In the past decade, MOFs have displayed substantial merits when utilized as innovative flame retardants [...] Read more.
Metal–organic frameworks (MOFs), assembled from inorganic metal centers (metal ions or clusters) and organic ligands, possess distinctive features such as structural designability, high surface area, and tunable functionalities. In the past decade, MOFs have displayed substantial merits when utilized as innovative flame retardants in the realm of polymeric materials. A current focus is on the flame-retardant effects of MOFs in thermosetting plastics, yielding substantial achievements; however, systematic investigations into thermoplastic polymers, which are more widely used, remain limited. The flame-retardant mode of action for miscellaneous types of MOFs and their applications in polymeric matrices, with particular emphasis on recent advances in thermoplastic systems, are summarized. Furthermore, existing challenges and future perspectives are identified. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

19 pages, 5445 KB  
Article
Analysis of Surface Topography, Dimensional and Geometric Deviations, and Biocidal Properties of 3D Prints Made of Thermoplastic-Based Composites
by Urszula Kmiecik-Sołtysiak, Paweł Szczygieł, Dagmara Michta and Katarzyna Gałczyńska
Materials 2026, 19(1), 129; https://doi.org/10.3390/ma19010129 - 30 Dec 2025
Viewed by 271
Abstract
This study evaluated the properties of two commercial filaments intended for medical and sterile applications: PLACTIVE (Copper 3D, Santiago, Chile) and CPE ANTIBAC (Fiberlogy, Brzezie, Poland). The aim of the research was to compare the dimensional accuracy, repeatability of the fused deposition modeling [...] Read more.
This study evaluated the properties of two commercial filaments intended for medical and sterile applications: PLACTIVE (Copper 3D, Santiago, Chile) and CPE ANTIBAC (Fiberlogy, Brzezie, Poland). The aim of the research was to compare the dimensional accuracy, repeatability of the fused deposition modeling (FDM) 3D printing process, and the antibacterial properties of the samples using standardized procedures. Four types of samples were manufactured: geometrically differentiated specimens for metrological measurements (S1); cylinders with a diameter of 15 mm and a height of 40 mm for assessing process repeatability (S2); rectangular specimens measuring 40 × 40 × 2 mm for surface topography analysis (S3); and rectangular samples measuring 20 × 20 × 2 mm for biocidal property evaluation (S4). The results demonstrated that PLACTIVE samples exhibited higher dimensional conformity with nominal values and lower variability of diameters than CPE ANTIBAC samples, which may be associated with greater process stability. For both materials, the PSm parameter was correlated with layer height only in the 90° printing orientation. Surface topography analysis showed that increasing the layer height from 0.08 mm to 0.20 mm led to a significant rise in Rsm, Ra, and Sa values, indicating deterioration in the reproduction of micro-irregularities and increased spatial differentiation of the surface. For PLACTIVE samples, a tendency toward more convex structures with positive Rsk values and moderate kurtosis (Rku) was observed, suggesting uniform plasticization and stable interlayer bonding, particularly at the 0° orientation. In contrast, CPE ANTIBAC samples (especially those printed at 90°) were characterized by higher Ra and Sa values and negative skewness (Rsk), indicating valley-dominated, sharper surface morphology resulting from different rheological behavior and faster solidification of the material. PLACTIVE samples did not exhibit antibacterial properties against Escherichia coli (E. coli), while for Staphylococcus aureus (S. aureus), the activity was independent of printing direction and layer height. The CPE ANTIBAC material showed antibacterial effects against both tested strains in approximately 50% of the samples. The findings provide insights into the relationships between material type, printing orientation, and process parameters in shaping the dimensional and biocidal properties of FDM filaments. Full article
(This article belongs to the Special Issue Preparation, Properties and Applications of Biocomposites)
Show Figures

