Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = thermocycle aging test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2558 KiB  
Article
Bonding Orthodontic Attachments to 3D-Printed Photosensitive Definitive Resin: An In Vitro Study
by Omaika Victoria Criollo-Barrios, Carlos Roberto Luna-Domínguez, Carlos Alberto Luna-Lara, Ricardo de Jesus Figueroa-López, Ronaldo Câmara Cozza and Jorge Humberto Luna-Domínguez
Dent. J. 2025, 13(8), 341; https://doi.org/10.3390/dj13080341 - 24 Jul 2025
Viewed by 252
Abstract
Background/Objectives: The increasing clinical integration of 3D-printed definitive resins requires a comprehensive understanding of their physicochemical properties and adhesive behavior. However, there is limited evidence regarding the optimal surface treatment and bonding strategies for clear aligner composite attachments on these materials. This [...] Read more.
Background/Objectives: The increasing clinical integration of 3D-printed definitive resins requires a comprehensive understanding of their physicochemical properties and adhesive behavior. However, there is limited evidence regarding the optimal surface treatment and bonding strategies for clear aligner composite attachments on these materials. This study aimed to characterize a 3D-printed definitive resin, evaluate the effects of surface treatments on its surface topography, and compare the shear bond strength (SBS) of the bonded attachments using different adhesive systems, both before and after thermocycling. Methods: A total of 120 rectangular specimens were fabricated from a 3D printed dental resin (Crowntec®, SAREMCO Dental AG—Mexico City, Mexico). For physicochemical characterization, six samples underwent scanning electron microscopy/energy-dispersive spectroscopy, X-ray diffraction, and thermogravimetric analysis. To evaluate surface topography, 42 polished specimens were assigned to three groups: untreated (control), etched with 4% hydrofluoric acid (HFA), or sandblasted with 50 µm Al2O3 (AA). Each group was subdivided for SEM observation and surface roughness (Ra) measurement. For SBS testing, 72 additional samples received the same surface treatments and were further subdivided according to the adhesive system: Transbond™ XT Primer (TXT) or Single Bond Universal (SBU). Results: The AA group showed the highest Ra (2.21 ± 0.30 µm), followed by HFA (0.81 ± 0.20 µm) and control (0.07 ± 0.30 µm) (p < 0.001). The highest SBS was observed in the AA + SBU group, followed by AA + TXT. Conclusions: Sandblasting with Al2O3 particles, combined with a universal adhesive, significantly improved bond strength, suggesting a viable protocol for 3D printed definitive composites in aligner attachment applications. Full article
(This article belongs to the Section Dental Materials)
Show Figures

Figure 1

13 pages, 4323 KiB  
Article
The Impact of Additive and Subtractive Manufacturing on the Adhesion and Durability of Titanium–Zirconia Restorative Materials
by Omar Alageel, Najm Alfrisany, Abdullah Alshamrani and Omar Alsadon
J. Funct. Biomater. 2025, 16(7), 257; https://doi.org/10.3390/jfb16070257 - 11 Jul 2025
Viewed by 638
Abstract
This study aimed to investigate the bonding strength and durability of titanium alloys bonded to zirconia-based materials produced using subtractive and additive digital methods. Two titanium alloy groups (N = 20) and two zirconia ceramic groups (N = 60) were fabricated using CAD/CAM [...] Read more.
This study aimed to investigate the bonding strength and durability of titanium alloys bonded to zirconia-based materials produced using subtractive and additive digital methods. Two titanium alloy groups (N = 20) and two zirconia ceramic groups (N = 60) were fabricated using CAD/CAM milling from prefabricated discs (Ti-ML and Zr-ML), and 3D printing via SLM (Ti-3D) and DLP/LCM systems (Zr-3D). The specimens were bonded with dental cement to form four test groups: Zr-ML/Ti-ML, Zr-ML/Ti-3D, Zr-3D/Ti-ML, and Zr-3D/Ti-3D. Half of the specimens in each group underwent thermocycling to assess the effect of aging on bond strength. The density, microhardness, and surface morphology were evaluated, along with the shear bond strength and failure modes of the resin composites. Statistical differences were analyzed using one-way ANOVA and Tukey’s HSD test across all groups. The 3D-printed specimens of both materials exhibited higher microhardness and lower surface roughness than the milled specimens. The shear bond strength (SBS) was the highest in the Ti-ML/Zr-ML combination group before and after thermocycling, which had more cohesive failures, whereas the lowest bond strength was observed in the Ti-3D/Zr-ML group. The adhesion between titanium and zirconia-based materials was the strongest when both were fabricated using subtractive methods, followed by additive and mixed-method combinations. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

