Influence of Surface Treatment and Protracted Ageing on the Shear Bond Strength of Orthodontic Brackets to Two Digitally Fabricated (Milled and 3D-Printed) Polymethacrylate-Based Provisional Crowns
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Al Jabbari, Y.S.; Al Taweel, S.M.; Al Rifaiy, M.; Alqahtani, M.Q.; Koutsoukis, T.; Zinelis, S. Effects of surface treatment and artificial aging on the shear bond strength of orthodontic brackets bonded to four different provisional restorations. Angle Orthod. 2014, 84, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Goymen, M.; Topcuoglu, T.; Topcuoglu, S.; Akin, H. Effect of different temporary crown materials and surface roughening methods on the shear bond strengths of orthodontic brackets. Photomed. Laser Surg. 2015, 33, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Rathi, N.; Jain, K.; Mattoo, K.A. Placing an implant fixture during ongoing orthodontic treatment. SSRG Int. J. Med Sci. 2019, 6, 19–21. [Google Scholar] [CrossRef]
- Jain, S.; Mattoo, K.; Khalid, I.; Baig, F.A.; Kota, M.Z.; Ishfaq, M.; Ibrahim, M.; Hassan, S. A Study of 42 Partially Edentulous Patients with Single-Crown Restorations and Implants to Compare Bone Loss Between Crestal and Subcrestal Endosseous Implant Placement. Med. Sci. Monit. 2023, 29, e939225. [Google Scholar] [CrossRef]
- Blakey, R.; Mah, J. Effects of surface conditioning on the shear bond strength of orthodontic brackets bonded to temporary polycarbonate crowns. Am. J. Orthod. Dentofac. Orthop. 2010, 138, 72–78. [Google Scholar] [CrossRef]
- Rambhia, S.; Heshmati, R.; Dhuru, V.; Iacopino, A. Shear bond strength of orthodontic brackets bonded to provisional crown materials utilizing two different adhesives. Angle Orthod. 2009, 79, 784–789. [Google Scholar] [CrossRef]
- Najafi, H.Z.; Moradi, M.; Torkan, S. Effect of different surface treatment methods on the shear bond strength of orthodontic brackets to temporary crowns. Int. Orthod. 2019, 17, 89–95. [Google Scholar] [CrossRef]
- Oskoee, P.A.; Kachoei, M.; Rikhtegaran, S.; Fathalizadeh, F.; Navimipour, E.J. Effect of surface treatment with sandblasting and Er,Cr:YSGG laser on bonding of stainless steel orthodontic brackets to silver amalgam. Med. Oral Patol. Oral Cir. Bucal 2012, 17, e292–e296. [Google Scholar] [CrossRef]
- Reynolds, I.R. A review of direct orthodontic bonding. Br. J. Orthod. 1975, 2, 171–178. [Google Scholar] [CrossRef]
- Finnema, K.J.; Ozcan, M.; Post, W.J.; Ren, Y.; Dijkstra, P.U. In-vitro orthodontic bond strength testing: A systematic review and meta-analysis. Am. J. Orthod. Dentofac. Orthop. 2010, 137, 615–622.e3. [Google Scholar] [CrossRef]
- Eliades, T.; Brantley, W.A. The inappropriateness of conventional orthodontic bond strength assessment protocols. Eur. J. Orthod. 2000, 22, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Hajrassie, M.K.; Khier, S.E. In-vivo and in-vitro comparison of bond strengths of orthodontic brackets bonded to enamel and debonded at various times. Am. J. Orthod. Dentofac. Orthop. 2007, 131, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Minick, G.T.; Oesterle, L.J.; Newman, S.M.; Shellhart, W.C. Bracket bond strengths of new adhesive systems. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 771–776. [Google Scholar] [CrossRef]
