An In-Vitro Evaluation of Strength, Hardness, and Color Stability of Heat-Polymerized and 3D-Printed Denture Base Polymers After Aging
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Specimen Testing
2.2.1. Flexural Strength
2.2.2. Tensile Strength
2.2.3. Compressive Strength
2.2.4. Hardness
2.2.5. Color Stability
2.2.6. Fourier-Transform Infrared Spectroscopy (FTIR) Analysis
3. Results
3.1. Flexural Strength
Elastic Modulus
3.2. Tensile Strength
3.3. Compressive Strength
3.4. Hardness
3.5. Color Difference
3.6. FTIR Analysis
4. Discussion
5. Conclusions
- a.
- The 3D-printed resin had comparable flexural and tensile strength and significantly superior compressive, hardness, and color stability compared with the conventional resin.
- b.
- Aging significantly reduced the flexural strength (−27%), tensile strength (−44%), and hardness (−7%) of the 3D-printed resin in contrast to the conventional resin’s compressive strength (−15%) and color stability
- c.
- The color difference of the 3D-printed resin was below the clinically acceptable value of ΔEab < 3.3 at both measurement times; the conventional heat-cured resin demonstrated clinically acceptable values of ΔEab > 3.3.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, Y.; Zhang, J.; Liang, J.; Yuan, D.; Zhao, W. Research progress of poly(methyl methacrylate) microspheres: Preparation, functionalization and application. Eur. Polym. J. 2022, 175, 111379. [Google Scholar] [CrossRef]
- Pawar, E.G. A Review Article on Acrylic PMMA. IOSR J. Mech. Civ. Eng. 2016, 13, 1–4. [Google Scholar] [CrossRef]
- Hacker, M.C.; Mikos, A.G. Chapter 33—Synthetic Polymers. In Principles of Regenerative Medicine, 2nd ed.; Atala, A., Lanza, R., Thomson, J.A., Nerem, R., Eds.; Academic Press: San Diego, CA, USA, 2011; pp. 587–622. [Google Scholar]
- Ali, U.; Karim, K.J.B.A.; Buang, N.A. A Review of the Properties and Applications of Poly (Methyl Methacrylate) (PMMA). Polym. Rev. 2015, 55, 678–705. [Google Scholar] [CrossRef]
- Gruber, S.; Kamnoedboon, P.; Özcan, M.; Srinivasan, M. CAD/CAM Complete Denture Resins: An In Vitro Evaluation of Color Stability. J. Prosthodont. 2020, 31, 13246. [Google Scholar] [CrossRef] [PubMed]
- Alfouzan, A.F.; Alotiabi, H.M.; Labban, N.; Al-Otaibi, H.N.; Al Taweel, S.M.; AlShehri, H.A. Color stability of 3D-printed denture resins: Effect of aging, mechanical brushing and immersion in staining medium. J. Adv. Prosthodont. 2021, 13, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Dayan, C.; Guven, M.C.; Gencel, B.; Bural, C. A Comparison of the Color Stability of Conventional and CAD/CAM Polymethyl Methacrylate Denture Base Materials. Acta Stomatol. Croat. 2019, 53, 158–167. [Google Scholar] [CrossRef]
- Anadioti, E.; Musharbash, L.; Blatz, M.B.; Papavasiliou, G.; Kamposiora, P. 3D printed complete removable dental prostheses: A narrative review. BMC Oral Health 2020, 20, 343. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Hong, S.-J.; Paek, J.; Pae, A.; Kwon, K.-R.; Noh, K. Comparing accuracy of denture bases fabricated by injection molding, CAD/CAM milling, and rapid prototyping method. J. Adv. Prosthodont. 2019, 11, 55–64. [Google Scholar] [CrossRef]
- Majeed, H.F.; Hamad, T.I.; Bairam, L.R. Enhancing 3D-printed denture base resins: A review of material innovations. Sci. Prog. 2024, 107, 368504241263484. [Google Scholar] [CrossRef] [PubMed]
- Fatalla, A.A.; Tukmachi, M.S.; Jani, G.H. Assessment of some mechanical properties of PMMA/silica/zirconia nanocomposite as a denture base material. IOP Conf. Ser. Mater. Sci. Eng. 2020, 987, 012031. [Google Scholar]