12 pages, 1202 KiB  
Article
Comparative Evaluation of Dental Clinical Surface Treatments for Polyetheretherketone with Airborne-Particle Abrasion, Hydrofluoric Acid Etching, and Handheld Nonthermal Plasma Activation on Long-Term Bond Performance
by Szu-Yu Lai, Szu-I Lin, Chia-Wei Chang, Yi-Rou Shen, Yuichi Mine, Zih-Chan Lin, Mei-Ling Fang, Chia-Chih Sung, Chien-Fu Tseng, Tzu-Yu Peng and Chiang-Wen Lee
Polymers 2025, 17(11), 1448; https://doi.org/10.3390/polym17111448 - 23 May 2025
Viewed by 576
Abstract
Polyaryletherketone (PAEK) materials, including polyetheretherketone (PEEK) and polyetherketoneketone (PEKK), possess excellent mechanical properties and biocompatibility; however, their inherently low surface energy limits effective bonding with resin cements. This study investigated the effects of hydrofluoric acid (HF) etching and handheld nonthermal plasma (HNP) treatment [...] Read more.
Polyaryletherketone (PAEK) materials, including polyetheretherketone (PEEK) and polyetherketoneketone (PEKK), possess excellent mechanical properties and biocompatibility; however, their inherently low surface energy limits effective bonding with resin cements. This study investigated the effects of hydrofluoric acid (HF) etching and handheld nonthermal plasma (HNP) treatment on enhancing the adhesive performance of PAEK surfaces. Disk-shaped PEEK (BP) and PEKK (PK) specimens were divided into four groups: APA (airborne-particle abrasion), PLA (nonthermal plasma treatment), LHF (5.0% HF), and HHF (9.5% HF). Surface characterization was performed using a thermal field emission scanning electron microscope (FE-SEM). Surface wettability was evaluated using contact angle goniometry. Cytotoxicity was evaluated using HGF-1 cells exposed to conditioned media and analyzed via PrestoBlue assays. Shear bond strength (SBS) was measured after three aging conditions—NT (no aging), TC (thermocycling), and HA (highly accelerated aging)—using a light-curing resin cement. Failure modes were categorized, and statistical analysis was performed using one-way and two-way ANOVA with Tukey’s HSD test (α = 0.05). Different surface treatments did not affect surface characterization. PLA treatment significantly improved surface wettability, resulting in the lowest contact angles among all groups, followed by HF etching (HHF > LHF), while APA showed the poorest hydrophilicity. Across all treatments, PK exhibited better wettability than BP. Cytotoxicity results confirmed that all surface treatments were nontoxic to HGF-1 cells, indicating favorable biocompatibility. SBS testing demonstrated that PLA-treated specimens achieved the highest and most stable bond strength across all aging conditions. Although HF-treated groups exhibited lower bond strength overall, BP samples treated with HF showed relatively less reduction following aging. Failure mode analysis revealed a shift from mixture and cohesive failures in the NT aging condition to predominantly adhesive failures after TC and HA aging conditions. Notably, the PLA-treated groups retained mixture failure patterns even after aging, suggesting improved interfacial durability. Among the tested methods, PLA treatment was the most effective strategy, enhancing surface wettability, bond strength, and aging resistance without compromising biocompatibility. In summary, the PLA demonstrated the greatest clinical potential for improving the adhesive performance of PAEK when used with light-curing resin cements. Full article
(This article belongs to the Special Issue Polymers and Polymer Composites for Dental Application)
Show Figures

Figure 1

18 pages, 4364 KiB  
Article
Evaluation of Near-Infrared Transparent Sealants for Occlusal Sealing: An In Vitro Study
by Camille Litzler, Lydia Vazquez, Clara Isabel Anton Y Otero, Ivo Krejci, Isaline Rossier and Marwa Abdelaziz
Materials 2025, 18(11), 2421; https://doi.org/10.3390/ma18112421 - 22 May 2025
Viewed by 467
Abstract
Background: This study aimed to analyze and compare the translucency and marginal adaptation of five resin-based materials used as occlusal sealants, both before and after simultaneous fatigue and thermocycling. Two null hypotheses were tested: (1) All tested materials allow the transillumination of sealed [...] Read more.
Background: This study aimed to analyze and compare the translucency and marginal adaptation of five resin-based materials used as occlusal sealants, both before and after simultaneous fatigue and thermocycling. Two null hypotheses were tested: (1) All tested materials allow the transillumination of sealed occlusal carious lesions. (2) There are no differences in marginal adaptation before and after simultaneous fatigue and thermocycling. Methods: Forty extracted human molars with early occlusal caries lesions were randomly divided into five equal groups. Near-infrared transillumination images of cleaned occlusal surfaces were captured before and after applying the following sealants: (I) OptiBond FL (adhesive alone), (II) OptiBond FL (primer and adhesive) (Kerr Corp., Brea, CA, USA), (III) Scotchbond Universal (3M, St. Paul, MN, USA) combined with OptiBond FL adhesive, (IV) Fissurit (VOCO GmbH, Cuxhaven, Germany), (V) Helioseal Clear (Ivoclar Vivadent AG, Schaan, Liechtenstein). A scanning electron microscope was used to assess marginal adaptation before and after simultaneous fatigue and thermocycling. The percentages of continuous margins (CMs) were quantified before and after the fatigue test and statistically compared (Shapiro–Wilk Normality test, two-way ANOVA with Fisher’s post hoc test). Results: Helioseal Clear and Fissurit were fully transparent under near-infrared transillumination. The percentage of closed margins significantly decreased after loading in one group: OptiBond FL primer application before adhesive application significantly reduced marginal adaptation. Conclusion: OptiBond FL (adhesive), Scotchbond Universal with OptiBond FL (adhesive), Fissurit, and Helioseal Clear provided excellent marginal adaptation. However, using OptiBond FL primer on enamel negatively impacted adaptation. Helioseal Clear and Fissurit, as transparent sealants, may allow lesion monitoring using an 850 nm transillumination camera. Full article
Show Figures