- Yamamoto, A.; Yoshida, T.; Tsubota, K.; Takamizawa, T.; Kurokawa, H.; Miyazaki, M. Orthodontic bracket bonding: Enamel bond strength vs time. Am. J. Orthod. Dentofac. Orthop. 2006, 130, 435.e1–435.e6. [Google Scholar] [CrossRef]
- Elnafar, A.A.S.; Alam, M.K.; Hasan, R. The impact of surface preparation on shear bond strength of metallic orthodontic brackets bonded with a resin-modified glass ionomer cement. J. Orthod. 2014, 41, 201–207. [Google Scholar] [CrossRef]
- Sayed, M.E.; Lunkad, H.; Mattoo, K.; Jokhadar, H.F.; AlResayes, S.S.; Alqahtani, N.M.; Alshehri, A.H.; Alamri, M.; Altowairqi, S.; Muaddi, M.; et al. Evaluation of the effects of digital manufacturing, preparation taper, cement type, and aging on the color stability of anterior provisional crowns using colorimetry. Med. Sci. Monit. Basic. Res. 2023, 29, e941919-1–e941919-14. [Google Scholar] [CrossRef]
- Chay, S.H.; Wong, S.L.; Mohamed, N.; Chia, A.; Yap, A.U. Effects of surface treatment and aging on the bond strength of orthodontic brackets to provisional materials. Am. J. Orthod. Dentofac. Orthop. 2007, 132, 577.e7–577.e11. [Google Scholar] [CrossRef]
- Ayman, A.D. The residual monomer content and mechanical properties of CAD\CAM resins used in the fabrication of complete dentures as compared to heat cured resins. Electron. Physician 2017, 9, 4766. [Google Scholar] [CrossRef]
- Mittal, N.; Khosla, A.; Jain, S.; Mattoo, K.; Singla, I.; Maini, A.P.; Manzoor, S. Effect of storage media on the flexural strength of heat and self cure denture base acrylic resins–an invitro study. Ann. Rom. Soc. Cell Biol. 2021, 25, 11743–11750. Available online: http://annalsofrscb.ro/index.php/journal/article/view/4020 (accessed on 4 January 2025).
- Takahashi, Y.; Chai, J.; Takahashi, T.; Habu, T. Bond strength of denture teeth to denture base resins. Int. J. Prosthodont. 2000, 13, 59–65. [Google Scholar] [PubMed]
- De Almeida, J.X.; Deprá, M.B.; Marquezan, M.; Retamoso, L.B.; Tanaka, O. Effects of surface treatment of provisional crowns on the shear bond strength of brackets. Dent. Press J. Orthod. 2013, 18, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Shahin, S.Y.; Abu Showmi, T.H.; Alzaghran, S.H.; Albaqawi, H.; Alrashoudi, L.; Gad, M.M. Bond strength of orthodontic brackets to temporary crowns: In vitro effects of surface treatment. Int. J. Dent. 2021, 2021, 9999933. [Google Scholar] [CrossRef] [PubMed]
- Bilgic, F.; Alkis, H.; Gungor, A.Y.; Tuncdemir, A.R.; Malkoc, M.A. Shear Bond Strength of Ceramic Brackets Bonded to Three Different Porcelain Surfaces. Eur. J. Prosthodont. 2013, 1, 17–20. [Google Scholar] [CrossRef]
- Akova, T.; Yoldas, O.; Toroglu, M.S.; Uysal, H. Porcelain surface treatment by laser for bracket-porcelain bonding. Am. J. Orthod. Dentofac. Orthop. 2005, 128, 630–637. [Google Scholar] [CrossRef]
- Ellakany, P.; Fouda, S.M.; Mahrous, A.A.; AlGhamdi, M.A.; Aly, N.M. Influence of CAD/CAM milling and 3d-printing fabrication methods on the mechanical properties of 3-unit interim fixed dental prosthesis after thermo-mechanical aging process. Polymers 2022, 14, 4103. [Google Scholar] [CrossRef]
- Jeong, Y.G.; Lee, W.S.; Lee, K.B. Accuracy evaluation of dental models manufactured by CAD/CAM milling method and 3D printing method. J. Adv. Prosthodont. 2018, 10, 245. [Google Scholar] [CrossRef]
- Rayyan, M.M.; Aboushelib, M.; Sayed, N.M.; Ibrahim, A.; Jimbo, R. Comparison of interim restorations fabricated by CAD/CAM with those fabricated manually. J. Prosthet. Dent. 2015, 114, 414–419. [Google Scholar] [CrossRef]