- Al-Dwairi, Z.N.; Tahboub, K.Y.; Baba, N.Z.; Goodacre, C.J.; Özcan, M. A Comparison of the Surface Properties of CAD/CAM and Conventional Polymethylmethacrylate (PMMA). J. Prosthodont. 2019, 28, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Alfouzan, A.F.; AlNouwaisar, A.N.; AlAzzam, N.F.; Al-Otaibi, H.N.; Labban, N.; Alswaidan, M.H.; Al Taweel, S.M.; Alshehri, H.A. Power brushing and chemical denture cleansers induced color changes of pre-polymerized CAD/CAM denture acrylic resins. Mater. Res. Express 2021, 8, 085402. [Google Scholar] [CrossRef]
- Dimitrova, M.; Vlahova, A.; Kalachev, Y.; Kazakova, R.; Capodiferro, S. Future Prospects and Challenges in Additive Manufacturing for Complete Dentures: A Narrative Review. Oral 2024, 4, 23–35. [Google Scholar] [CrossRef]
- Schweiger, J.; Stumbaum, J.; Edelhoff, D.; Güth, J.F. Systematics and concepts for the digital production of complete dentures: Risks and opportunities. Int. J. Comput. Dent. 2018, 21, 41–56. [Google Scholar] [PubMed]
- Steinmassl, P.-A.; Wiedemair, V.; Huck, C.; Klaunzer, F.; Steinmassl, O.; Grunert, I.; Dumfahrt, H. Do CAD/CAM dentures really release less monomer than conventional dentures? Clin. Oral Investig. 2017, 21, 1697–1705. [Google Scholar] [CrossRef] [PubMed]
- Charoenphol, K.; Peampring, C. Fit Accuracy of Complete Denture Base Fabricated by CAD/CAM Milling and 3D-Printing Methods. Eur. J. Dent. 2023, 17, 889–894. [Google Scholar] [CrossRef]
- Anadioti, E.; Kane, B.; Soulas, E. Current and Emerging Applications of 3D Printing in Restorative Dentistry. Curr. Oral Health Rep. 2018, 5, 133–139. [Google Scholar] [CrossRef]
- Stansbury, J.W.; Idacavage, M.J. 3D printing with polymers: Challenges among expanding options and opportunities. Dent. Mater. 2016, 32, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Alhallak, K.; Hagi-Pavli, E.; Nankali, A. A review on clinical use of CAD/CAM and 3D printed dentures. Br. Dent. J. 2023. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.; Haleem, A. Current status and applications of additive manufacturing in dentistry: A literature-based review. J. Oral. Biol. Craniofacial Res. 2019, 9, 179–185. [Google Scholar] [CrossRef]
- Cristache, C.M.; Totu, E.E.; Iorgulescu, G.; Pantazi, A.; Dorobantu, D.; Nechifor, A.C.; Isildak, I.; Burlibasa, M.; Nechifor, G.; Enachescu, M. Eighteen Months Follow-Up with Patient-Centered Outcomes Assessment of Complete Dentures Manufactured Using a Hybrid Nanocomposite and Additive CAD/CAM Protocol. J. Clin. Med. 2020, 9, 324. [Google Scholar] [CrossRef] [PubMed]
- Tasaka, A.; Matsunaga, S.; Odaka, K.; Ishizaki, K.; Ueda, T.; Abe, S.; Yoshinari, M.; Yamashita, S.; Sakurai, K. Accuracy and retention of denture base fabricated by heat curing and additive manufacturing. J. Prosthodont. Res. 2019, 63, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Raszewski, Z.; Chojnacka, K.; Mikulewicz, M. Effects of Surface Preparation Methods on the Color Stability of 3D-Printed Dental Restorations. J. Funct. Biomater. 2023, 14, 257. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, R.U.; Nalinakshamma, M.; Shetty, S.; Rao, S. Color stability of heat-cured polymethyl methacrylate denture base resin coated with titanium dioxide upon storage in different beverages. J. Interdiscip. Dent. 2018, 8, 87–91. [Google Scholar] [CrossRef]
