Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,761)

Search Parameters:
Keywords = thermodynamic states

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 671 KiB  
Communication
Engineering Thermodynamic Approach to the Analysis of Elastic Properties: Elastomers as a Case Study
by Umberto Lucia and Giulia Grisolia
Appl. Sci. 2025, 15(15), 8705; https://doi.org/10.3390/app15158705 (registering DOI) - 6 Aug 2025
Abstract
The thermophysical behavior of solids (such as oxide compounds, for example) is crucial in applied physics and engineering, with particular regard to heterogeneous catalysis, sensors, high-temperature superconductors, and solid-state batteries. Research in geometric nonlinear theory has provided insights into crystal symmetry and phase [...] Read more.
The thermophysical behavior of solids (such as oxide compounds, for example) is crucial in applied physics and engineering, with particular regard to heterogeneous catalysis, sensors, high-temperature superconductors, and solid-state batteries. Research in geometric nonlinear theory has provided insights into crystal symmetry and phase compatibility under thermal and elastic stress. High-temperature stress significantly affects phase stability, making an understanding of solid thermodynamics essential for material performance. This study focuses on the mechanical and thermal interactions in solids, analyzing variations in mechanical stress and strain under extreme conditions. We propose a theoretical approach for a thermophysical model that, based on the study of the properties of the global thermal behavior of solids, can describe the thermodynamic effects of elastic deformations. Elastomers are used as a case study to validate the proposed approach. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