- Coelho, C.; Calamote, C.; Pinto, A.C.; Esteves, J.L.; Ramos, A.; Escuin, T.; Souza, J.C. Comparison of CAD-CAM and traditional chairside processing of 4-unit interim prostheses with and without cantilevers: Mechanics, fracture behavior, and finite element analysis. J. Prosthet. Dent. 2021, 125, 543.e1–543.e10. [Google Scholar] [CrossRef]
- Göncü Başaran, E.; Ayna, E.; Vallittu, P.K.; Lassila, L.V. Load-bearing capacity of handmade and computer-aided design-computer-aided manufacturing-fabricated three-unit fixed dental prostheses of particulate filler composite. Acta Odontol. Scand. 2011, 69, 144–150. [Google Scholar] [CrossRef]
- Shin, J.-W.; Kim, J.-E.; Choi, Y.-J.; Shin, S.-H.; Nam, N.-E.; Shim, J.-S.; Lee, K.-W. Evaluation of the color stability of 3D-printed crown and bridge materials against various sources of discoloration: An in vitro study. Materials 2020, 13, 5359. [Google Scholar] [CrossRef]
- Rekow, E.D. Digital dentistry: The new state of the art—Is it disruptive or destructive? Dent. Mater. 2020, 36, 9–24. [Google Scholar] [CrossRef] [PubMed]
- Yau, H.T.; Yang, T.J.; Lin, Y.K. Comparison of 3-D Printing and 5-axis Milling for the Production of Dental e-models from Intra-oral Scanning. Comput Aided Des. Appl. 2016, 13, 32–38. [Google Scholar] [CrossRef]
- Lee, W.S.; Lee, D.H.; Lee, K.B. Evaluation of internal fit of interim crown fabricated with CAD/CAM milling and 3D printing system. J. Adv. Prosthodont. 2017, 9, 265. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.C.; Chung, K.H.; Ramos, V., Jr. Assessment of the adaptation of interim crowns using different measurement techniques. J. Prosthodont. 2020, 29, 87–93. [Google Scholar] [CrossRef]
- Park, J.M.; Ahn, J.S.; Cha, H.S.; Lee, J.H. Wear resistance of 3D printing resin material opposing zirconia and metal antagonists. Materials 2018, 11, 1043. [Google Scholar] [CrossRef]
- Tahayeri, A.; Morgan, M.; Fugolin, A.P.; Bompolaki, D.; Athirasala, A.; Pfeifer, C.S.; Ferracane, J.L.; Bertassoni, L.E. 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent. Mater. 2018, 34, 192–200. [Google Scholar] [CrossRef]
- Al-Dwairi, Z.N.; Al Haj Ebrahim, A.A.; Baba, N.Z. A Comparison of the Surface and Mechanical Properties of 3D Printable Denture-Base Resin Material and Conventional Polymethylmethacrylate (PMMA). J. Prosthod. 2023, 32, 40–48. [Google Scholar] [CrossRef]
- Di Fiore, A.; Meneghello, R.; Brun, P.; Rosso, S.; Gattazzo, A.; Stellini, E.; Yilmaz, B. Comparison of the flexural and surface properties of milled, 3D-printed, and heat polymerized PMMA resins for denture bases: An in vitro study. J. Prosthodont. Res. 2022, 66, 502–508. [Google Scholar] [CrossRef]
- Haber, D.; Khoury, E.; Ghoubril, J.; Cirulli, N. Effect of different surface treatments on the shear bond strength of metal orthodontic brackets bonded to CAD/CAM provisional crowns. Dent. J. 2023, 11, 38. [Google Scholar] [CrossRef]
- Goracci, C.; Özcan, M.; Franchi, L.; Di Bello, G.; Louca, C.; Vichi, A. Bracket bonding to polymethylmethacrylate-based materials for computer-aided design/manufacture of temporary restorations: Influence of mechanical treatment and chemical treatment with universal adhesives. Korean J. Orthod. 2019, 49, 404–412. [Google Scholar] [CrossRef]