Graphical abstract

17 pages, 3072 KB  
Article
Washable Few-Layer Graphene-Based Conductive Coating: The Impact of TPU Segmental Structure on Its Final Performances
by Ilaria Improta, Gennaro Rollo, Giovanna Giuliana Buonocore, Marco Fiume, Vladimír Sedlařík and Marino Lavorgna
Coatings 2026, 16(1), 38; https://doi.org/10.3390/coatings16010038 - 30 Dec 2025
Viewed by 324
Abstract
The development of sustainable, water-based conductive coatings is essential for advancing environmentally responsible wearable and printed electronics. Achieving high electrical conductivity and wash durability remains a key challenge. This is largely dependent on the compatibility between the polymer matrix, the conductive filler and [...] Read more.
The development of sustainable, water-based conductive coatings is essential for advancing environmentally responsible wearable and printed electronics. Achieving high electrical conductivity and wash durability remains a key challenge. This is largely dependent on the compatibility between the polymer matrix, the conductive filler and the substrate surface. In this study, a facile formulation strategy is proposed by directly integrating few-layer graphene (FLG, 2.5 wt%) into commercial bio-based thermoplastic polyurethanes (TPUs), combined with polyvinylpyrrolidone (PVP) as a dispersing agent. The investigation focuses on how the segmental architecture of four TPUs with different structure and hard–soft segments composition influences filler dispersion, mechanical integrity, and electrical behavior. Coatings were deposited onto flexible substrates, including textiles and paper, using a bar-coating process and were characterized in terms of morphology, thermal properties, electrical conductivity, and wash resistance. The results demonstrate that TPUs containing a higher presence of hard segments interact more effectively with hydrophobic surfaces, while TPUs with a higher contribution of soft segments improve adhesion to hydrophilic substrates and facilitate the formation of the percolation network, underling the role of TPU microstructure in controlling interfacial interactions and overall coating performance. The proposed comparative approach provides a sustainable pathway toward durable, high-performance, and washable electronic textiles and paper-based devices. Full article
Show Figures

Figure 1

16 pages, 9806 KB  
Article
Structure and Properties of Stainless Steel–Thermoplastic Joints Made Using Resistance Element Soldering Technology
by Pavol Sejč, Pavol Švec, Peter Gogola, Branislav Vanko, Zuzana Gábrišová, Alexander Schrek and Miroslav Zelina
Metals 2026, 16(1), 6; https://doi.org/10.3390/met16010006 - 20 Dec 2025
Viewed by 332
Abstract
This study investigated the microstructure and properties of soldered joints of AISI 304 stainless steel and PMMA thermoplastic or AW-1050A aluminum alloys made using Resistance Element Soldering (RES) technology. The bimetallic element used in RES provided a mechanical joint with a thermoplastic or [...] Read more.
This study investigated the microstructure and properties of soldered joints of AISI 304 stainless steel and PMMA thermoplastic or AW-1050A aluminum alloys made using Resistance Element Soldering (RES) technology. The bimetallic element used in RES provided a mechanical joint with a thermoplastic or aluminum alloy and a soldered joint with AISI 304 steel using Sn60Pb40 solder in the core of the element. The solder in combination with the Chemet CHM-A-014 flux wetted the AISI 304 steel surface very well at a temperature of 225 °C with a contact angle of 14°. During the production of the joints, the solder melted in the bimetallic element on the AISI 304 steel side, while solid solder was retained at the point of contact with the welding electrode. The strength of the joints ranged from 25.5 to 36.4 MPa, which was less than the strength of the solder, and the joints failed at the AISI 304 steel–Sn60Pb40 solder interface. The fracture surface was predominantly formed by the solder. An intermetallic phase of FeSn2 was identified at the interface. Full article
Show Figures

Graphical abstract

13 pages, 3362 KB  
Article
Multifunctional Bamboo Fiber/Epoxy Composites Featuring Integrated Superhydrophobicity and Enhanced Mechanical–Thermal Performance
by Yanchao Liu, Ze Yu, Rumin Li, Xiaodong Wang and Yingjie Qiao
Nanomaterials 2026, 16(1), 8; https://doi.org/10.3390/nano16010008 - 19 Dec 2025
Viewed by 355
Abstract
Developing sustainable, high-performance biomass composites is crucial for replacing non-renewable structural materials. In this study, a “bamboo steel” composite was fabricated using a multilevel modification strategy involving alkali pretreatment, toughened resin impregnation, and surface functionalization. Bamboo fibers were treated to remove hemicellulose and [...] Read more.
Developing sustainable, high-performance biomass composites is crucial for replacing non-renewable structural materials. In this study, a “bamboo steel” composite was fabricated using a multilevel modification strategy involving alkali pretreatment, toughened resin impregnation, and surface functionalization. Bamboo fibers were treated to remove hemicellulose and lignin, enhancing porosity and interfacial bonding. The bamboo scaffold was subsequently impregnated with a thermo-plastic polyurethane-modified epoxy resin to create a robust, interpenetrating network. The optimized composite (treated at 80 °C) exhibited a flexural strength of 443.97 MPa and a tensile strength of 324.14 MPa, demonstrating exceptional stiffness and toughness. Furthermore, a superhydrophobic coating incorporating silica nanoparticles was applied, achieving a water contact angle exceeding 150° and excellent self-cleaning properties. This work presents a scalable strategy for producing bio-based structural materials that balance mechanical strength with environmental durability. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