16 pages, 6256 KiB  
Article
Influence of Alpha/Gamma-Stabilizing Elements on the Hot Deformation Behaviour of Ferritic Stainless Steel
by Andrés Núñez, Irene Collado, Marta Muratori, Andrés Ruiz, Juan F. Almagro and David L. Sales
J. Manuf. Mater. Process. 2025, 9(8), 265; https://doi.org/10.3390/jmmp9080265 - 6 Aug 2025
Abstract
This study investigates the hot deformation behaviour and microstructural evolution of two AISI 430 ferritic stainless steel variants: 0A (basic) and 1C (modified). These variants primarily differ in chemical composition, with 0A containing higher austenite-stabilizing elements (C, N) compared to 1C, which features [...] Read more.
This study investigates the hot deformation behaviour and microstructural evolution of two AISI 430 ferritic stainless steel variants: 0A (basic) and 1C (modified). These variants primarily differ in chemical composition, with 0A containing higher austenite-stabilizing elements (C, N) compared to 1C, which features lower interstitial content and slightly higher Si and Cr. This research aimed to optimize hot rolling conditions for enhanced forming properties. Uniaxial hot compression tests were conducted using a Gleeble thermo-mechanical system between 850 and 990 C at a strain rate of 3.3 s1, simulating industrial finishing mill conditions. Analysis of flow curves, coupled with detailed microstructural characterization using electron backscatter diffraction, revealed distinct dynamic restoration mechanisms influencing each material’s response. Thermodynamic simulations confirmed significant austenite formation in both materials within the tested temperature range, notably affecting their deformation behaviour despite their initial ferritic state. Material 0A consistently exhibited a strong tendency towards dynamic recrystallization (DRX) across a wider temperature range, particularly at 850 C. DRX led to a microstructure with a high concentration of low-angle grain boundaries and sharp deformation textures, actively reorienting grains towards energetically favourable configurations. However, under this condition, DRX did not fully complete the recrystallization process. In contrast, material 1C showed greater activity of both dynamic recovery and DRX, leading to a much more advanced state of grain refinement and recrystallization compared to 0A. This indicates that the composition of 1C helps mitigate the strong influence of the deformation temperature on the crystallographic texture, leading to a weaker texture overall than 0A. Full article
17 pages, 310 KiB  
Article
Statistical Entropy Based on the Generalized-Uncertainty-Principle-Induced Effective Metric
by Soon-Tae Hong, Yong-Wan Kim and Young-Jai Park
Universe 2025, 11(8), 256; https://doi.org/10.3390/universe11080256 - 2 Aug 2025
Viewed by 81
Abstract
We investigate the statistical entropy of black holes within the framework of the generalized uncertainty principle (GUP) by employing effective metrics that incorporate leading-order and all-order quantum gravitational corrections. We construct three distinct effective metrics induced by the GUP, which are derived from [...] Read more.
We investigate the statistical entropy of black holes within the framework of the generalized uncertainty principle (GUP) by employing effective metrics that incorporate leading-order and all-order quantum gravitational corrections. We construct three distinct effective metrics induced by the GUP, which are derived from the GUP-corrected temperature, entropy, and all-order GUP corrections, and analyze their impact on black hole entropy using ’t Hooft’s brick wall method. Our results show that, despite the differences in the effective metrics and the corresponding ultraviolet cutoffs, the statistical entropy consistently satisfies the Bekenstein–Hawking area law when expressed in terms of an invariant (coordinate-independent) distance near the horizon. Furthermore, we demonstrate that the GUP naturally regularizes the ultraviolet divergence in the density of states, eliminating the need for artificial cutoffs and yielding finite entropy even when counting quantum states only in the vicinity of the event horizon. These findings highlight the universality and robustness of the area law under GUP modifications and provide new insights into the interplay between quantum gravity effects and black hole thermodynamics. Full article
(This article belongs to the Collection Open Questions in Black Hole Physics)
24 pages, 9086 KiB  
Article
Linking Optimization Success and Stability of Finite-Time Thermodynamics Heat Engines
by Julian Gonzalez-Ayala, David Pérez-Gallego, Alejandro Medina, José M. Mateos Roco, Antonio Calvo Hernández, Santiago Velasco and Fernando Angulo-Brown
Entropy 2025, 27(8), 822; https://doi.org/10.3390/e27080822 - 2 Aug 2025
Viewed by 127
Abstract
In celebration of 50 years of the endoreversible Carnot-like heat engine, this work aims to link the thermodynamic success of the irreversible Carnot-like heat engine with the stability dynamics of the engine. This region of success is defined by two extreme configurations in [...] Read more.
In celebration of 50 years of the endoreversible Carnot-like heat engine, this work aims to link the thermodynamic success of the irreversible Carnot-like heat engine with the stability dynamics of the engine. This region of success is defined by two extreme configurations in the interaction between heat reservoirs and the working fluid. The first corresponds to a fully reversible limit, and the second one is the fully dissipative limit; in between both limits, the heat exchange between reservoirs and working fluid produces irreversibilities and entropy generation. The distance between these two extremal configurations is minimized, independently of the chosen metric, in the state where the efficiency is half the Carnot efficiency. This boundary encloses the region where irreversibilities dominate or the reversible behavior dominates (region of success). A general stability dynamics is proposed based on the endoreversible nature of the model and the operation parameter in charge of defining the operation regime. For this purpose, the maximum ecological and maximum Omega regimes are considered. The results show that for single perturbations, the dynamics rapidly directs the system towards the success region, and under random perturbations producing stochastic trajectories, the system remains always in this region. The results are contrasted with the case in which no restitution dynamics exist. It is shown that stability allows the system to depart from the original steady state to other states that enhance the system’s performance, which could favor the evolution and specialization of systems in nature and in artificial devices. Full article
(This article belongs to the Special Issue The First Half Century of Finite-Time Thermodynamics)
Show Figures

Figure 1

40 pages, 585 KiB  
Article
Finite-Time Thermodynamics and Complex Energy Landscapes: A Perspective
by Johann Christian Schön
Entropy 2025, 27(8), 819; https://doi.org/10.3390/e27080819 - 1 Aug 2025
Viewed by 115
Abstract
Finite-time thermodynamics (FTT) describes the study of thermodynamic processes that take place in finite time. Due to the finite-time requirement, in general the system cannot move from equilibrium state to equilibrium state. As a consequence, excess entropy is generated, available work is reduced, [...] Read more.
Finite-time thermodynamics (FTT) describes the study of thermodynamic processes that take place in finite time. Due to the finite-time requirement, in general the system cannot move from equilibrium state to equilibrium state. As a consequence, excess entropy is generated, available work is reduced, and/or the maximally achievable efficiency is not achieved; minimizing these negative side-effects constitutes an optimal control problem. Particularly challenging are processes and cycles that involve phase transitions of the working fluid material or the target material of a synthesis process, especially since most materials reside on a highly complex energy landscape exhibiting alternative metastable phases or glassy states. In this perspective, we discuss the issues and challenges involved in dealing with such materials when performing thermodynamic processes that include phase transitions in finite time. We focus on thermodynamic cycles with one back-and-forth transition and the generation of new materials via a phase transition; other systems discussed concern the computation of free energy differences and the general applicability of FTT to systems outside the realm of chemistry and physics that exhibit cost function landscapes with phase transition-like dynamics. Full article
(This article belongs to the Special Issue The First Half Century of Finite-Time Thermodynamics)
Show Figures