Figure 1

18 pages, 7250 KiB  
Article
The Influence of Thermocycling and Ultraviolet Aging on Surface Characteristics and the Repair Bond Strength of CAD/CAM Resin Nanoceramics
by Beyza Unalan Degirmenci, Alperen Degirmenci and Zelal Seyfioglu Polat
J. Funct. Biomater. 2025, 16(5), 156; https://doi.org/10.3390/jfb16050156 - 28 Apr 2025
Cited by 1 | Viewed by 570
Abstract
Background: The durability of computer-aided design/computer-aided manufacturing (CAD/CAM) resin nanoceramics in the oral environment is influenced by aging factors such as thermocycling and ultraviolet (UV) exposure. This study investigates the impact of these aging processes on surface characteristics and repair bond strength. Methods: [...] Read more.
Background: The durability of computer-aided design/computer-aided manufacturing (CAD/CAM) resin nanoceramics in the oral environment is influenced by aging factors such as thermocycling and ultraviolet (UV) exposure. This study investigates the impact of these aging processes on surface characteristics and repair bond strength. Methods: CAD/CAM resin nanoceramic samples were divided into the following five groups: control (non-aged), 1-year and 5-year thermocycling, and 1-year and 5-year UV aging (n = 12). For the thermocycling procedure, the parameters employed were a temperature range of 5–55 °C with dwell times of 20 s per bath and 10,000 and 50,000 cycles; for the ultraviolet aging process, the parameters were established at a wavelength of 340 nm, an intensity of 0.55 W/m², and durations of 300 h and 1500 h. Surface roughness, microhardness, and repair bond strength were analyzed through profilometry, Vickers microhardness testing, and shear bond strength assessment, respectively. SEM, AFM, and XRD analyses were performed for structural evaluation. Results: Both thermocycling and UV aging significantly increased surface roughness (p < 0.001) while reducing microhardness and repair bond strength (p < 0.001). UV aging had a more pronounced effect, particularly after five years, leading to the highest surface roughness (Ra: 61.77 μm; Rz: 271.57 μm) and lowest microhardness properties (63.13). EDAX analysis indicated matrix degradation and an increase in inorganic filler exposure. Conclusions: Aging significantly affects the surface characteristics of CAD/CAM resin nanoceramics, with UV aging exhibiting the most detrimental impact. These findings highlight the necessity of considering long-term material stability in dentistry. Full article
(This article belongs to the Special Issue Biomaterials Applied in Dental Sciences)
Show Figures

Figure 1

21 pages, 5194 KiB  
Article
Influence of Surface Treatment and Protracted Ageing on the Shear Bond Strength of Orthodontic Brackets to Two Digitally Fabricated (Milled and 3D-Printed) Polymethacrylate-Based Provisional Crowns
by Nisreen Nabiel Hassan, Khurshid Mattoo, Atheer Khawaji, Hanan Najmi, Almaha Sadeli, Ahid Amer Alshahrani, Abeer Ali Qahtani, Abdullah Hasan Alshehri, Mai Almarzouki and Mohammed E. Sayed
Polymers 2025, 17(5), 699; https://doi.org/10.3390/polym17050699 - 6 Mar 2025
Viewed by 940
Abstract
This study determined the influence of surface treatment and protracted ageing on the shear bond strength (SBS) of orthodontic brackets bonded to CADCAM (milled) and 3D-printed polymethylmethacrylate (PMMA) provisional crowns (PCs). Eighty disc-shaped specimens [forty milled (CopraTemp WhitePeaks) [group (Gp) M] and forty [...] Read more.
This study determined the influence of surface treatment and protracted ageing on the shear bond strength (SBS) of orthodontic brackets bonded to CADCAM (milled) and 3D-printed polymethylmethacrylate (PMMA) provisional crowns (PCs). Eighty disc-shaped specimens [forty milled (CopraTemp WhitePeaks) [group (Gp) M] and forty printed (Asiga DentaTooth) (Gp P)] were divided into eight subgroups (Gp) based on surface treatment [no treatment (control) (Gp MC and Gp PC), coarse diamond (Gp MCD and Gp PCD), fine diamond (Gp MFD, and GP PFD) and sandblast (Gp MSB and Gp PSB)]. Orthodontic brackets were bonded (Assure Plus, Transbond XT), thermocycled (2200 cycles), and tested for SBS and failure (Adhesive Remnant Index) (ARI). Statistical tests included analysis of variance (ANOVA); Kruskal–Wallis (ARI ranks); and post hoc (Tukey, Dunn, and Bonferroni) for determining group differences at predetermined probability p-values less than 0.05. SBS was significantly increased in Gp MSB (15.51 Mpa) and Gp PSB (14.11 Mpa), while the coarse diamond subgroups yielded the lowest mean SBS values [Gp MCD (11.28 Mpa) and Gp PCD (11.62 Mpa)]. The SBS of subgroups MFD, MSB, PCD, and PSB showed significant differences from those of their respective controls (Gp MC and Gp PC). Low ARI scores were observed in Gp MC (0.40) and Gp MSB (0.80), while higher scores were observed in Gp PCD (2.10). Both milled and printed PCs fulfil the clinical criteria of the minimum SBS for orthodontic brackets for long-term use. However, milled PC has better SBS and low ARI scores, which make it more clinically feasible for orthodontic treatments. Full article
Show Figures