23 pages, 5287 KB  
Article
Development and Characterization of Biodegradable Polymer Filaments for Additive Manufacturing
by Tomáš Balint, Jozef Živčák, Radovan Hudák, Marek Schnitzer, Miroslav Kohan, Maria Danko, Richard Staško, Peter Szedlák, Marek Jałbrzykowski, Katarzyna Leszczyńska, Pavol Alexy, Ivana Bírová, Zuzana Vanovčanová and Martina Culenová
Polymers 2025, 17(24), 3328; https://doi.org/10.3390/polym17243328 - 17 Dec 2025
Viewed by 626
Abstract
In this study, the authors focus on optimizing the processing parameters for the fabrication of biodegradable polymer filaments intended for subsequent 3D printing of biomedical structures and implants. Following extrusion and additive manufacturing, the produced materials underwent a comprehensive evaluation that included mechanical, [...] Read more.
In this study, the authors focus on optimizing the processing parameters for the fabrication of biodegradable polymer filaments intended for subsequent 3D printing of biomedical structures and implants. Following extrusion and additive manufacturing, the produced materials underwent a comprehensive evaluation that included mechanical, microbiological, biofilm formation, and electron microscopy analyses. The complexity of these tests aimed to determine the potential of the developed materials for biomedical applications, particularly in the field of scaffold fabrication. At the initial stage, three types of filaments (technical designations 111, 145, and 146) were produced using Fused Filament Fabrication (FFF) technology. These filaments were based on a PLA/PHB matrix with varying types and concentrations of plasticizers. Standardized destructive tensile and compressive mechanical tests were conducted using an MTS Insight 1 kN testing system equipped with an Instron 2620-601 extensometer. Among the tested samples, the filament labeled 111, composed of PLA/PHB thermoplastic starch and a plasticizer, exhibited the most favorable mechanical performance, with a Young’s modulus of elasticity of 4.63 MPa for 100% infill. The filament labeled 146 had a Young’s modulus of elasticity of 4.53 MPa for 100% infill and the material labeled 145 had a Young’s modulus of elasticity of 1.45 MPa for 100% infill. Microbiological assessments were performed to evaluate the capacity of bacteria and fungi to colonize the material surfaces. During bacterial activity assessment, we observed biofilm formation on the examined sample surfaces of each material from the smooth and rough sides. The colony-forming units (CFUs) increased directly with the exposure time. For all samples from each material, the Log10 (CFU) value reached above 9.41 during 72 h of incubation for the activity of each type of bacteria (Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans). Scanning electron microscopy provided insight into the surface quality of the material and revealed its local quality and purity. Surface defects were eliminated by this method. Overall, the results indicate that the designed biodegradable filaments, especially formulation 111, have promising properties for the development of scaffolds intended for hard tissue replacement and could also be suitable for regenerative applications in the future after achieving the desired biological properties. Full article
Show Figures

Figure 1

25 pages, 6143 KB  
Article
Adhesion Improvement Between Cu-Etched Commercial Polyimide/Cu Foils and Biopolymers for Sustainable In-Mold Electronics
by Zahra Fazlali, David Schaubroeck, Maarten Cauwe, Karen Leus, Rino Morent, Nathalie De Geyter, Ludwig Cardon, Pieter Bauwens and Jan Vanfleteren
Coatings 2025, 15(12), 1489; https://doi.org/10.3390/coatings15121489 - 17 Dec 2025
Viewed by 678
Abstract
Embedding flexible electronic circuits into a sustainable polymer is an emerging and significant topic in the field of in-mold electronics (IME). Ensuring strong adhesion between the flexible circuit and the molded polymer is critical for the durability of IME products. In this study, [...] Read more.
Embedding flexible electronic circuits into a sustainable polymer is an emerging and significant topic in the field of in-mold electronics (IME). Ensuring strong adhesion between the flexible circuit and the molded polymer is critical for the durability of IME products. In this study, three different types of etched copper polyimide (PI) foils were used as the substrate of electronic components. Two bio-based and biodegradable polymers of polylactic acid (PLA) and polyhydroxybutyrate (PHB) served as the overmolding material. Four different surface pretreatments: drying, polydopamine (PDA) coating, PDA coating followed by thermal treatment under vacuum, oxygen plasma, and 3-aminopropyltriethoxysilane (APTES) were applied to the PI surface prior to the overmolding process to investigate the influence on the adhesive strength. Additionally, a thermoplastic polyurethane (TPU) adhesive layer was introduced via vacuum lamination to further improve adhesion. The main objective of this study was to evaluate the adhesive strength between etched PI and overmolded biopolymers before and after surface modifications. The loci of failure were analyzed using scanning electron microscopy (SEM). The results indicate that laminated TPU is the most effective approach for improving adhesion between polyimide foils and biopolymers. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

Back to TopTop