Figure 1

21 pages, 6272 KiB  
Article
Numerical Study of Gas Dynamics and Condensate Removal in Energy-Efficient Recirculation Modes in Train Cabins
by Ivan Panfilov, Alexey N. Beskopylny, Besarion Meskhi and Sergei F. Podust
Fluids 2025, 10(8), 197; https://doi.org/10.3390/fluids10080197 - 29 Jul 2025
Viewed by 175
Abstract
Maintaining the required relative humidity values in the vehicle cabin is an important HVAC task, along with considerations related to the temperature, velocity, air pressure and noise. Deviation from the optimal values worsens the psycho-physiological state of the driver and affects the energy [...] Read more.
Maintaining the required relative humidity values in the vehicle cabin is an important HVAC task, along with considerations related to the temperature, velocity, air pressure and noise. Deviation from the optimal values worsens the psycho-physiological state of the driver and affects the energy efficiency of the train. In this study, a model of liquid film formation on and removal from various cabin surfaces was constructed using the fundamental Navier–Stokes hydrodynamic equations. A special transport model based on the liquid vapor diffusion equation was used to simulate the air environment inside the cabin. The evaporation and condensation of surface films were simulated using the Euler film model, which directly considers liquid–gas and gas–liquid transitions. Numerical results were obtained using the RANS equations and a turbulence model by means of the finite volume method in Ansys CFD. Conjugate fields of temperature, velocity and moisture concentration were constructed for various time intervals, and the dependence values for the film thicknesses on various surfaces relative to time were determined. The verification was conducted in comparison with the experimental data, based on the protocol for measuring the microclimate indicators in workplaces, as applied to the train cabin: the average ranges encompassed temperature changes from 11% to 18%, and relative humidity ranges from 16% to 26%. Comparison with the results of other studies, without considering the phase transition and condensation, shows that, for the warm mode, the average air temperature in the cabin with condensation is 12.5% lower than without condensation, which is related to the process of liquid evaporation from the heated walls. The difference in temperature values for the model with and without condensation ranged from −12.5% to +4.9%. We demonstrate that, with an effective mode of removing condensate film from the window surface, including recirculation modes, the energy consumption of the climate control system improves significantly, but this requires a more accurate consideration of thermodynamic parameters and relative humidity. Thus, considering the moisture condensation model reveals that this variable can significantly affect other parameters of the microclimate in cabins: in particular, the temperature. This means that it should be considered in the numerical modeling, along with the basic heat transfer equations. Full article
Show Figures

Figure 1

8 pages, 306 KiB  
Proceeding Paper
Constraints on the Equation of State of Quark Stars from Compact Object Observations
by Shu-Peng Wang, Zhi-Jun Ma, Jian-Feng Xu and Zhen-Yan Lu
Proceedings 2025, 123(1), 3; https://doi.org/10.3390/proceedings2025123003 - 29 Jul 2025
Viewed by 221
Abstract
Introducing an additional term into the thermodynamic potential density of the quark matter system, as required for thermodynamic consistency, resolves the inconsistency that arises in the conventional perturbative quantum chromodynamics (QCD) model. In this work, we use a revised, thermodynamically consistent perturbative QCD [...] Read more.
Introducing an additional term into the thermodynamic potential density of the quark matter system, as required for thermodynamic consistency, resolves the inconsistency that arises in the conventional perturbative quantum chromodynamics (QCD) model. In this work, we use a revised, thermodynamically consistent perturbative QCD model to compute the stability window and equation of state of up-down (ud) quark matter at zero temperature. Our results indicate that the measured tidal deformability for GW170817 places an upper limit on the maximum mass of ud quark stars, but does not rule out the possibility of such stars with a mass of about two solar masses. However, when the maximum mass of ud quark stars significantly exceeds two solar masses, such as the compact object with a mass in the range of 2.50–2.67 M observed in the GW190814 event, it cannot be identified as a ud quark star according to the revised perturbative QCD model. Full article
(This article belongs to the Proceedings of The 5th International Conference on Symmetry (Symmetry 2025))
Show Figures