Figure 1

13 pages, 1679 KiB  
Article
Effect of Surface Treatments and Thermal Aging on Bond Strength Between Veneering Resin and CAD/CAM Provisional Materials
by Ali Robaian, Abdullah Mohammed Alshehri, Nasser Raqe Alqhtani, Abdulellah Almudahi, Khalid K. Alanazi, Mohammed A. S. Abuelqomsan, Eman Mohamed Raffat, Ali Elkaffas, Qamar Hashem and Tarek Ahmed Soliman
Polymers 2025, 17(5), 563; https://doi.org/10.3390/polym17050563 - 20 Feb 2025
Cited by 2 | Viewed by 714
Abstract
The oral environment significantly influences the esthetic appearance of CAD/CAM provisional restorative materials. Therefore, a veneering layer is required. Bonding veneering resin composites to these materials presents challenges, particularly under conditions of thermal aging. This study evaluated the impact of various surface treatments [...] Read more.
The oral environment significantly influences the esthetic appearance of CAD/CAM provisional restorative materials. Therefore, a veneering layer is required. Bonding veneering resin composites to these materials presents challenges, particularly under conditions of thermal aging. This study evaluated the impact of various surface treatments and thermal aging on the bond strength between veneering resin and CAD/CAM provisional materials. Fifty disk-shaped specimens of each CAD/CAM material (CAD-Temp, Everest C-Temp, and PEEK), measuring 10 mm in diameter and 3 mm in height, were fabricated. After being ultrasonically cleaned, specimens were embedded in acrylic resin blocks, leaving one surface exposed for surface treatments. Specimens were assigned to five groups at random. Group C: no surface treatments applied; DB: mechanically roughened with a diamond bur; DB + TC: DB group subjected to 5000 cycles of thermocycling; SB: treated with aluminum oxide airborne abrasion; SB + TC: SB group subjected to 5000 cycles of thermocycling. After the surface treatments, the primer and resin veneering composite were applied to the specimens. The shear bond strength (SBS) was calculated using a universal testing machine and the mode of failure was evaluated with an optical stereomicroscope with 40× magnification. Scanning electron microscopy evaluation was conducted to examine the surface topography of the materials’ surfaces after surface treatments. C-Temp in the SB group exhibited the highest SBS values (20.38 ± 1.04 MPa), while CAD-Temp in the C group showed the lowest values (4.60 ± 0.54 MPa). PEEK recorded significantly higher SBS values in DB + TC and SB + TC groups (9.26 ± 1.07 and 12.92 ± 0.97 MPa, respectively) compared to CAD-Temp in DB + TC and SB + TC groups (6.04 ± 0.76 and 8.82 ± 0.86 MPa, respectively). C-Temp exhibited higher SBS without surface treatment (13.11± 0.55 MPa), whereas PEEK showed higher SBS after diamond bur roughening and air particle abrasion (10.87 ± 1.02 MPa, and 14.37 ± 0.98 MPa, respectively). The thermocycling significantly reduced SBS values for C-Temp in the DB + TC and SB + TC groups (11.18 ± 0.92, 15.56 ± 0.87 MPa, respectively) and CAD-Temp in the DB + TC and SB + TC (6.04 ± 0.76 MPa and 8.82 ± 0.86 MPa, respectively). Conversely, the thermocycling had no significant effect on SBS values for PEEK material in the air particle abrasion group (12.92 ± 0.97 MPa). Full article
(This article belongs to the Special Issue Polymers in Restorative Dentistry: 2nd Edition)
Show Figures