- Eser, I.; Cicek, O.; Ozkalayci, N.; Yetmez, M.; Erener, H. Effect of Different Types of Adhesive Agents on Orthodontic Bracket Shear Bond Strength: A Cyclic Loading Study. Materials 2023, 16, 724. [Google Scholar] [CrossRef] [PubMed]
- Layton, D.M.; Morgano, S.M.; Muller, F.; Kelly, J.A.; Nguyen, C.T.; Scherrer, S.S.; Salinas, T.J.; Shah, K.C.; Att, W.; Frelich, M.A.; et al. Glossary of Prosthodontic Terms 2023, 10th edition. J. Prosthet. Dent. 2023, 130, e1–e126. [Google Scholar] [CrossRef]
- Borm, G.F.; Fransen, J.; Lemmens, W.A. A simple sample size formula for analysis of covariance in randomized clinical trials. J. Clin. Epidemiol. 2007, 60, 1234–1238. [Google Scholar] [CrossRef] [PubMed]
- Whitepeaks Dental Solutions GmbH. Available online: https://www.white-peaks-dental.com/en/produkt-details/copra-temp/ (accessed on 20 January 2025).
- Alp, G.; Johnston, W.M.; Yilmaz, B. Optical properties and surface roughness of prepolymerized poly (methyl methacrylate) denture base materials. J. Prosthet. Dent. 2019, 121, 347–352. [Google Scholar] [CrossRef]
- Wiegand, A.; Stucki, L.; Hoffmann, R.; Attin, T.; Stawarczyk, B. Repairability of CAD/CAM high-density PMMA- and composite-based polymers. Clin. Oral Investig. 2015, 19, 2007–2013. [Google Scholar] [CrossRef]
- Reicheneder, C.; Baumert, U.; Gedrange, T.; Proff, P.; A Faltermeier, A.; Muessig, D. Frictional properties of aesthetic brackets. Eur. J. Orthod. 2007, 29, 359–365. [Google Scholar] [CrossRef]
- Årtun, J.; Bergland, S. Clinical trials with crystal growth conditioning as an alternative to acid-etch enamel pretreatment. Am. J. Orthod. 1984, 85, 333–340. [Google Scholar] [CrossRef]
- Hosokawa, M.; Fujimura, H. Dental Photopolymerizable Composition for 3D Printer. U.S. Patent 11,744,781, 5 September 2023. [Google Scholar]
- Urethane Dimethacrylate Compound Summary. PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/170472#section=Chemical-and-Physical-Properties (accessed on 12 February 2025).
- Floyd, C.J.; Dickens, S.H. Network structure of Bis-GMA-and UDMA-based resin systems. Dent. Mater. 2006, 22, 1143–1149. [Google Scholar] [CrossRef]
- Al Rashid, A.; Ahmed, W.; Khalid, M.Y.; Koc, M. Vat photopolymerization of polymers and polymer composites: Processes and applications. Addit. Manuf. 2021, 47, 102279. [Google Scholar] [CrossRef]
- Grauzeliene, S.; Schuller, A.S.; Delaite, C.; Ostrauskaite, J. Biobased vitrimer synthesized from 2-hydroxy-3-phenoxypropyl acrylate, tetrahydrofurfuryl methacrylate and acrylated epoxidized soybean oil for digital light processing 3D printing. Eur. Polym. J. 2023, 198, 112424. [Google Scholar] [CrossRef]
- Agrawaal, H.; Thompson, J.E. Additive manufacturing (3D printing) for analytical chemistry. Talanta Open. 2021, 3, 100036. [Google Scholar] [CrossRef]
- Zhang, X.; Zan, X.; Yin, J.; Wang, J. Non-Isocyanate Urethane Acrylate Derived from Isophorone Diamine: Synthesis, Characterization and Its Application in 3D Printing. Molecules 2024, 29, 2639. [Google Scholar] [CrossRef] [PubMed]
- Pruksawan, S.; Chong, Y.T.; Zen, W.; Loh, T.J.; Wang, F. Sustainable Vat Photopolymerization-Based 3D-Printing through Dynamic Covalent Network Photopolymers. Chem. Asian J. 2024, 20, e202400183. [Google Scholar] [CrossRef] [PubMed]
- Yamakawa, J. Inventor. Resin Block for Dental Cad/Cam. JP2014161440A, 22 February 2013. Available online: https://patents.google.com/patent/JP2014161440A/en (accessed on 12 February 2025).