Figure 1

27 pages, 5776 KiB  
Review
From “Information” to Configuration and Meaning: In Living Systems, the Structure Is the Function
by Paolo Renati and Pierre Madl
Int. J. Mol. Sci. 2025, 26(15), 7319; https://doi.org/10.3390/ijms26157319 - 29 Jul 2025
Viewed by 180
Abstract
In this position paper, we argue that the conventional understanding of ‘information’ (as generally conceived in science, in a digital fashion) is overly simplistic and not consistently applicable to living systems, which are open systems that cannot be reduced to any kind of [...] Read more.
In this position paper, we argue that the conventional understanding of ‘information’ (as generally conceived in science, in a digital fashion) is overly simplistic and not consistently applicable to living systems, which are open systems that cannot be reduced to any kind of ‘portion’ (building block) ascribed to the category of quantity. Instead, it is a matter of relationships and qualities in an indivisible analogical (and ontological) relationship between any presumed ‘software’ and ‘hardware’ (information/matter, psyche/soma). Furthermore, in biological systems, contrary to Shannon’s definition, which is well-suited to telecommunications and informatics, any kind of ‘information’ is the opposite of internal entropy, as it depends directly on order: it is associated with distinction and differentiation, rather than flattening and homogenisation. Moreover, the high degree of structural compartmentalisation of living matter prevents its energetics from being thermodynamically described by using a macroscopic, bulk state function. This requires the Second Principle of Thermodynamics to be redefined in order to make it applicable to living systems. For these reasons, any static, bit-related concept of ‘information’ is inadequate, as it fails to consider the system’s evolution, it being, in essence, the organized coupling to its own environment. From the perspective of quantum field theory (QFT), where many vacuum levels, symmetry breaking, dissipation, coherence and phase transitions can be described, a consistent picture emerges that portrays any living system as a relational process that exists as a flux of context-dependent meanings. This epistemological shift is also associated with a transition away from the ‘particle view’ (first quantisation) characteristic of quantum mechanics (QM) towards the ‘field view’ possible only in QFT (second quantisation). This crucial transition must take place in life sciences, particularly regarding the methodological approaches. Foremost because biological systems cannot be conceived as ‘objects’, but rather as non-confinable processes and relationships. Full article
Show Figures

Figure 1

11 pages, 343 KiB  
Article
Endoreversible Stirling Cycles: Plasma Engines at Maximal Power
by Gregory Behrendt and Sebastian Deffner
Entropy 2025, 27(8), 807; https://doi.org/10.3390/e27080807 - 28 Jul 2025
Viewed by 419
Abstract
Endoreversible engine cycles are a cornerstone of finite-time thermodynamics. We show that endoreversible Stirling engines operating with a one-component plasma as a working medium run at maximal power output with the Curzon–Ahlborn efficiency. As a main result, we elucidate that this is actually [...] Read more.
Endoreversible engine cycles are a cornerstone of finite-time thermodynamics. We show that endoreversible Stirling engines operating with a one-component plasma as a working medium run at maximal power output with the Curzon–Ahlborn efficiency. As a main result, we elucidate that this is actually a consequence of the fact that the caloric equation of state depends only linearly on temperature and only additively on volume. In particular, neither the exact form of the mechanical equation of state nor the full fundamental relation are required. Thus, our findings immediately generalize to a larger class of working plasmas, far beyond simple ideal gases. In addition, we show that for plasmas described by the photonic equation of state, the efficiency is significantly lower. This is in stark contrast to endoreversible Otto cycles, for which photonic engines have an efficiency larger than the Curzon–Ahlborn efficiency. Full article
(This article belongs to the Special Issue The First Half Century of Finite-Time Thermodynamics)
Show Figures