Figure 1

12 pages, 1497 KiB  
Article
Evaluation of Shear Bond Strength and Failure Modes of Lithium Disilicate Ceramic Veneering Material to Different High-Performance Polymers
by Sarah M. Alnafaiy, Nawaf Labban, Refal Albaijan, Rawan N. AlKahtani, Khulud A. Al-Aali, Heba Wageh Abozaed, Nada Y. Alturki and Jomana E. Alenezi
Polymers 2025, 17(5), 554; https://doi.org/10.3390/polym17050554 - 20 Feb 2025
Viewed by 1322
Abstract
This study assessed the shear bond strength (SBS) and failure modes of lithium disilicate ceramic veneering material to different high-performance polymers. Thirty-six square specimens measuring 7 × 7 × 2 ± 0.05 mm were prepared from pure polyetheretherketone (PEEK), Bio-high performance PEEK (BioHPP) [...] Read more.
This study assessed the shear bond strength (SBS) and failure modes of lithium disilicate ceramic veneering material to different high-performance polymers. Thirty-six square specimens measuring 7 × 7 × 2 ± 0.05 mm were prepared from pure polyetheretherketone (PEEK), Bio-high performance PEEK (BioHPP) and Trilor discs. Polymer specimens were air-borne abraded utilizing aluminum oxide particles, cleaned, and a bonding agent was applied (visio. link). The veneering LDC material (3 × 2 mm) was milled, hydrofluoric acid etched (9.5%) and primed (Clearfil ceramic). The LDC was bonded to the polymer specimens using dual-cured resin cement (Panavia V5) and light polymerized. The bonded specimens were subjected to 5000 cycles of physiological aging by thermocycling, and the SBS test was performed in a universal testing machine at 0.5 mm/min cross-head speed. The debonded specimens were analyzed to determine the primary bond failure sites (adhesive, mixed or cohesive). Data analysis was performed using one-way ANOVA and a post hoc Tukey test (α ≤ 0.05). The BioHPP material demonstrated the highest SBS values (23.94 ± 1.43 MPa), and the Trilor group recorded the lowest SBS values (17.09 ± 1.07 MPa). The PEEK group showed a mean SBS of 21.21 ± 1.51 MPa. The SBS comparison showed significant variations across all material groups (p < 0.001). Regarding failure modes, adhesive failure was observed in 40% of BioHPP and PEEK specimens and 90% of Trilor specimens. The cohesive failure occurred in 50% of PEEK and 30% of BioHPP specimens, while the Trilor specimens showed no cohesive failure. Mixed failures were reported in 30% of BioHPP and 10% of PEEK and Trilor specimens. The BioHPP material demonstrated high SBS followed by PEEK and Trilor. The SBS between the tested materials was statistically significant. However, the SBS of the tested implant framework materials was above the limit stipulated by the ISO 10477 standard (5 MPa) and the clinically acceptable range of 10–12 MPa. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

14 pages, 8548 KiB  
Article
The Effect of Chemical Surface Modification on the Repair Bond Strength of Resin Composite: An In Vitro Study
by Md Sofiqul Islam, Shadi El Bahra, Smriti Aryal A C, Vivek Padmanabhan, Abdulaziz Al Tawil, Ihab Saleh, Muhammed Mustahsen Rahman and Upoma Guha
Polymers 2025, 17(4), 513; https://doi.org/10.3390/polym17040513 - 16 Feb 2025
Cited by 2 | Viewed by 1108
Abstract
This in vitro study investigates the impact of the chemical modification of resin composite surfaces on repair bond strength of micro-hybrid resin composite material. First, 7 mm circular × 3 mm thick resin composite disks were prepared using teflon molds. Then, 50 specimens [...] Read more.
This in vitro study investigates the impact of the chemical modification of resin composite surfaces on repair bond strength of micro-hybrid resin composite material. First, 7 mm circular × 3 mm thick resin composite disks were prepared using teflon molds. Then, 50 specimens out of 100 were allocated for stimulated aging using a thermo-cycling (10,000 cycles) device. Both the 24 h and 1-year-aged composite discs were embedded in epoxy resin using a 2.5 cm wide × 1.5 cm thick circular mold. The surfaces were treated with Clearfil S3 bond alone or with the additional application of silane or porcelain primer. The other two groups were bonded with CRB bond with or without a porcelain primer. Using a teflon mold, a 2 mm circular and 3 mm high repair composite cylinder was built on the treated surfaces. The specimens were then stressed to de-bond by applying shear force to measure repair bond strength, and they were observed under the microscope to determine the failure pattern. The data were analyzed using SPSS26.0. Univariate analysis showed a significant effect (p = 0.013) of the bonding protocol on the repair bond strength; however, the effect of aging was insignificant (p = 0.170). The S3 bond with additional silane and the CRB bond showed the significantly higher repair bond strength of the 1-year-aged micro-hybrid composite. However, in case of 24 h aged specimens, the repair bond strength was statistically insignificant among the tested groups (p = 0.340). Chemical surface modification with silane has the potential to improve the repair bond strength of micro-hybrid resin composite materials. Full article
(This article belongs to the Special Issue Advanced Biodegradable Polymers for Biomedical Applications)
Show Figures