- Ruse, N.D.; Sadoun, M.J. Resin-composite blocks for dental CAD/CAM applications. J. Dent. Res. 2014, 93, 1232–1234. [Google Scholar] [CrossRef]
- Iwaki, M.; Kanazawa, M.; Arakida, T.; Minakuchi, S. Mechanical properties of a polymethyl methacrylate block for CAD/CAM dentures. J. Oral Sci. 2020, 62, 420–422. [Google Scholar] [CrossRef]
- Stawarczyk, B.; Trottmann, A.; Hämmerle, C.H.F.; Özcan, M. Adhesion of veneering resins to polymethylmethacrylate-based CAD/CAM polymers after various surface conditioning methods. Acta Odontol. Scand. 2013, 71, 1142–1148. [Google Scholar] [CrossRef]
- Shirazi, M.; Mirzadeh, M.; Modirrousta, M.; Arab, S. Comparative evaluation of the shear bond strength of ceramic brackets of three different base designs bonded to amalgam and composite restorations with different surface treatment. Dent. Med. Probl. 2021, 58, 193–200. [Google Scholar] [CrossRef]
- Ebert, T.; Elsner, L.; Hirschfelder, U.; Hanke, S. Shear bond strength of brackets on restorative materials: Comparison on various dental restorative materials using the universal primer Monobond Plus. J. Orofac. Orthop. 2016, 77, 73–84. [Google Scholar] [CrossRef]
- Choi, Y.; Moon, W.; Manso, A.P.; Park, Y.-S.; Lim, B.-S.; Chung, S.H. Shear bond strength of orthodontic brackets bonded with primer-incorporated orthodontic adhesives and unpolymerized 3-dimensional printing materials on 3-dimensional-printed crowns. Am. J. Orthod. Dentofac. Orthop. 2024, 165, 663–670. [Google Scholar] [CrossRef]
- Kim, J.-E.; Choi, W.-H.; Lee, D.; Shin, Y.; Park, S.-H.; Roh, B.-D.; Kim, D. Color and translucency stability of three-dimensional printable dental materials for crown and bridge restorations. Materials 2021, 14, 650. [Google Scholar] [CrossRef]
- Ataei, K.; Ghaffari, T.; Moslehifard, E.; Dizaj, S.M. Physico-chemical and Mechanical Assessments of a New 3D Printed PMMA-Based Acrylic Denture Base Material. Open Dent. J. 2024, 18, e18742106278787. [Google Scholar] [CrossRef]
- Haselton, D.R.; Diaz-Arnold, A.M.; Vargas, M.A. Flexural strength of provisional crown and fixed partial denture resins. J. Prosthet. Dent. 2002, 87, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Rezaie, F.; Farshbaf, M.; Dahri, M.; Masjedi, M.; Maleki, R.; Amini, F.; Wirth, J.; Moharamzadeh, K.; Weber, F.E.; Tayebi, L. 3D printing of dental prostheses: Current and emerging applications. J. Composit Sci. 2023, 7, 80. [Google Scholar] [CrossRef] [PubMed]
- Bartoloni, J.A.; Murchison, D.F.; Wofford, D.T.; Sarkar, N.K. Degree of conversion in denture base materials for varied polymerization techniques. J. Oral Rehabil. 2000, 27, 488–493. [Google Scholar] [CrossRef]