- Bacali, C.; Badea, M.; Moldovan, M.; Sarosi, C.; Nastase, V.; Baldea, I.; Chiorean, R.S.; Constantiniuc, M. The Influence of Graphene in Improvement of Physico-Mechanical Properties in PMMA Denture Base Resins. Materials 2019, 12, 2335. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, M.; Nanditha Kumar, M.; RaghavendraSwamy, K.N.; Thippeswamy, H.M. Flexural strength and impact strength of heat-cured acrylic and 3D printed denture base resins—A comparative in vitro study. J. Oral Biol. Craniofacial Res. 2022, 12, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Hayran, Y.; Keskin, Y. Flexural strength of polymethyl methacrylate copolymers as a denture base resin. Dent. Mater. J. 2019, 38, 678–686. [Google Scholar] [CrossRef] [PubMed]
- Gad, M.M.; Fouda, S.M.; Abualsaud, R.; Alshahrani, F.A.; Al-Thobity, A.M.; Khan, S.Q.; Akhtar, S.; Ateeq, I.S.; Helal, M.A.; Al-Harbi, F.A. Strength and Surface Properties of a 3D-Printed Denture Base Polymer. J. Prosthodont. 2022, 31, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Dimitrova, M.; Corsalini, M.; Kazakova, R.; Vlahova, A.; Chuchulska, B.; Barile, G.; Capodiferro, S.; Kazakov, S. Comparison between Conventional PMMA and 3D Printed Resins for Denture Bases: A Narrative Review. J. Compos. Sci. 2022, 6, 87. [Google Scholar] [CrossRef]
- Al-Dwairi, Z.; Al Haj Ebrahim, A.; Baba, N. A Comparison of the Surface and Mechanical Properties of 3D Printable Denture-Base Resin Material and Conventional Polymethylmethacrylate (PMMA). J. Prosthodont. 2022, 32, 40–48. [Google Scholar] [CrossRef]
- Valenti, C.; Isabella Federici, M.; Masciotti, F.; Marinucci, L.; Xhimitiku, I.; Cianetti, S.; Pagano, S. Mechanical properties of 3D printed prosthetic materials compared with milled and conventional processing: A systematic review and meta-analysis of in vitro studies. J. Prosthet. Dent. 2024, 132, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-J.; Kang, Y.-J.; Park, Y.; Kim, H.; Kim, J.-H. A comparison of the mechanical properties of 3D-printed, milled, and conventional denture base resin materials. Dent. Mater. J. 2024, 43, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Fiore, A.D.; Meneghello, R.; Brun, P.; Rosso, S.; Gattazzo, A.; Stellini, E.; Yilmaz, B. Comparison of the flexural and surface properties of milled, 3D-printed, and heat polymerized PMMA resins for denture bases: An in vitro study. J. Prosthodont. Res. 2022, 66, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Sonam, D.; Dayalan, M.; Fatima, S.; Sasirekha, K. Comparative evaluation of impact and flexural strength of 3D printed, CAD/CAM milled and heat activated polymethyl methacrylate resins—An in vitro study. Int. J. Sci. Res. 2021, 10, 194–202. [Google Scholar]
- Arora, O.; Ahmed, N.; Nallaswamy, D.; Ganapathy, D.; Srinivasan, M. Denture base materials: An in vitro evaluation of the mechanical and color properties. J. Dent. 2024, 145, 104993. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, B.C.; Chen, J.H.; Kontogiorgos, E.D.; Murchison, D.F.; Nagy, W.W. Flexural strength of denture base acrylic resins processed by conventional and CAD-CAM methods. J. Prosthet. Dent. 2020, 123, 641–646. [Google Scholar] [CrossRef]
- Alfouzan, A.F.; Alotiabi, H.M.; Labban, N.; Al-Otaibi, H.N.; Al Taweel, S.M.; AlShehri, H.A. Effect of aging and mechanical brushing on surface roughness of 3D printed denture resins: A profilometer and scanning electron microscopy analysis. Technol. Health Care Off. J. Eur. Soc. Eng. Med. 2021, 30, 161–173. [Google Scholar] [CrossRef] [PubMed]
- ISO 178:2019; I. Plastics—Determination of Flexural Properties. International Organization for Standardization Standard: Geneva, Switzerland, 2019.