Figure 1

26 pages, 12541 KiB  
Article
Towards the Standardization of Artificial Aging Protocols for Dental Composites: Evaluation of Proposed Methods
by Agata Szczesio-Wlodarczyk, Karolina Kopacz, Katarzyna Ranoszek-Soliwoda, Jerzy Sokolowski and Kinga Bociong
J. Funct. Biomater. 2025, 16(2), 49; https://doi.org/10.3390/jfb16020049 - 4 Feb 2025
Cited by 3 | Viewed by 1788
Abstract
In restorative dentistry, there are no standardized in vitro accelerated aging methods to evaluate the long-term stability of dental composites. Current research aimed at extending the clinical success of restorations emphasizes the need for post-aging evaluation. This study represents the final stage of [...] Read more.
In restorative dentistry, there are no standardized in vitro accelerated aging methods to evaluate the long-term stability of dental composites. Current research aimed at extending the clinical success of restorations emphasizes the need for post-aging evaluation. This study represents the final stage of assessing three selected aging protocols that utilize a 0.1 M sodium hydroxide solution as the primary agent to accelerate degradation processes. Twelve resin-based composites, categorized into five types, were evaluated for flexural strength (FS), diametral tensile strength (DTS), hardness (HV), and fracture toughness (FT) both before and after aging. The proposed aging methods significantly degraded the mechanical properties of most materials, highlighting the effectiveness of 0.1 M NaOH as a medium for hydrolytic stability testing. Materials with a high filler content (approximately 80 wt.%) were notably prone to degradation, underscoring the importance of optimizing the filler and coupling agent. The findings suggest that incorporating thermocycling into aging protocols may enhance the development and evaluation of innovative dental composites. This work contributes to establishing a foundation for standardized aging protocols, supporting the accurate assessment of composites in vitro. Full article
Show Figures

Figure 1

18 pages, 2465 KiB  
Article
An In-Vitro Evaluation of Strength, Hardness, and Color Stability of Heat-Polymerized and 3D-Printed Denture Base Polymers After Aging
by Abdulrahman Al-Ameri, Othman Y. Alothman, Omar Alsadon and Durgesh Bangalore
Polymers 2025, 17(3), 288; https://doi.org/10.3390/polym17030288 - 23 Jan 2025
Cited by 1 | Viewed by 1664
Abstract
This study evaluated the strength, hardness, and color stability of 3D-printed denture base resins and compared the outcome with conventional heat-cured denture base resins after aging by thermocycling. A total of 72 specimens from conventional and 3D-printed materials were fabricated in different shapes [...] Read more.
This study evaluated the strength, hardness, and color stability of 3D-printed denture base resins and compared the outcome with conventional heat-cured denture base resins after aging by thermocycling. A total of 72 specimens from conventional and 3D-printed materials were fabricated in different shapes and dimensions based on the mechanical and color tests performed. The specimens were divided into five groups: flexural, tensile, and compressive strengths (n = 20), hardness, and color stability (n = 6). In all these groups, half of the specimens were stored in a distilled water bath at 37 °C for 24 h, and the remaining half of the specimens were subjected to aging by thermocycling. The 3D-printed specimens demonstrated the highest means of tensile strength (32.20 ± 3.8 MPa), compressive strength (106.31 ± 4.07 MPa), and Vickers hardness number (24.51 ± 0.36), and the lowest means of flexural strength (54.29 ± 13.17 MPa) and color difference (ΔE = 2.18 ± 1.09). Conventional heat-cured specimens demonstrated the highest means of flexural strength (59.96 ± 8.39 MPa) and color difference (ΔE = 4.74 ± 2.37) and the lowest means of tensile strength (32.17 ± 9.06 MPa), compressive strength (46.05 ± 4.98 MPa), and Vickers hardness number (10.42 ± 1.05). Aging significantly reduced the flexural strength (−27%), tensile strength (−44%), and hardness (−7%) of 3D-printed resins in contrast to the conventional resin’s compressive strength (−15%) and color stability (p < 0.05). The 3D-printed resin had comparable flexural and tensile strength and significantly superior compressive strength, hardness, and color stability compared with conventional resins. Aging significantly and negatively affected the flexural strength, tensile strength, and hardness of 3D-printed resin. Full article
(This article belongs to the Special Issue 3D Printing and Molding Study in Polymeric Materials)
Show Figures

