Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = thermal-hydro-mechanical model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3285 KB  
Article
Dual-Borehole Sc-CO2 Thermal Shock Fracturing: Thermo-Hydromechanical Coupling Under In Situ Stress Constraints
by Yukang Cai, Yongsheng Jia, Shaobin Hu, Jinshan Sun and Yingkang Yao
Sustainability 2025, 17(16), 7297; https://doi.org/10.3390/su17167297 - 12 Aug 2025
Viewed by 330
Abstract
Supercritical carbon dioxide (Sc-CO2) thermal shock fracturing emerges as an innovative rock fragmentation technology combining environmental sustainability with operational efficiency. This study establishes a thermo-hydro-mechanical coupled model to elucidate how in situ stress magnitude and anisotropy critically govern damage progression and [...] Read more.
Supercritical carbon dioxide (Sc-CO2) thermal shock fracturing emerges as an innovative rock fragmentation technology combining environmental sustainability with operational efficiency. This study establishes a thermo-hydro-mechanical coupled model to elucidate how in situ stress magnitude and anisotropy critically govern damage progression and fluid dynamics during Sc-CO2 thermal shock fracturing. Key novel findings reveal the following: (1) The fracturing mechanism integrates transient hydrodynamic shock with quasi-static pressure loading, generating characteristic bimodal pressure curves where secondary peak amplification specifically indicates inhibited interwell fracture coalescence under anisotropic stress configurations. (2) Fracture paths undergo spatiotemporal reorientation—initial propagation aligns with in situ stress orientation, while subsequent growth follows thermal shock-induced principal stress trajectories. (3) Stress heterogeneity modulates fracture network complexity through confinement effects: elevated normal stresses perpendicular to fracture planes reduce pressure gradients (compared to isotropic conditions) and delay crack initiation, yet sustain higher pressure plateaus by constraining fracture connectivity despite fluid leakage. Numerical simulations systematically demonstrate that stress anisotropy plays a dual role—enhancing peak pressures while limiting fracture network development. This demonstrates the dual roles of the technology in enhancing environmental sustainability through waterless operations and reducing carbon footprint. Full article
Show Figures

Figure 1

31 pages, 10887 KB  
Article
Impact of Reservoir Properties on Micro-Fracturing Stimulation Efficiency and Operational Design Optimization
by Shaohao Wang, Yuxiang Wang, Wenkai Li, Junlong Cheng, Jianqi Zhao, Chang Zheng, Yuxiang Zhang, Ruowei Wang, Dengke Li and Yanfang Gao
Processes 2025, 13(7), 2137; https://doi.org/10.3390/pr13072137 - 4 Jul 2025
Viewed by 313
Abstract
Micro-fracturing technology is a key approach to enhancing the flow capacity of oil sands reservoirs and improving Steam-Assisted Gravity Drainage (SAGD) performance, whereas heterogeneity in reservoir physical properties significantly impacts stimulation effectiveness. This study systematically investigates the coupling mechanisms of asphaltene content, clay [...] Read more.
Micro-fracturing technology is a key approach to enhancing the flow capacity of oil sands reservoirs and improving Steam-Assisted Gravity Drainage (SAGD) performance, whereas heterogeneity in reservoir physical properties significantly impacts stimulation effectiveness. This study systematically investigates the coupling mechanisms of asphaltene content, clay content, and heavy oil viscosity on micro-fracturing stimulation effectiveness, based on the oil sands reservoir in Block Zhong-18 of the Fengcheng Oilfield. By establishing an extended Drucker–Prager constitutive model, Kozeny–Poiseuille permeability model, and hydro-mechanical coupling numerical simulation, this study quantitatively reveals the controlling effects of reservoir properties on key rock parameters (e.g., elastic modulus, Poisson’s ratio, and permeability), integrating experimental data with literature review. The results demonstrate that increasing clay content significantly reduces reservoir permeability and stimulated volume, whereas elevated asphaltene content inhibits stimulation efficiency by weakening rock strength. Additionally, the thermal sensitivity of heavy oil viscosity indirectly affects geomechanical responses, with low-viscosity fluids under high-temperature conditions being more conducive to effective stimulation. Based on the quantitative relationship between cumulative injection volume and stimulation parameters, a classification-based optimization model for oil sands reservoir operations was developed, predicting over 70% reduction in preheating duration. This study provides both theoretical foundations and practical guidelines for micro-fracturing parameter design in complex oil sands reservoirs. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

