Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = thermoelectric energy micro harvester

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5670 KiB  
Article
Comparative Analysis and Integrated Methodology for the Electrical Design and Performance Evaluation of Thermoelectric Generators (TEGs) in Energy Harvesting Applications
by Oswaldo Hideo Ando Junior, Eder Andrade da Silva, Emerson Rodrigues de Lira, Sergio Vladimir Barreiro Degiorgi and João Paulo Pereira do Carmo
Energies 2024, 17(20), 5176; https://doi.org/10.3390/en17205176 - 17 Oct 2024
Cited by 1 | Viewed by 1618
Abstract
This study presents a comparative analysis of the accuracy of different methodologies for the design and performance evaluation of thermoelectric generators (TEGs), using analytical, computational numerical, and experimental approaches. TEGs are promising devices for capturing waste energy in industrial processes, converting waste heat [...] Read more.
This study presents a comparative analysis of the accuracy of different methodologies for the design and performance evaluation of thermoelectric generators (TEGs), using analytical, computational numerical, and experimental approaches. TEGs are promising devices for capturing waste energy in industrial processes, converting waste heat into electrical energy and contributing to energy sustainability. However, the efficiency of TEGs is a significant challenge due to their low conversion rates. To address this challenge, three different methodologies were developed and systematically compared. Analytical Model: Developed for the electrical design of thermoelectric micro generators, using theoretical performance data and industrial temperature gradients. This method offers a robust theoretical view but may not capture all practical variables. Computational model in Simulink/MATLAB: Created and validated to consider the variation of the Seebeck coefficient and the internal resistance of thermoelectric modules with temperature. This model provides an accurate simulation of operating conditions but depends on the accuracy of the input parameters. Experimental Multi-string Electrical Arrangement Prototype: This involved the design and construction of a prototype followed by experimental tests to validate its performance. This method provides valuable empirical data but can be limited by the complexity and cost of the experiments. The results show that each methodology has specific advantages and limitations, offering valuable insights for the development of more efficient TEG systems. The comparison of analytical, numerical, and experimental methods revealed differences in accuracy and efficiency, highlighting the importance of an integrated approach to TEG design. This study lays a solid foundation for future research and practical applications in the field of industrial residual energy harvesting. Full article
(This article belongs to the Special Issue Distributed Energy Resources: Advances, Challenges and Future Trends)
Show Figures

Figure 1

21 pages, 9916 KiB  
Article
Milliwatt μ-TEG-Powered Vibration Monitoring System for Industrial Predictive Maintenance Applications
by Raúl Aragonés, Roger Malet, Joan Oliver, Alex Prim, Denis Mascarell, Marc Salleras, Luis Fonseca, Alex Rodríguez-Iglesias, Albert Tarancón, Alex Morata, Federico Baiutti and Carles Ferrer
Information 2024, 15(9), 545; https://doi.org/10.3390/info15090545 - 6 Sep 2024
Cited by 3 | Viewed by 4357
Abstract
This paper presents a novel waste-heat-powered, wireless, and battery-less Industrial Internet of Things (IIoT) device designed for predictive maintenance in Industry 4.0 environments. With a focus on real-time quality data, this device addresses the limitations of current battery-operated IIoT devices, such as energy [...] Read more.
This paper presents a novel waste-heat-powered, wireless, and battery-less Industrial Internet of Things (IIoT) device designed for predictive maintenance in Industry 4.0 environments. With a focus on real-time quality data, this device addresses the limitations of current battery-operated IIoT devices, such as energy consumption, transmission range, data rate, and constant quality of service. It is specifically developed for heat-intensive industries (e.g., iron and steel, cement, petrochemical, etc.), where self-heating nodes, low-power processing platforms, and industrial sensors align with the stringent requirements of industrial monitoring. The presented IIoT device uses thermoelectric generators based on the Seebeck effect to harness waste heat from any hot surface, such as pipes or chimneys, ensuring continuous power without the need for batteries. The energy that is recovered can be used to power devices using mid-range wireless protocols like Bluetooth 5.0, minimizing the need for extensive in-house wireless infrastructure and incorporating light-edge computing. Consequently, up to 98% of cloud computation efforts and associated greenhouse gas emissions are reduced as data is processed within the IoT device. From the environmental perspective, the deployment of such self-powered IIoT devices contributes to reducing the carbon footprint in energy-demanding industries, aiding their digitalization transition towards the industry 5.0 paradigm. This paper presents the results of the most challenging energy harvesting technologies based on an all-silicon micro thermoelectric generator with planar architecture. The effectiveness and self-powering ability of the selected model, coupled with an ultra-low-power processing platform and Bluetooth 5 connectivity, are validated in an equivalent industrial environment to monitor vibrations in an electric machine. This approach aligns with the EU’s strategic objective of achieving net zero manufacturing capacity for renewable energy technologies, enhancing its position as a global leader in renewable energy technology (RET). Full article
(This article belongs to the Special Issue IoT-Based Systems for Resilient Smart Cities)
Show Figures