- ISO 527-2:2012; I. Plastics—Determination of Tensile Properties. International Organization for Standardization Standard: Geneva, Switzerland, 2012.
- ISO 5833:2002; I. Implants for Surgery—Acrylic Resin Cements. International Organization for Standardization Standard: Geneva, Switzerland, 2002.
- ISO 6507-1:2023; I. Metallic Materials—Vickers Hardness Test. Part 1: Test Method. International Organization for Standardization Standard: Geneva, Switzerland, 2023.
- ISO 28642:2016; I.T. Dentistry—Guidance on Colour Measurement. International Organization for Standardization Standard: Geneva, Switzerland, 2016.
- Colombo, M.; Poggio, C.; Lasagna, A.; Chiesa, M.; Scribante, A. Vickers Micro-Hardness of New Restorative CAD/CAM Dental Materials: Evaluation and Comparison after Exposure to Acidic Drink. Materials 2019, 12, 1246. [Google Scholar] [CrossRef] [PubMed]
- Ilie, N.; Hilton, T.J.; Heintze, S.D.; Hickel, R.; Watts, D.C.; Silikas, N.; Stansbury, J.W.; Cadenaro, M.; Ferracane, J.L. Academy of Dental Materials guidance-Resin composites: Part I-Mechanical properties. Dent. Mater. 2017, 33, 880–894. [Google Scholar] [CrossRef]
- Kotanidis, A.; Kontonasaki, E.; Koidis, P. Color alterations of a PMMA resin for fixed interim prostheses reinforced with silica nanoparticles. J. Adv. Prosthodont. 2019, 11, 193–201. [Google Scholar] [CrossRef]
- Kavda, S.; Golfomitsou, S.; Richardson, E. Effects of selected solvents on PMMA after prolonged exposure: Unilateral NMR and ATR-FTIR investigations. Herit. Sci. 2023, 11, 63. [Google Scholar] [CrossRef]
- Choksi, R.H.; Mody, P.V. Flexural properties and impact strength of denture base resins reinforced with micronized glass flakes. J. Indian. Prosthodont. Soc. 2016, 16, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Ataei, K.; Ghaffari, T.; Moslehifard, E.; Dizaj, S.M. Physico-chemical and Mechanical Assessments of a New 3D Printed PMMA-Based Acrylic Denture Base Material. Open Dent. J. 2024, 18, e18742106278787. [Google Scholar] [CrossRef]
- Temizci, T.; Bozoğulları, H.N. Effect of thermal cycling on the flexural strength of 3-D printed, CAD/CAM milled and heat-polymerized denture base materials. BMC Oral Health 2024, 24, 357. [Google Scholar] [CrossRef] [PubMed]
- Sai Teja, R.; Subhabrata, M.; Dhanraj, G. Effect of Thermocycling Aging on Denture Base Resin—A Comparative Analysis. J. Coast. Life Med. 2022, 10, 312–323. [Google Scholar]
- Alaseef, N.; Albasarah, S.; Al Abdulghani, H.; Al-Harbi, F.A.; Gad, M.M.; Akhtar, S.; Khan, S.Q.; Ateeq, I.S.; al-Qarni, F.D. CAD-CAM Fabricated Denture Base Resins: In Vitro Investigation of the Minimum Acceptable Denture Base Thickness. J. Prosthodont. 2022, 31, 799–805. [Google Scholar] [CrossRef]
- Al-Qarni, F.; Gad, M. Printing Accuracy and Flexural Properties of Different 3D-Printed Denture Base Resins. Materials 2022, 15, 2410. [Google Scholar] [CrossRef] [PubMed]
- Zeidan, A.A.E.; Abd Elrahim, R.A.; Abd El Hakim, A.F.; Harby, N.M.; Helal, M.A. Evaluation of Surface Properties and Elastic Modulus of CAD-CAM Milled, 3D Printed, and Compression Moulded Denture Base Resins: An In Vitro Study. J. Int. Soc. Prev. Community Dent. 2022, 12, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Durkan, R.; Oyar, P. Comparison of Mechanical and Dynamic Mechanical Behaviors of Different Dental Resins Polymerized by Different Polymerization Techniques. Niger. J. Clin. Pract. 2018, 21, 1144–1149. [Google Scholar] [PubMed]
