Abstract
Metal–organic frameworks (MOFs), assembled from inorganic metal centers (metal ions or clusters) and organic ligands, possess distinctive features such as structural designability, high surface area, and tunable functionalities. In the past decade, MOFs have displayed substantial merits when utilized as innovative flame retardants in the realm of polymeric materials. A current focus is on the flame-retardant effects of MOFs in thermosetting plastics, yielding substantial achievements; however, systematic investigations into thermoplastic polymers, which are more widely used, remain limited. The flame-retardant mode of action for miscellaneous types of MOFs and their applications in polymeric matrices, with particular emphasis on recent advances in thermoplastic systems, are summarized. Furthermore, existing challenges and future perspectives are identified.