- Soon, H.I.; Gill, D.S.; Jones, S.P. A study to investigate the bond strengths of orthodontic brackets bonded to prosthetic acrylic teeth. J. Orthod. 2015, 42, 192–499. [Google Scholar] [CrossRef]
- Masioli, D.L.C.; Almeida, M.A.O.; Masioli, M.A.; Almeida, J.R.M. Assessment of the effect of different surface treatments on the bond strength of brackets bonded to acrylic resin. Dent. Press. J. Orthod. 2011, 16, 37–47. [Google Scholar] [CrossRef]
- Atsavathavornset, C.; Saikaew, P.; Harnirattisai, C.; Sano, H. The effect of different adhesive strategies and diamond burs on dentin bond strength of universal resin cements. Clin. Oral Investig. 2025, 29, 41. [Google Scholar] [CrossRef]
- Knaup, I.; Böddeker, A.; Tempel, K.; Weber, E.; Bartz, J.R.; Rückbeil, M.V.; Craveiro, R.B.; Wagner, Y.; Wolf, M. Analysing the potential of hydrophilic adhesive systems to optimise orthodontic bracket rebonding. Head Face Med. 2020, 16, 20. [Google Scholar] [CrossRef]
- Amaral, M.; Belli, R.; Cesar, P.F.; Valandro, L.F.; Petschelt, A.; Lohbauer, U. The potential of novel primers and universal adhesives to bond to zirconia. J. Dent. 2014, 42, 90–98. [Google Scholar] [CrossRef]
- Sayed, M.E.; Reddy, N.K.; Reddy, N.R.; Mattoo, K.A.; Jad, Y.A.; Hakami, A.J.; Hakami, A.K.; Dighriri, A.M.; Hurubi, S.Y.; Hamdi, B.A.; et al. Evaluation of the Milled and Three-Dimensional Digital Manufacturing, 10-Degree and 20-Degree Preparation Taper, Groove and Box Auxiliary Retentive Features, and Conventional and Resin-Based Provisional Cement Type on the Adhesive Failure Stress of 3 mm Short Provisional Crowns. Med. Sci. Monit. 2024, 30, e943237-1–e943237-16. [Google Scholar] [CrossRef]
- Hassan, A.A.-H.A.-A.; Sindi, A.S.; Atout, A.M.; Morsy, M.S.; Mattoo, K.A.; Obulareddy, V.T.; Mathur, A.; Mehta, V. Assessment of Microhardness of Bulk-Fill Class II Resin Composite Restorations Performed by Preclinical Students: An In Vitro Study. Eur. J. Gen. Dent. 2024, 13, 158–164. [Google Scholar] [CrossRef]
3D-print resin ink (PC) | Asiga DentaTooth Alexandria, NSW, Australia |
|
3D Printing Machine | Asiga Pty Ltd. Alexandria, NSW, Australia |
|
CopraTemp | CopraTemp WhitePeaks Dental Solutions GmbH, Wesel, Germany. |
|
DGShape Five Axis milling machine | Roland DGA, Irvine, CA, Los Angeles, USA |
|
Thermocycling machine | Model 1100, SD Mechatronik, Bayern, Bavaria, Germany |
|
Benchtop 3D Scanner | MEDIT Model MD-ID0300, Medit Corp, Seoul, Republic Korea |
|
Imageing powder | VITA CEREC, VITA, Bad Sackingen, Germany |
|
Assure Plus | Reliance Orthodontic Products, Thorndale Ave, Itasca, IL 60143, Itasca, IL, USA |