- Kwon, J.S.; Kim, J.Y.; Mangal, U.; Seo, J.Y.; Lee, M.J.; Jin, J.; Yu, J.H.; Choi, S.H. Durable Oral Biofilm Resistance of 3D-Printed Dental Base Polymers Containing Zwitterionic Materials. Int. J. Mol. Sci. 2021, 22, 417. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Chen, C.; Xu, X.; Wang, J.; Hou, X.; Li, K.; Lu, X.; Shi, H.; Lee, E.-S.; Jiang, H.B. A Review of 3D Printing in Dentistry: Technologies, Affecting Factors, and Applications. Scanning 2021, 2021, 9950131. [Google Scholar] [CrossRef] [PubMed]
- Altarazi, A.; Haider, J.; Alhotan, A.; Silikas, N.; Devlin, H. Assessing the physical and mechanical properties of 3D printed acrylic material for denture base application. Dent. Mater. 2022, 38, 1841–1854. [Google Scholar] [CrossRef] [PubMed]
- Hamdy, T.M. Evaluation of compressive strength, surface microhardness, solubility and antimicrobial effect of glass ionomer dental cement reinforced with silver doped carbon nanotube fillers. BMC Oral Health 2023, 23, 777. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, H.; Ibrahim, A.-F.; Moaaed, M. Enhancement of the Tensile and the Compression Properties for Heat- Cured Acrylic Resin Denture Base Materials. Baghdad Sci. J. 2018, 15, 0449. [Google Scholar] [CrossRef]
- Alharbi, N.; Osman, R.; Wismeijer, D. Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations. J. Prosthet. Dent. 2016, 115, 760–767. [Google Scholar] [CrossRef] [PubMed]
- Lourinho, C.; Salgado, H.; Correia, A.; Fonseca, P. Mechanical Properties of Polymethyl Methacrylate as Denture Base Material: Heat-Polymerized vs. 3D-Printed—Systematic Review and Meta-Analysis of In Vitro Studies. Biomedicines 2022, 10, 2565. [Google Scholar] [CrossRef]
- Alshali, S.; Basunbul, G.; Basunbul, A.; Giordano Ii, R. Comparison of the flexural strength of printed and milled denture base materials. BMC Oral Health 2024, 24, 929. [Google Scholar] [CrossRef]
- Digholkar, S.; Madhav, V.N.; Palaskar, J. Evaluation of the flexural strength and microhardness of provisional crown and bridge materials fabricated by different methods. J. Indian Prosthodont. Soc. 2016, 16, 328–334. [Google Scholar] [CrossRef]
- Prpić, V.; Schauperl, Z.; Ćatić, A.; Dulčić, N.; Čimić, S. Comparison of Mechanical Properties of 3D-Printed, CAD/CAM, and Conventional Denture Base Materials. J. Prosthodont. 2020, 29, 524–528. [Google Scholar] [CrossRef] [PubMed]
- El Naggar, S.M.; Helal, E.; Khalil, M.F.; Esmat, A.M.; Elboraey, A.N. Color stability of heat polymerized complete dentures and 3D printed CAD/CAM dentures: A cross-over clinical study. J. Arab Soc. Med. Res. 2022, 17, 139–144. [Google Scholar] [CrossRef]
- Khayat, A. The Effect of Denture Cleansers on the Mechanical and Optical Properties of 3D Printed and Heat-Polymerized Dentures; Boston University: Boston, MA, USA, 2021. [Google Scholar]
- Raffaini, J.C.; Soares, E.J.; Oliveira, R.F.d.L.; Vivanco, R.G.; Amorim, A.A.; Pereira, A.L.C.; Pires-de-Souza, F.C.P. Effect of artificial aging on mechanical and physical properties of CAD-CAM PMMA resins for occlusal splints. J. Adv. Prosthodont. 2023, 15, 227–237. [Google Scholar] [CrossRef]