Figure 1

56 pages, 72921 KiB  
Review
The Latest Advances in Ink-Based Nanogenerators: From Materials to Applications
by Bingqian Shao, Zhitao Chen, Hengzhe Su, Shuzhe Peng and Mingxin Song
Int. J. Mol. Sci. 2024, 25(11), 6152; https://doi.org/10.3390/ijms25116152 - 3 Jun 2024
Cited by 4 | Viewed by 2211
Abstract
Nanogenerators possess the capability to harvest faint energy from the environment. Among them, thermoelectric (TE), triboelectric, piezoelectric (PE), and moisture-enabled nanogenerators represent promising approaches to micro–nano energy collection. These nanogenerators have seen considerable progress in material optimization and structural design. Printing technology has [...] Read more.
Nanogenerators possess the capability to harvest faint energy from the environment. Among them, thermoelectric (TE), triboelectric, piezoelectric (PE), and moisture-enabled nanogenerators represent promising approaches to micro–nano energy collection. These nanogenerators have seen considerable progress in material optimization and structural design. Printing technology has facilitated the large-scale manufacturing of nanogenerators. Although inks can be compatible with most traditional functional materials, this inevitably leads to a decrease in the electrical performance of the materials, necessitating control over the rheological properties of the inks. Furthermore, printing technology offers increased structural design flexibility. This review provides a comprehensive framework for ink-based nanogenerators, encompassing ink material optimization and device structural design, including improvements in ink performance, control of rheological properties, and efficient energy harvesting structures. Additionally, it highlights ink-based nanogenerators that incorporate textile technology and hybrid energy technologies, reviewing their latest advancements in energy collection and self-powered sensing. The discussion also addresses the main challenges faced and future directions for development. Full article
Show Figures

Figure 1

23 pages, 1542 KiB  
Review
Review of Si-Based Thin Films and Materials for Thermoelectric Energy Harvesting and Their Integration into Electronic Devices for Energy Management Systems
by Carlos Roberto Ascencio-Hurtado, Roberto C. Ambrosio Lázaro, Johan Jair Estrada-López and Alfonso Torres Jacome
Eng 2023, 4(2), 1409-1431; https://doi.org/10.3390/eng4020082 - 15 May 2023
Cited by 5 | Viewed by 2680
Abstract
Energy harvesters are autonomous systems capable of capturing, processing, storing, and utilizing small amounts of free energy from the surrounding environment. Such energy harvesters typically involve three fundamental stages: a micro-generator or energy transducer, a voltage booster or power converter, and an energy [...] Read more.
Energy harvesters are autonomous systems capable of capturing, processing, storing, and utilizing small amounts of free energy from the surrounding environment. Such energy harvesters typically involve three fundamental stages: a micro-generator or energy transducer, a voltage booster or power converter, and an energy storage component. In the case of harvesting mechanical vibrations from the environment, piezoelectric materials have been used as a transducer. For instance, PZT (lead zirconate titanate) is a widely used piezoelectric ceramic due to its high electromechanical coupling factor. However, the integration of PZT into silicon poses certain limitations, not only in the harvesting stage but also in embedding a power management electronics circuit. On the other hand, in thermoelectric (TE) energy harvesting, a recent approach involves using abundant, eco-friendly, and low-cost materials that are compatible with CMOS technology, such as silicon-based compound nanostructures for TE thin film devices. Thus, this review aims to present the current advancements in the fabrication and integration of Si-based thin-film devices for TE energy harvesting applications. Moreover, this paper also highlights some recent developments in electronic architectures that aim to enhance the overall efficiency of the complete energy harvesting system. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