Figure 1

19 pages, 3715 KiB  
Article
Quantum Chemical Investigation on the Material Properties of Al-Based Hydrides XAl2H2 (X = Ca, Sr, Sc, and Y) for Hydrogen Storage Applications
by Yong Guo, Rui Guo, Lei Wan and Youyu Zhang
Materials 2025, 18(15), 3521; https://doi.org/10.3390/ma18153521 - 27 Jul 2025
Viewed by 316
Abstract
Aluminum–hydrogen compounds have drawn considerable interest for applications in solid-state hydrogen storage. The structural, hydrogen storage, electronic, mechanical, phonon, and thermodynamic properties of XAl2H2 (X = Ca, Sr, Sc, Y) hydrides are investigated using density functional theory. These hydrides exhibit [...] Read more.
Aluminum–hydrogen compounds have drawn considerable interest for applications in solid-state hydrogen storage. The structural, hydrogen storage, electronic, mechanical, phonon, and thermodynamic properties of XAl2H2 (X = Ca, Sr, Sc, Y) hydrides are investigated using density functional theory. These hydrides exhibit negative formation energies in the hexagonal phase, indicating their thermodynamic stability. The gravimetric hydrogen storage capacities of CaAl2H2, SrAl2H2, ScAl2H2, and YAl2H2 are calculated to be 1.41 wt%, 0.94 wt%, 1.34 wt%, and 0.93 wt%, respectively. Analysis of the electronic density of states reveals metallic characteristics. Furthermore, the calculated elastic constants satisfy the Born stability criteria, confirming their mechanical stability. Additionally, through phonon spectra analysis, dynamical stability is verified for CaAl2H2 and SrAl2H2 but not for ScAl2H2 and YAl2H2. Finally, we present temperature-dependent thermodynamic properties. This research reveals that XAl2H2 (X = Ca, Sr, Sc, Y) materials represent promising candidates for solid-state hydrogen storage, providing a theoretical foundation for further studies on XAl2H2 systems. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

22 pages, 2856 KiB  
Article
Impact of Loop Quantum Gravity on the Topological Classification of Quantum-Corrected Black Holes
by Saeed Noori Gashti, İzzet Sakallı, Hoda Farahani, Prabir Rudra and Behnam Pourhassan
Universe 2025, 11(8), 247; https://doi.org/10.3390/universe11080247 - 27 Jul 2025
Viewed by 234
Abstract
We investigated the thermodynamic topology of quantum-corrected AdS-Reissner-Nordström black holes in Kiselev spacetime using non-extensive entropy formulation derived from Loop Quantum Gravity (LQG). Through systematic analysis, we examined how the Tsallis parameter λ influences topological charge classification with respect to various equation of [...] Read more.
We investigated the thermodynamic topology of quantum-corrected AdS-Reissner-Nordström black holes in Kiselev spacetime using non-extensive entropy formulation derived from Loop Quantum Gravity (LQG). Through systematic analysis, we examined how the Tsallis parameter λ influences topological charge classification with respect to various equation of state parameters. Our findings revealed a consistent pattern of topological transitions: for λ=0.1, the system exhibited a single topological charge (ω=1) with total charge W=1, as λ increased to 0.8, the system transitioned to a configuration with two topological charges (ω=+1,1) and total charge W=0. When λ=1, corresponding to the Bekenstein–Hawking entropy limit, the system displayed a single topological charge (ω=+1) with W=+1, signifying thermodynamic stability. The persistence of this pattern across different fluid compositions—from exotic negative pressure environments to radiation—demonstrates the universal nature of quantum gravitational effects on black hole topology. Full article
Show Figures