Acrylic Resin/Fabrication Methods | Composition | Manufacturer |
---|---|---|
Unidesa Idobase/ Conventional Flasking | Powder: Polymethyl methacrylate based copolymer >99%, Catalysts and pigments <1% Monomer: Methyl methacrylate >90%, Dimethacrylate <10% | Unidesa-Odi, Madrid, Spain |
Formlabs Original Pink (OP)/3D Printing | Methacrylate monomer (40–60%), Urethane dimethacrylate (30–50%), Propylidynetrimethyl trimethacrylate (5–10%), Diphenyl (2,4,6-trimethylbenzoyl) phosphine Oxide (<3%) | Formlabs Inc., Somerville, MA, USA |
Tests/Analysis | Method/ISO Specifications | Specimen Shape and Quantity |
---|---|---|
Flexural strength and elastic modulus | Three-point bending in a universal testing machine. ISO 178:2019 [39] | Rectangular specimens
|
Tensile strength | Tensile forces in opposite directions in a universal testing machine. ISO 527-2:2012 [40] | Dumbbell-shaped specimens
|
Compressive strength | Compression force applied towards the specimen surface in a universal testing machine. ISO 5883:2002 [41] | Cylindrical specimens
|
Hardness | Vickers hardness number in a microhardness tester ISO 6507-1:2023 [42] | Round specimens
|
Color stability | Color measurements using a spectrophotometer and CIELab 76-color formula. ISO 28642:2016 [43] | Round specimens
|
PMMA material composition | FT-IR spectrophotometer | Round pellets
|
For all the above tests, 50% of the specimens were subjected to baseline measurements and the other 50% of the specimens were subjected to thermocycling. |
Baseline | After Thermocycling | |||
---|---|---|---|---|
CIE Lab | Conventional | 3D-Printed | Conventional | 3D-Printed |
L* | 46.30 ± 1.57 | 36.65 ± 0.74 | 50.16 ± 2.49 | 39.96 ± 4.79 |
A* | 10.1 ± 0.45 | 4.4 ± 0.16 | 8.95 ± 0.57 | 4.73 ± 1.3 |
B* | 1 ± 0.17 | −8.38 ± 0.14 | 0.83 ± 0.14 | −4.21 ± 1.78 |
Wavenumber (cm−1) | Functional Group | |
---|---|---|
Conventional | 3D-Printed | |
2958 | 2972 | Methyl (CH3) |
1724 | 1707 | Methacrylate (C=O) |
2878 | 2857 | Methylene (CH2) |
1271 | 1244 | Acrylate (C=O-O) |
1153 | 1105 | C-O |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Ameri, A.; Alothman, O.Y.; Alsadon, O.; Bangalore, D. An In-Vitro Evaluation of Strength, Hardness, and Color Stability of Heat-Polymerized and 3D-Printed Denture Base Polymers After Aging. Polymers 2025, 17, 288. https://doi.org/10.3390/polym17030288
Al-Ameri A, Alothman OY, Alsadon O, Bangalore D. An In-Vitro Evaluation of Strength, Hardness, and Color Stability of Heat-Polymerized and 3D-Printed Denture Base Polymers After Aging. Polymers. 2025; 17(3):288. https://doi.org/10.3390/polym17030288
Chicago/Turabian StyleAl-Ameri, Abdulrahman, Othman Y. Alothman, Omar Alsadon, and Durgesh Bangalore. 2025. "An In-Vitro Evaluation of Strength, Hardness, and Color Stability of Heat-Polymerized and 3D-Printed Denture Base Polymers After Aging" Polymers 17, no. 3: 288. https://doi.org/10.3390/polym17030288
APA StyleAl-Ameri, A., Alothman, O. Y., Alsadon, O., & Bangalore, D. (2025). An In-Vitro Evaluation of Strength, Hardness, and Color Stability of Heat-Polymerized and 3D-Printed Denture Base Polymers After Aging. Polymers, 17(3), 288. https://doi.org/10.3390/polym17030288