Figure 1

13 pages, 1795 KiB  
Article
The Influence of Posterior Class II Composite Restoration Location and Techniques on Marginal Sealing
by Mishel Haddad, Diva Lugassy, Mohana Barhum, Tamar Brosh and Shlomo Matalon
Dent. J. 2025, 13(1), 39; https://doi.org/10.3390/dj13010039 - 17 Jan 2025
Viewed by 1838
Abstract
Background/Objectives: The success of treatment and prevention for secondary caries hinges significantly on the techniques employed in Class II composite restoration. Additionally, the location of the restored tooth within the oral cavity has emerged as a potential factor determining the quality of [...] Read more.
Background/Objectives: The success of treatment and prevention for secondary caries hinges significantly on the techniques employed in Class II composite restoration. Additionally, the location of the restored tooth within the oral cavity has emerged as a potential factor determining the quality of the restoration. A comprehensive understanding of these interrelated variables is crucial for advancing the efficacy and durability of dental composite restorations. The aim of this study was to assess how various restoration techniques and the specific location of the tooth restoration in the oral cavity affect marginal sealing, verified by the gap created in the tooth–restoration interface. Methods: Sixty extracted human teeth that had been indicated for orthodontic extraction were collected and embedded into a custom-made holder that was located in one of the four quadrants of a laboratory phantom head. Class II resin composite restorations, using flowable and packable composites, were performed on all teeth using two techniques: Pre-cure and Co-cure. The aging of the restored teeth was conducted using cyclic loading and thermocycling. After aging, the teeth were examined under a scanning electron microscope to measure the gap within the tooth–composite interface. Kolmogorov–Smirnov tests were used to assess the data distribution. Unpaired T-tests were employed to compare the mean gaps between the Pre-cure and Co-cure techniques. Additionally, unpaired T-tests were utilized to compare the mean gaps between the mesial and distal parts of the teeth. The Kruskal–Wallis test was used to compare the mean gaps among the four quadrants. The statistical significance was set at p = 0.05. Results: No significant difference in the gaps between the Pre-cure and Co-cure techniques was found (p = 0.212). The tooth’s location did not generally affect the restoration’s gap interface (p = 0.136). Conclusions: Flowable composites aid in restoring the deep margins of Class II composite restoration. Thus, the potential for further microleakage is similar for both the Pre-cure and Co-cure restoration techniques. The marginal seal of Class II composite restorations is effective when using both Pre-cure and Co-cure techniques, and the restoration site within the oral cavity does not significantly influence the tooth–composite interface seal. Full article
Show Figures

Figure 1

15 pages, 2257 KiB  
Article
Airborne-Particle Abrasion vs. Hydrofluoric Acid Etching of Dental Ceramics: Impact on the Tensile Bond Strength
by Valerie Lankes, Andrea Coldea, John Meinen, Falk Schwendicke and Bogna Stawarczyk
Materials 2024, 17(23), 5758; https://doi.org/10.3390/ma17235758 - 25 Nov 2024
Cited by 1 | Viewed by 1187
Abstract
This study evaluated whether airborne-particle abrasion could be an alternative to hydrofluoric acid etching as a pretreatment for the adhesive bonding of silicate ceramic restorations. Feldspar (FEL; n = 100), lithium silicate (LiSi; n = 100), and zirconia (ZrO2; (n = [...] Read more.
This study evaluated whether airborne-particle abrasion could be an alternative to hydrofluoric acid etching as a pretreatment for the adhesive bonding of silicate ceramic restorations. Feldspar (FEL; n = 100), lithium silicate (LiSi; n = 100), and zirconia (ZrO2; (n = 80) substrates were CAD/CAM-fabricated and airborne-particle-abraded with Al2O3 (25 µm or 50 µm of mean particle size) at pressures of 0.05 or 0.1 MPa. The controls included FEL (60 s) and LiSi (20 s) etched with hydrofluoric acid. The surface free energy (SFE) and roughness (Ra) were measured. For the tensile bond strength (TBS), surfaces were conditioned using a primer (Monobond Plus) and luted to a resin composite (Variolink Esthetic). TBS was assessed initially (24 h, 37 °C water storage) and after thermocycling (5/55 °C, 10,000×). Statistical analysis (SPSS, V29) was performed using a one-way ANOVA, post hoc Scheffé, and a two-group t-test (p = 0.05). Abrasion with 50 µm and 0.1 MPa induced the highest Ra values across the materials (62.5 ± 3.88 µm). ZrO2 exhibited a higher TBS (35.4–49.5 MPa) than FEL and LiSi. For aged LiSi, the specimens treated at 0.1 MPa showed a higher TBS (18.7 ± 9.0 MPa) than those treated at 0.05 MPa, regardless of the particle size. The etched and aged FEL showed a higher SFE but a lower TBS compared to abrasion. Al2O3 particle abrasion (25 or 50 µm at 0.1 MPa) may replace etching for silicate-based ceramics, while 50 µm is recommended for ZrO2 at either pressure. Full article
(This article belongs to the Special Issue Advanced Materials for Oral Applications)
Show Figures