24 pages, 4282 KiB  
Review
A Review of Converter Circuits for Ambient Micro Energy Harvesting
by Qian Lian, Peiqing Han and Niansong Mei
Micromachines 2022, 13(12), 2222; https://doi.org/10.3390/mi13122222 - 14 Dec 2022
Cited by 13 | Viewed by 3364
Abstract
The Internet of Things (IoT) has a great number of sensor nodes distributed in different environments, and the traditional approach uses batteries to power these nodes: however, the resultant huge cost of battery replacement means that the battery-powered approach is not the optimal [...] Read more.
The Internet of Things (IoT) has a great number of sensor nodes distributed in different environments, and the traditional approach uses batteries to power these nodes: however, the resultant huge cost of battery replacement means that the battery-powered approach is not the optimal solution. Micro energy harvesting offers the possibility of self-powered sensor nodes. This paper provides an overview of energy harvesting technology, and describes the methods for extracting energy from various sources, including photovoltaic, thermoelectric, piezoelectric, and RF; in addition, the characteristics of the four types of energy sources and the applicable circuit structures are summarized. This paper gives the pros and cons of the circuits, and future directions. The design challenges are the efficiency and size of the circuit. MPPT, as an important method of improving the system efficiency, is also highlighted and compared. Full article
Show Figures

Figure 1

19 pages, 5965 KiB  
Article
Development of MEMS Process Compatible (Bi,Sb)2(Se,Te)3-Based Thin Films for Scalable Fabrication of Planar Micro-Thermoelectric Generators
by Prithu Bhatnagar and Daryoosh Vashaee
Micromachines 2022, 13(9), 1459; https://doi.org/10.3390/mi13091459 - 2 Sep 2022
Cited by 7 | Viewed by 2770
Abstract
Bismuth telluride-based thin films have been investigated as the active material in flexible and micro thermoelectric generators (TEGs) for near room-temperature energy harvesting applications. The latter is a class of compact printed circuit board compatible devices conceptualized for operation at low-temperature gradients to [...] Read more.
Bismuth telluride-based thin films have been investigated as the active material in flexible and micro thermoelectric generators (TEGs) for near room-temperature energy harvesting applications. The latter is a class of compact printed circuit board compatible devices conceptualized for operation at low-temperature gradients to generate power for wireless sensor nodes (WSNs), the fundamental units of the Internet-of-Things (IoT). CMOS and MEMS compatible micro-TEGs require thin films that can be integrated into the fabrication flow without compromising their thermoelectric properties. We present results on the thermoelectric properties of (Bi,Sb)2(Se,Te)3 thin films deposited via thermal evaporation of ternary compound pellets on four-inch SiO2 substrates at room temperature. Thin-film compositions and post-deposition annealing parameters are optimized to achieve power factors of 2.75 mW m−1 K−2 and 0.59 mW m−1 K−2 for p-type and n-type thin films. The measurement setup is optimized to characterize the thin-film properties accurately. Thin-film adhesion is further tested and optimized on several substrates. Successful lift-off of p-type and n-type thin films is completed on the same wafer to create thermocouple patterns as per the target device design proving compatibility with the standard MEMS fabrication process. Full article
(This article belongs to the Special Issue Design, Fabrication, Testing of MEMS/NEMS)
Show Figures