Figure 1

10 pages, 1372 KiB  
Article
Accurate Prediction of Protein Tertiary and Quaternary Stability Using Fine-Tuned Protein Language Models and Free Energy Perturbation
by Xinning Li, Ryann Perez, John J. Ferrie, E. James Petersson and Sam Giannakoulias
Int. J. Mol. Sci. 2025, 26(15), 7125; https://doi.org/10.3390/ijms26157125 - 24 Jul 2025
Viewed by 583
Abstract
Methods such as AlphaFold have revolutionized protein structure prediction, making quantitative prediction of the thermodynamic stability of individual proteins and their complexes one of the next frontiers in computational protein modeling. Here, we develop methods for using protein language models (PLMs) with protein [...] Read more.
Methods such as AlphaFold have revolutionized protein structure prediction, making quantitative prediction of the thermodynamic stability of individual proteins and their complexes one of the next frontiers in computational protein modeling. Here, we develop methods for using protein language models (PLMs) with protein mutational datasets related to protein tertiary and quaternary stability. First, we demonstrate that fine-tuning of a ProtT5 PLM enables accurate prediction of the largest protein mutant stability dataset available. Next, we show that mutational impacts on protein function can be captured by fine-tuning PLMs, using green fluorescent protein (GFP) brightness as a readout of folding and stability. In our final case study, we observe that PLMs can also be extended to protein complexes by identifying mutations that are stabilizing or destabilizing. Finally, we confirmed that state-of-the-art simulation methods (free energy perturbation) can refine the accuracy of predictions made by PLMs. This study highlights the versatility of PLMs and demonstrates their application towards the prediction of protein and complex stability. Full article
(This article belongs to the Special Issue Computational Approaches for Protein Design)
Show Figures

Graphical abstract

14 pages, 2753 KiB  
Article
Phosphorene-Supported Au(I) Fragments for Highly Sensitive Detection of NO
by Huimin Guo, Yuhan Liu and Xin Liu
Molecules 2025, 30(15), 3085; https://doi.org/10.3390/molecules30153085 - 23 Jul 2025
Viewed by 253
Abstract
The fabrication and application of single-site heterogeneous reaction centers are new frontiers in chemistry. Single-site heterogeneous reaction centers are analogous to metal centers in enzymes and transition-metal complexes: they are charged and decorated with ligands and would exhibit superior reactivity and selectivity in [...] Read more.
The fabrication and application of single-site heterogeneous reaction centers are new frontiers in chemistry. Single-site heterogeneous reaction centers are analogous to metal centers in enzymes and transition-metal complexes: they are charged and decorated with ligands and would exhibit superior reactivity and selectivity in chemical conversion. Such high reactivity would also result in significant response, such as a band gap or resistance change, to approaching molecules, which can be used for sensing applications. As a proof of concept, the electronic structure and reaction pathways with NO and NO2 of Au(I) fragments dispersed on phosphorene (Pene) were investigated with first-principle-based calculations. Atomic-deposited Au atoms on Pene (Au1-Pene) have hybridized Au states in the bulk band gap of Pene and a decreased band gap of 0.14 eV and would aggregate into clusters. Passivation of the Au hybrid states with -OH and -CH3 forms thermodynamically plausible HO-Au1-Pene and H3C-Au1-Pene and restores the band gap to that of bulk Pene. Inspired by this, HO-Au1-Pene and H3C-Au1-Pene were examined for detection of NO and NO2 that would react with -OH and -CH3, and the resulting decrease of band gap back to that of Au1-Pene would be measurable. HO-Au1-Pene and H3C-Au1-Pene are highly sensitive to NO and NO2, and their calculated theoretical sensitivities are all 99.99%. The reaction of NO2 with HO-Au1-Pene is endothermic, making the dissociation of product HNO3 more plausible, while the barriers for the reaction of CH3-Au1-Pene with NO and NO2 are too high for spontaneous detection. Therefore, HO-Au1-Pene is not eligible for NO2 sensing and CH3-Au1-Pene is not eligible for NO and NO2 sensing. The calculated energy barrier for the reaction of HO-Au-Pene with NO is 0.36 eV, and the reaction is about thermal neutral, suggesting HO-Au-Pene is highly sensitive for NO sensing and the reaction for NO detection is spontaneous. This work highlights the potential superior sensing performance of transition-metal fragments and their potential for next-generation sensing applications. Full article
Show Figures