|
Transbond XT | 3M Unitek, Monrovia, CA 91016, USA |
|
Variable 1 | Variable 2—Surface Treatment | Analysis of Variance Tests | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Material | Parameters | No Treatment (n = 10) | Coarse Diamond (n = 10) | Fine Diamond (n = 10) | Sandblast (n = 10) | Independent One Way ANOVA | Interaction Two Way ANOVA | |||
F Statistic | p Value | F Statistic (df1, df2) | p Value | |||||||
Shear Bond Strength (MPa) | MILLED (Gp M) (N = 40) | Sub Group | MC | MCD | MFD | MSB | 33.86 | 0.00001 * | 3.7961 (3, 72) | 0.01381 * |
M | 13.24 | 11.28 | 13.76 | 15.51 | ||||||
SD | 0.94 | 0.53 | 1.26 | 0.89 | ||||||
3D-printed (Gp P) (N = 40) | Sub Group | PC | PCD | PFD | PSB | 11.2518 | 0.00002 * | |||
M | 11.5 | 11.62 | 12.76 | 14.11 | ||||||
SD | 1.8 | 1.25 | 1.22 | 0.87 |
Subgroups | MC | MCD | MFD | MSB | PC | PCD | PFD | PSB |
---|---|---|---|---|---|---|---|---|
MC | 1.962 | 0.526 | 2.277 | 1.741 | 1.62 | 0.525 | 0.87 | |
0.002 * | 0.9504 | 0.0001 * | 0.009 * | 0.020 * | 0.950 | 0.587 | ||
MCD | 1.962 | 2.488 | 4.239 | 0.221 | 0.342 | 1.437 | 2.832 | |
0.002 * | 0.0000 * | 0.0000 * | 0.999 | 0.995 | 0.058 | 0.0000 * | ||
MFD | 0.526 | 2.488 | 1.751 | 2.267 | 2.146 | 1.051 | 0.344 | |
0.9504 | 0.0000 * | 0.008 * | 0.0001 * | 0.0005 * | 0.342 | 0.995 | ||
MSB | 2.277 | 4.239 | 1.751 | 4.018 | 3.897 | 2.802 | 1.407 | |
0.0001 * | 0.0000 * | 0.008 * | 0.0000 * | 0.0000 * | 0.0000 * | 0.069 | ||
PC | 1.741 | 0.221 | 2.267 | 4.018 | 0.121 | 1.216 | 2.611 | |
0.009 * | 0.999 | 0.0001 * | 0.0000 * | 1.000 | 0.177 | 0.0000 * | ||
PCD | 1.62 | 0.342 | 2.146 | 3.897 | 0.121 | 1.095 | 2.49 | |
0.020 * | 0.995 | 0.0005 * | 0.0000 * | 1.000 | 0.291 | 0.0000 * | ||
PFD | 0.525 | 1.437 | 1.051 | 2.802 | 1.216 | 1.095 | 1.395 | |
0.950 | 0.058 | 0.342 | 0.0000 * | 0.177 | 0.291 | 0.0738 | ||
PSB | 0.87 | 2.832 | 0.344 | 1.407 | 2.611 | 2.49 | 1.395 | |
0.587 | 0.0000 * | 0.995 | 0.069 | 0.0000 * | 0.0000 * | 0.0738 |
Groups | Subgroups | N | df | Median | Mean Rank Scores | H Test Statistic | p Value |
---|---|---|---|---|---|---|---|
MILLED (Gp M) (N = 40) | MC | 10 | 7 | 0 | 17.4 | 26.54 | 0.00040 * |
MCD | 10 | 7 | 2 | 51.75 | |||
MFD | 10 | 7 | 1 | 38.9 | |||
MSB | 10 | 7 | 0.5 | 29.1 | |||
3D-printed (Gp P) (N = 40) | PC | 10 | 7 | 1 | 41.85 | ||
PCD | 10 | 7 | 2 | 59.35 | |||
PFD | 10 | 7 | 2 | 50.2 | |||
PSB | 10 | 7 | 1 | 35.45 |
Subgroups | MC | MCD | MFD | MSB | PC | PCD | PFD | PSB |
---|---|---|---|---|---|---|---|---|
MC | −34.35 | −21.5 | −11.7 | −24.45 | −41.95 | −32.8 | −18.05 | |
0.0004 * | 0.0279 | 0.2316 | 0.0124 | 0.00001 * | 0.00079 * | 0.0649 | ||