Figure 1

17 pages, 10098 KiB  
Article
Thermoelectric Energy Micro Harvesters with Temperature Sensors Manufactured Utilizing the CMOS-MEMS Technique
by Yi-Xuan Shen, Yao-Chuan Tsai, Chi-Yuan Lee, Chyan-Chyi Wu and Ching-Liang Dai
Micromachines 2022, 13(8), 1258; https://doi.org/10.3390/mi13081258 - 5 Aug 2022
Cited by 10 | Viewed by 2243
Abstract
This study develops a TEMH (thermoelectric energy micro harvester) chip utilizing a commercial 0.18 μm CMOS (complementary metal oxide semiconductor) process. The chip contains a TEMH and temperature sensors. The TEMH is established using a series of 54 thermocouples. The use of the [...] Read more.
This study develops a TEMH (thermoelectric energy micro harvester) chip utilizing a commercial 0.18 μm CMOS (complementary metal oxide semiconductor) process. The chip contains a TEMH and temperature sensors. The TEMH is established using a series of 54 thermocouples. The use of the temperature sensors monitors the temperature of the thermocouples. One temperature sensor is set near the cold part of the thermocouples, and the other is set near the hot part of the thermocouples. The performance of the TEMH relies on the TD (temperature difference) at the CHP (cold and hot parts) of the thermocouples. The more the TD at the CHP of the thermocouples increases, the higher the output voltage and output power of the TEMH become. To obtain a higher TD, the cold part of the thermocouples is designed as a suspended structure and is combined with cooling sheets to increase heat dissipation. The cooling sheet is constructed of a stack of aluminum layers and is mounted above the cold part of the thermocouple. A finite element method software, ANSYS, is utilized to compute the temperature distribution of the TEMH. The TEMH requires a post-process to obtain the suspended thermocouple structure. The post-process utilizes an RIE (reactive ion etch) to etch the two sacrificial materials, which are silicon dioxide and silicon substrate. The results reveal that the structure of the thermocouples is completely suspended and does not show any injury. The measured results reveal that the output voltage of the TEMH is 32.5 mV when the TD between the CHP of the thermocouples is 4 K. The TEMH has a voltage factor of 8.93 mV/mm2K. When the TD between the CHP of the thermocouples is 4 K, the maximum output power of the TEMH is 4.67 nW. The TEMH has a power factor of 0.31 nW/mm2K2. Full article
(This article belongs to the Special Issue CMOS-MEMS Fabrication Technologies and Devices)
Show Figures

Figure 1

17 pages, 1563 KiB  
Review
Advances in Thermo-Electrochemical (TEC) Cell Performances for Harvesting Low-Grade Heat Energy: A Review
by Igor Burmistrov, Rita Khanna, Nikolay Gorshkov, Nikolay Kiselev, Denis Artyukhov, Elena Boychenko, Andrey Yudin, Yuri Konyukhov, Maksim Kravchenko, Alexander Gorokhovsky and Denis Kuznetsov
Sustainability 2022, 14(15), 9483; https://doi.org/10.3390/su14159483 - 2 Aug 2022
Cited by 23 | Viewed by 5638
Abstract
Thermo-electrochemical cells (also known as thermocells, TECs) represent a promising technology for harvesting and exploiting low-grade waste heat (<100–150 °C) ubiquitous in the modern environment. Based on temperature-dependent redox reactions and ion diffusion, emerging liquid-state thermocells convert waste heat energy into electrical energy, [...] Read more.
Thermo-electrochemical cells (also known as thermocells, TECs) represent a promising technology for harvesting and exploiting low-grade waste heat (<100–150 °C) ubiquitous in the modern environment. Based on temperature-dependent redox reactions and ion diffusion, emerging liquid-state thermocells convert waste heat energy into electrical energy, generating power at low costs, with minimal material consumption and negligible carbon footprint. Recent developments in thermocell performances are reviewed in this article with specific focus on new redox couples, electrolyte optimisation towards enhancing power output and operating temperature regime and the use of carbon and other nanomaterials for producing electrodes with high surface area for increasing current density and device performance. The highest values of output power and cell potentials have been achieved for the redox ferri/ferrocyanide system and Co2+/3+, with great opportunities for further development in both aqueous and non-aqueous solvents. New thermoelectric applications in the field include wearable and portable electronic devices in the health and performance-monitoring sectors; using body heat as a continuous energy source, thermoelectrics are being employed for long-term, continuous powering of these devices. Energy storage in the form of micro supercapacitors and in lithium ion batteries is another emerging application. Current thermocells still face challenges of low power density, conversion efficiency and stability issues. For waste-heat conversion (WHC) to partially replace fossil fuels as an alternative energy source, power generation needs to be commercially viable and cost-effective. Achieving greater power density and operations at higher temperatures will require extensive research and significant developments in the field. Full article
Show Figures