Figure 1

24 pages, 2613 KiB  
Article
Hierarchical Sensing Framework for Polymer Degradation Monitoring: A Physics-Constrained Reinforcement Learning Framework for Programmable Material Discovery
by Xiaoyu Hu, Xiuyuan Zhao and Wenhe Liu
Sensors 2025, 25(14), 4479; https://doi.org/10.3390/s25144479 - 18 Jul 2025
Viewed by 279
Abstract
The design of materials with programmable degradation profiles presents a fundamental challenge in pattern recognition across molecular space, requiring the identification of complex structure–property relationships within an exponentially large chemical domain. This paper introduces a novel physics-informed deep learning framework that integrates multi-scale [...] Read more.
The design of materials with programmable degradation profiles presents a fundamental challenge in pattern recognition across molecular space, requiring the identification of complex structure–property relationships within an exponentially large chemical domain. This paper introduces a novel physics-informed deep learning framework that integrates multi-scale molecular sensing data with reinforcement learning algorithms to enable intelligent characterization and prediction of polymer degradation dynamics. Our method combines three key innovations: (1) a dual-channel sensing architecture that fuses spectroscopic signatures from Graph Isomorphism Networks with temporal degradation patterns captured by transformer-based models, enabling comprehensive molecular state detection across multiple scales; (2) a physics-constrained policy network that ensures sensor measurements adhere to thermodynamic principles while optimizing the exploration of degradation pathways; and (3) a hierarchical signal processing system that balances multiple sensing modalities through adaptive weighting schemes learned from experimental feedback. The framework employs curriculum-based training that progressively increases molecular complexity, enabling robust detection of degradation markers linking polymer architectures to enzymatic breakdown kinetics. Experimental validation through automated synthesis and in situ characterization of 847 novel polymers demonstrates the framework’s sensing capabilities, achieving a 73.2% synthesis success rate and identifying 42 structures with precisely monitored degradation profiles spanning 6 to 24 months. Learned molecular patterns reveal previously undetected correlations between specific spectroscopic signatures and degradation susceptibility, validated through accelerated aging studies with continuous sensor monitoring. Our results establish that physics-informed constraints significantly improve both the validity (94.7%) and diversity (0.82 Tanimoto distance) of generated molecular structures compared with unconstrained baselines. This work advances the convergence of intelligent sensing technologies and materials science, demonstrating how physics-informed machine learning can enhance real-time monitoring capabilities for next-generation sustainable materials. Full article
(This article belongs to the Special Issue Functional Polymers and Fibers: Sensing Materials and Applications)
Show Figures

Figure 1

12 pages, 1442 KiB  
Article
Reversible Binding of Nitric Oxide in a Cu(II)-Containing Microporous Metal-Organic Framework
by Konstantin A. Bikov, Götz Schuck and Peter A. Georgiev
Molecules 2025, 30(14), 3007; https://doi.org/10.3390/molecules30143007 - 17 Jul 2025
Viewed by 257
Abstract
We studied the adsorption thermodynamics and mechanism behind the binding of nitric oxide (NO) in the interior surfaces and structural fragments of the high metal center density microporous Metal-Organic Framework (MOF) CPO-27-Cu, by gas sorption, at a series of temperatures. For the purpose [...] Read more.
We studied the adsorption thermodynamics and mechanism behind the binding of nitric oxide (NO) in the interior surfaces and structural fragments of the high metal center density microporous Metal-Organic Framework (MOF) CPO-27-Cu, by gas sorption, at a series of temperatures. For the purpose of comparison, we also measured the corresponding CO2 adsorption isotherms, and as a result, the isosteric heats of adsorption for the two studied adsorptives were derived, being in the range of 12–15 kJ/mol for NO at loadings up to 0.5 NO molecules per formula unit (f.u.) of the bare compound (C4O3HCu), and 23–25 kJ/mol CO2 in the range 0–1 CO2 per f.u. Microscopically, the mode of NO binding near the square pyramid Cu(II) centers was directly accessed with the use of in situ NO gas adsorption X-ray Absorption Spectroscopy (XAS). Additionally, during the vacuum/temperature activation of the material and consequent NO adsorption, the electronic state of the Cu-species was monitored by observing the corresponding X-ray Near Edge Spectra (XANES). Contrary to the previously anticipated chemisorption mechanism for NO binding at Cu(II) species, we found that at slightly elevated temperatures, under ambient, but also cryogenic conditions, only relatively weak physisorption takes place, with no evidence for a particular adsorption preference to the coordinatively unsaturated Cu-centers of the material. Full article
(This article belongs to the Special Issue Functional Porous Frameworks: Synthesis, Properties, and Applications)
Show Figures

Figure 1

Back to TopTop