Figure 1

8 pages, 448 KiB  
Article
Color Stability of Bulk-Fill Flowable Resin Composites After Artificial Aging
by Franciele Floriani, Carlos A. Jurado, Nikkita Madhu, Mark A. Lackey, Francisco X. Azpiazu-Flores and Guilherme Carpena Lopes
Dent. J. 2024, 12(11), 350; https://doi.org/10.3390/dj12110350 - 31 Oct 2024
Cited by 2 | Viewed by 1519
Abstract
Background: This study aimed to evaluate the color stability of bulk-fill flowable resin composites with 2 difference shades at baseline and after artificial aging. Methods: Disk-shaped specimens (Ø10 × 4 mm) were fabricated from three bulk-fill flowable resin resin composites (Filtek Bulk-Fill Flow, [...] Read more.
Background: This study aimed to evaluate the color stability of bulk-fill flowable resin composites with 2 difference shades at baseline and after artificial aging. Methods: Disk-shaped specimens (Ø10 × 4 mm) were fabricated from three bulk-fill flowable resin resin composites (Filtek Bulk-Fill Flow, Venus Bulk-Fill Flow, and Estelite Bulk-Fill Flow). The specimens in each bulk-fill resin composite group were divided into two subgroups (n = 10 per subgroup) with two different shades, A1 (N = 30) and A3 (N = 30), and were polymerized with light curing (800 mW/cm2/Valo LED Unit, Ultradent) and polished. The color difference between bulk-fill resin composites was evaluated at baseline and after artificial aging using a spectrophotometer (CM-700d, Konica Minolta, Tokyo, Japan) under D65 illumination. Color coordinates were measured with CIEDE2000, and color differences (∆E00) and relative translucency parameter (RTP) values were calculated. Subsequently, the comparison of color changes (∆E00) before and after thermocycling was performed using the t-test for paired samples. Results: The bulk-fill flow resin composites evaluated in the present study were capable of mimicking important optical properties such as light transmission. All the resin composites provided acceptable color stability at baseline and after thermocycling when the color A1 was used. On the other hand, whenever the shade A3 was used, the Venus Bulk-Fill Flow demonstrated the best optical properties. There was no statistically significant difference when comparing baseline and after thermocycling in bulk-fill flowable resin composites (p > 0.05). After thermocycling, A1 bulk-fill flowable resin composites provided acceptable color stability, and all A3 bulk-fill flowable resin composites provided visible color change, except for the Venus Bulk-Fill Flow (∆E00 = 2.35). Conclusions: Estelite Bulk-Fill Flow displayed the best color stability (∆E00 = 2.22) between all the combinations evaluated. Full article
(This article belongs to the Special Issue Dental Materials Design and Innovative Treatment Approach)
Show Figures

Figure 1

13 pages, 1570 KiB  
Article
Comparative Strength Study of Indirect Permanent Restorations: 3D-Printed, Milled, and Conventional Dental Composites
by João Paulo Mendes Tribst, Adelheid Veerman, Gabriel Kalil Rocha Pereira, Cornelis Johannes Kleverlaan and Amanda Maria de Oliveira Dal Piva
Clin. Pract. 2024, 14(5), 1940-1952; https://doi.org/10.3390/clinpract14050154 - 20 Sep 2024
Cited by 1 | Viewed by 2928
Abstract
Background/Objectives: Limited research has been performed to assess the strength of resin-bonded 3D-printed restorations. Based on that, this study investigates the impact of different manufacturing methods on the fracture load of indirect composite restorations (ICRs) following an aging process. Methods: Three [...] Read more.
Background/Objectives: Limited research has been performed to assess the strength of resin-bonded 3D-printed restorations. Based on that, this study investigates the impact of different manufacturing methods on the fracture load of indirect composite restorations (ICRs) following an aging process. Methods: Three manufacturing techniques—conventional (CRC), milled (MRC), and printed (PRC)—were evaluated using 60 specimens, each with a diameter of 10 mm and a thickness of 1.0 mm. Sandblasting with Al2O3 particles was employed to optimize the bonding process, significantly influencing surface roughness parameters (Ra, Rz, RSm). All specimens were bonded to the dentin analog using composite resin cement and subjected to either 10,000 thermocycles (TC) or storage (ST) at 37 °C in distilled water. Fracture load assessments were performed using a universal testing machine. A finite element analysis was conducted to assess stress distribution. Results: Two-way ANOVA results indicated that the manufacturing method significantly affected mean fracture load values (p < 0.001), with PRC showing the highest mean fracture load (4185 ± 914 N), followed by MRC (2495 ± 941 N) and CRC (599 ± 292 N). The aging protocol did not have a significant impact on fracture load. Conclusions: This study revealed that 3D-printed resin composite exhibited comparable strength to milled resin composite when adhesively cemented, suggesting it is a promising option for indirect composite restorations based on its mechanical performance. However, further research is needed to evaluate its bond strength and optimal surface treatment methods to prevent early debonding. Full article
Show Figures

Figure 1

Back to TopTop