Figure 1

7 pages, 1717 KiB  
Article
Flexible Thermoelectric Generator Based on Polycrystalline SiGe Thin Films
by Tomoki Ozawa, Masayuki Murata, Takashi Suemasu and Kaoru Toko
Materials 2022, 15(2), 608; https://doi.org/10.3390/ma15020608 - 14 Jan 2022
Cited by 9 | Viewed by 2835
Abstract
Flexible and reliable thermoelectric generators (TEGs) will be essential for future energy harvesting sensors. In this study, we synthesized p- and n-type SiGe layers on a high heat-resistant polyimide film using metal-induced layer exchange (LE) and demonstrated TEG operation. Despite the low process [...] Read more.
Flexible and reliable thermoelectric generators (TEGs) will be essential for future energy harvesting sensors. In this study, we synthesized p- and n-type SiGe layers on a high heat-resistant polyimide film using metal-induced layer exchange (LE) and demonstrated TEG operation. Despite the low process temperature (<500 °C), the polycrystalline SiGe layers showed high power factors of 560 µW m−1 K−2 for p-type Si0.4Ge0.6 and 390 µW m−1 K−2 for n-type Si0.85Ge0.15, owing to self-organized doping in LE. Furthermore, the power factors indicated stable behavior with changing measurement temperature, an advantage of SiGe as an inorganic material. An in-plane π-type TEG based on these SiGe layers showed an output power of 0.45 µW cm−2 at near room temperature for a 30 K temperature gradient. This achievement will enable the development of environmentally friendly and highly reliable flexible TEGs for operating micro-energy devices in the future Internet of Things. Full article
(This article belongs to the Special Issue New Trends in Thermoelectric Materials and Thin Films)
Show Figures

Figure 1

20 pages, 62469 KiB  
Article
Study of Operation of the Thermoelectric Generators Dedicated to Wood-Fired Stoves
by Krzysztof Sornek
Energies 2021, 14(19), 6264; https://doi.org/10.3390/en14196264 - 1 Oct 2021
Cited by 3 | Viewed by 3642
Abstract
Thermoelectric generators are devices that harvest waste heat and convert it into useful power. They are considered as an additional power source in the domestic sector, but they can also be installed in off-grid objects. In addition, they are a promising solution for [...] Read more.
Thermoelectric generators are devices that harvest waste heat and convert it into useful power. They are considered as an additional power source in the domestic sector, but they can also be installed in off-grid objects. In addition, they are a promising solution for regions where there is a lack of electricity. Since biomass heating and cooking stoves are widely used, it is very appropriate to integrate thermoelectric generators with wood-fired stoves. This paper shows the experimental analysis of a micro-cogeneration system equipped with a wood-fired stove and two prototypical constructions of thermoelectric generators dedicated to mounting on the flue gas channel. The first version was equipped with one basic thermoelectric module and used to test various cooling methods, while the second construction integrated four basic thermoelectric modules and a water-cooling system. During the tests conducted, the electricity generated in the thermoelectric generators was measured by the electronic load, which allowed the simulation of various operating conditions. The results obtained confirm the possibility of using thermoelectric generators to generate power from waste heat resulting from the wood-fired stove. The maximum power obtained during the discussed combustion process was 15.4 W (if this value occurred during the entire main phase, the energy generated would be at a level of approximately 30 Wh), while the heat transferred to the water was ca. 750 Wh. Furthermore, two specially introduced factors (CPC and CPTC) allowed the comparison of developed generators, and the conclusion was drawn that both developed constructions were characterized by higher CPC values compared to available units in the market. By introducing thermoelectric modules characterized by higher performance, a higher amount of electricity generated may be provided, and sufficient levels of current and voltage may be achieved. Full article
(This article belongs to the Special Issue Sustainable Combustion Systems and Their Impact II)
Show Figures

Figure 1

14 pages, 6078 KiB  
Article
Silicon Nanowires: A Breakthrough for Thermoelectric Applications
by Giovanni Pennelli, Elisabetta Dimaggio and Antonella Masci
Materials 2021, 14(18), 5305; https://doi.org/10.3390/ma14185305 - 14 Sep 2021
Cited by 18 | Viewed by 4139
Abstract
The potentialities of silicon as a starting material for electronic devices are well known and largely exploited, driving the worldwide spreading of integrated circuits. When nanostructured, silicon is also an excellent material for thermoelectric applications, and hence it could give a significant contribution [...] Read more.
The potentialities of silicon as a starting material for electronic devices are well known and largely exploited, driving the worldwide spreading of integrated circuits. When nanostructured, silicon is also an excellent material for thermoelectric applications, and hence it could give a significant contribution in the fundamental fields of energy micro-harvesting (scavenging) and macro-harvesting. On the basis of recently published experimental works, we show that the power factor of silicon is very high in a large temperature range (from room temperature up to 900 K). Combining the high power factor with the reduced thermal conductivity of monocrystalline silicon nanowires and nanostructures, we show that the foreseen figure of merit ZT could be very high, reaching values well above 1 at temperatures around 900 K. We report the best parameters to optimize the thermoelectric properties of silicon nanostructures, in terms of doping concentration and nanowire diameter. At the end, we report some technological processes and solutions for the fabrication of macroscopic thermoelectric devices, based on large numbers of silicon nanowire/nanostructures, showing some fabricated demonstrators. Full article
(This article belongs to the Special Issue Semiconductor Nanowire Devices and Applications)
Show Figures