MCD | −34.35 | 12.85 | 22.65 | 9.9 | −7.6 | 1.55 | 16.3 | |
0.0004 * | 0.1889 | 0.02058 | 0.3115 | 0.4372 | 0.8741 | 0.0956 | ||
MFD | −21.5 | 12.85 | 9.8 | −2.95 | −20.45 | −11.3 | 3.45 | |
0.0279 | 0.1889 | 0.3164 | 0.763 | 0.0365 | 0.248 | 0.7243 | ||
MSB | −11.7 | 22.65 | 9.8 | −12.75 | −30.25 | −21.1 | −6.35 | |
0.2316 | 0.02058 | 0.3164 | 0.1924 | 0.00198 | 0.03099 | 0.5162 | ||
PC | −24.45 | 9.9 | −2.95 | −12.75 | −17.5 | −8.35 | 6.4 | |
0.0124 | 0.3115 | 0.763 | 0.1924 | 0.07359 | 0.3933 | 0.5129 | ||
PCD | −41.95 | −7.6 | −20.45 | −30.25 | −17.5 | 9.15 | 23.9 | |
0.00001 * | 0.4372 | 0.0365 | 0.00198 | 0.07359 | 0.3495 | 0.01455 | ||
PFD | −32.8 | 1.55 | −11.3 | −21.1 | −8.35 | 9.15 | 14.75 | |
0.00079 * | 0.8741 | 0.248 | 0.03099 | 0.3933 | 0.3495 | 0.1316 | ||
PSB | −18.05 | 16.3 | 3.45 | −6.35 | 6.4 | 23.9 | 14.75 | |
0.0649 | 0.0956 | 0.7243 | 0.5162 | 0.5129 | 0.01455 | 0.1316 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, N.N.; Mattoo, K.; Khawaji, A.; Najmi, H.; Sadeli, A.; Alshahrani, A.A.; Qahtani, A.A.; Alshehri, A.H.; Almarzouki, M.; Sayed, M.E. Influence of Surface Treatment and Protracted Ageing on the Shear Bond Strength of Orthodontic Brackets to Two Digitally Fabricated (Milled and 3D-Printed) Polymethacrylate-Based Provisional Crowns. Polymers 2025, 17, 699. https://doi.org/10.3390/polym17050699
Hassan NN, Mattoo K, Khawaji A, Najmi H, Sadeli A, Alshahrani AA, Qahtani AA, Alshehri AH, Almarzouki M, Sayed ME. Influence of Surface Treatment and Protracted Ageing on the Shear Bond Strength of Orthodontic Brackets to Two Digitally Fabricated (Milled and 3D-Printed) Polymethacrylate-Based Provisional Crowns. Polymers. 2025; 17(5):699. https://doi.org/10.3390/polym17050699
Chicago/Turabian StyleHassan, Nisreen Nabiel, Khurshid Mattoo, Atheer Khawaji, Hanan Najmi, Almaha Sadeli, Ahid Amer Alshahrani, Abeer Ali Qahtani, Abdullah Hasan Alshehri, Mai Almarzouki, and Mohammed E. Sayed. 2025. "Influence of Surface Treatment and Protracted Ageing on the Shear Bond Strength of Orthodontic Brackets to Two Digitally Fabricated (Milled and 3D-Printed) Polymethacrylate-Based Provisional Crowns" Polymers 17, no. 5: 699. https://doi.org/10.3390/polym17050699
APA StyleHassan, N. N., Mattoo, K., Khawaji, A., Najmi, H., Sadeli, A., Alshahrani, A. A., Qahtani, A. A., Alshehri, A. H., Almarzouki, M., & Sayed, M. E. (2025). Influence of Surface Treatment and Protracted Ageing on the Shear Bond Strength of Orthodontic Brackets to Two Digitally Fabricated (Milled and 3D-Printed) Polymethacrylate-Based Provisional Crowns. Polymers, 17(5), 699. https://doi.org/10.3390/polym17050699