Graphical abstract

13 pages, 2943 KiB  
Article
Structural Design Optimization of Micro-Thermoelectric Generator for Wearable Biomedical Devices
by Amit Tanwar, Swatchith Lal and Kafil M. Razeeb
Energies 2021, 14(8), 2339; https://doi.org/10.3390/en14082339 - 20 Apr 2021
Cited by 30 | Viewed by 5117
Abstract
Wearable sensors to monitor vital health are becoming increasingly popular both in our daily lives and in medical diagnostics. The human body being a huge source of thermal energy makes it interesting to harvest this energy to power such wearables. Thermoelectric devices are [...] Read more.
Wearable sensors to monitor vital health are becoming increasingly popular both in our daily lives and in medical diagnostics. The human body being a huge source of thermal energy makes it interesting to harvest this energy to power such wearables. Thermoelectric devices are capable of converting the abundantly available body heat into useful electrical energy using the Seebeck effect. However, high thermal resistance between the skin and the device leads to low-temperature gradients (2–10 K), making it difficult to generate useful power by this device. This study focuses on the design optimization of the micro-thermoelectric generator for such low-temperature applications and investigates the role of structural geometries in enhancing the overall power output. Electroplated p-type bismuth antimony telluride (BiSbTe) and n-type copper telluride (CuTe) materials’ properties are used in this study. All the simulations and design optimizations were completed following microfabrication constraints along with realistic temperature gradient scenarios. A series of structural optimizations were performed including the thermoelectric pillar geometries, interconnect contact material layers and fill factor of the overall device. The optimized structural design of the micro-thermoelectric device footprint of 4.5 × 3.5 mm2, with 240 thermoelectric leg pairs, showcased a maximum power output of 0.796 mW and 3.18 mW when subjected to the low-temperature gradient of 5 K and 10 K, respectively. These output power values have high potential to pave the way of realizing future wearable devices. Full article
(This article belongs to the Topic Thermoelectric Energy Harvesting)
Show Figures

Figure 1

42 pages, 11817 KiB  
Review
A Review of Microscale, Rheological, Mechanical, Thermoelectrical and Piezoresistive Properties of Graphene Based Cement Composite
by Sardar Kashif Ur Rehman, Sabina Kumarova, Shazim Ali Memon, Muhammad Faisal Javed and Mohammed Jameel
Nanomaterials 2020, 10(10), 2076; https://doi.org/10.3390/nano10102076 - 21 Oct 2020
Cited by 60 | Viewed by 5780
Abstract
Extensive research on functionalized graphene, graphene oxide, and carbon nanotube based cement composites has been carried out to strengthen and overcome the shortcomings of construction materials. However, less literature is available on the pure graphene based cement composite. In this review paper, an [...] Read more.
Extensive research on functionalized graphene, graphene oxide, and carbon nanotube based cement composites has been carried out to strengthen and overcome the shortcomings of construction materials. However, less literature is available on the pure graphene based cement composite. In this review paper, an in-depth study on a graphene-based cement composite was performed. Various structural forms of graphene and classifications of graphene-based nanomaterial have been presented. The dispersion mechanism and techniques, which are important for effective utilization in the construction industry, are reviewed critically. Micro-scale characterization of carbon-based cement composite using thermogravimetric analysis (TGA), infrared (IR) spectroscopic analysis, x-ray diffractometric (XRD) analysis, and morphological analysis has also been reviewed. As per the authors’ knowledge, for the first time, a review of flow, energy harvesting, thermoelectrical, and self-sensing properties of graphene and its derivatives as the bases of cement composite are presented. The self-sensing properties of the composite material are reported by exploring physical applications by reinforcing graphene nanoplatelets (GNPs) into concrete beams. Full article
(This article belongs to the Special Issue Properties and Applications of Graphene and Its Derivatives)
Show Figures

Figure 1

9 pages, 2009 KiB  
Article
Measuring Device and Material ZT in a Thin-Film Si-Based Thermoelectric Microgenerator
by Pablo Ferrando-Villalba, Antonio Pablo Pérez-Marín, Llibertat Abad, Gustavo Gonçalves Dalkiranis, Aitor F. Lopeandia, Gemma Garcia and Javier Rodriguez-Viejo
Nanomaterials 2019, 9(4), 653; https://doi.org/10.3390/nano9040653 - 24 Apr 2019
Cited by 11 | Viewed by 4447
Abstract
Thermoelectricity (TE) is proving to be a promising way to harvest energy for small applications and to produce a new range of thermal sensors. Recently, several thermoelectric generators (TEGs) based on nanomaterials have been developed, outperforming the efficiencies of many previous bulk generators. [...] Read more.
Thermoelectricity (TE) is proving to be a promising way to harvest energy for small applications and to produce a new range of thermal sensors. Recently, several thermoelectric generators (TEGs) based on nanomaterials have been developed, outperforming the efficiencies of many previous bulk generators. Here, we presented the thermoelectric characterization at different temperatures (from 50 to 350 K) of the Si thin-film based on Phosphorous (n) and Boron (p) doped thermocouples that conform to a planar micro TEG. The thermocouples were defined through selective doping by ion implantation, using boron and phosphorous, on a 100 nm thin Si film. The thermal conductivity, the Seebeck coefficient, and the electrical resistivity of each Si thermocouple was experimentally determined using the in-built heater/sensor probes and the resulting values were refined with the aid of finite element modeling (FEM). The results showed a thermoelectric figure of merit for the Si thin films of z T = 0.0093, at room temperature, which was about 12% higher than the bulk Si. In addition, we tested the thermoelectric performance of the TEG by measuring its own figure of merit, yielding a result of ZT = 0.0046 at room temperature. Full article
(This article belongs to the Special Issue Nanostructured Materials for Thermoelectrics)
Show Figures

Figure 1

14 pages, 3820 KiB  
Article
Spatiotemporal Rule of Heat Transfer on a Soil/Finned Tube Interface
by Yongsheng Huang, Wenbin Li, Daochun Xu and Yafeng Wu
Sensors 2019, 19(5), 1159; https://doi.org/10.3390/s19051159 - 7 Mar 2019
Cited by 9 | Viewed by 3104
Abstract
To efficiently harvest environmental micro-energy from shallow soil, simulated analysis, theoretical arithmetic and experimental verification are performed to explore the spatiotemporal rules of heat transfer on a soil/finned tube interface. Simulations are carried out for 36 types of different working conditions, and the [...] Read more.
To efficiently harvest environmental micro-energy from shallow soil, simulated analysis, theoretical arithmetic and experimental verification are performed to explore the spatiotemporal rules of heat transfer on a soil/finned tube interface. Simulations are carried out for 36 types of different working conditions, and the empirical formulas for temperature and heat flux are obtained. The temperature and heat flux can be calculated using the formulas if the soil temperature, soil moisture content and finned tube initial temperature are known. The simulations also show that the highest heat flux can reach approximately 0.30 mW/mm2, and approximately 1507.96 mW of energy can be harvested through the finned tube. Theoretical arithmetic indicates that the heat transfer rate of the copper finned tube is 76.77% higher than that of the bare tube, the highest rate obtained in any study to date. Results also show that the finned tube should be placed where the soil moisture is greater than 30% to get more heat from the soil. A field experiment is carried out in the city of Harbin in Northeast China, where a thermoelectric power generation device has been installed and temperature data have been monitored for a certain time. The results are in good agreement with those obtained from the simulation analysis. The heat transfer processes and heat transfer steady state on the soil/finned tube interface are revealed in this work and are of great importance for the use of geothermal energy. Full article
(This article belongs to the Special Issue Energy Harvesting and Energy-Neutral IoT Devices and Systems)
Show Figures

Figure 1

Back to TopTop