24 pages, 3267 KB  
Article
Evaluation of Strength Model Under Deep Formations with High Temperature and High Pressure
by Fei Gao, Yan Zhang, Yuelong Liu and Hui Zhang
Buildings 2025, 15(13), 2335; https://doi.org/10.3390/buildings15132335 - 3 Jul 2025
Viewed by 358
Abstract
Elevated thermal conditions, rock formations exhibit distinct mechanical behaviors that significantly deviate from their characteristics under ambient temperature environments. This phenomenon raises critical questions regarding the applicability of conventional failure criteria in accurately assessing wellbore stability and maintaining the structural integrity of subsurface [...] Read more.
Elevated thermal conditions, rock formations exhibit distinct mechanical behaviors that significantly deviate from their characteristics under ambient temperature environments. This phenomenon raises critical questions regarding the applicability of conventional failure criteria in accurately assessing wellbore stability and maintaining the structural integrity of subsurface infrastructure within geothermal environments. Based on the least absolute deviation method, this paper studies the response characteristics of rock strength at different temperatures and evaluates the prediction performance of six commonly used strength criteria under various temperature and stress environments. The experimental findings reveal a pronounced nonlinear dependence of rock strength on confining pressure elevation. A comparative analysis of failure criteria demonstrates hierarchical predictive performance: the Hoek–Brown (HB) criterion achieves superior temperature-dependent strength prediction fidelity, outperforming the modified Griffith (MGC), Mohr–Lade (ML), and modified Wiebols–Cook (MWC) criteria by 12–18% in accuracy metrics. Notably, the Zhao–Zheng (ZZ) and conventional Mohr–Coulomb (MC) criteria exhibit statistically significant deviations across the tested thermal range. The HB criterion’s exceptional performance in high-temperature regimes is attributed to its dual incorporation of nonlinear confinement effects and thermally activated microcrack propagation mechanisms. The implementation of this optimized model in Well X’s borehole stability analysis yielded 89% alignment between predictions and field observations, with principal stress variations remaining within 7% of critical failure thresholds. These mechanistic insights offer critical theoretical and practical references for thermo-hydro-mechanical coupling analysis in enhanced geothermal systems and deep subsurface containment structures. Full article
Show Figures

Figure 1

22 pages, 7787 KB  
Article
Impact Mechanism Analysis of DFIG with Inertia Control on the Ultra-Low Frequency Oscillation of the Power System
by Wei Fan, Yang Yi, Donghai Zhu, Bilin Zhang, Bo Bao and Yibo Zhang
Energies 2025, 18(13), 3365; https://doi.org/10.3390/en18133365 - 26 Jun 2025
Viewed by 331
Abstract
Amid the global transition toward sustainable energy, regional power grids with high wind power penetration are increasingly emerging. The implementation of frequency control is critically essential for enhancing the frequency support capability of grid-connected devices. However, existing studies indicate this may induce ULFOs [...] Read more.
Amid the global transition toward sustainable energy, regional power grids with high wind power penetration are increasingly emerging. The implementation of frequency control is critically essential for enhancing the frequency support capability of grid-connected devices. However, existing studies indicate this may induce ULFOs (ultra-low frequency oscillations). Current research on ULFOs have been predominantly concentrated on hydro-dominated power systems, with limited exploration into systems where thermal power serves as synchronous sources—let alone elucidation of the underlying mechanisms. This study focuses on regional power grids where wind and thermal power generation coexist. Eigenvalue analysis reveals that frequency regulation control of doubly-fed induction generators (DFIGs) can trigger ULFOs. Leveraging common-mode oscillation theory, an extended system frequency response (ESFR) model incorporating DFIG frequency control is formulated and rigorously validated across a range of operational scenarios. Moreover, frequency-domain analysis uncovers the mechanism by which inertia control affects ULFO behavior, and time-domain simulations are conducted to validate the influence of DFIG control parameters on ULFOs. Full article
Show Figures

Figure 1

18 pages, 11001 KB  
Article
Temperature Prediction Model for Horizontal Shale Gas Wells Considering Stress Sensitivity
by Jianli Liu, Fangqing Wen, Hu Han, Daicheng Peng, Qiao Deng and Dong Yang
Processes 2025, 13(6), 1896; https://doi.org/10.3390/pr13061896 - 15 Jun 2025
Viewed by 519
Abstract
In the production process of horizontal wells, wellbore temperature data play a critical role in predicting shale gas production. This study proposes a coupled thermo-hydro-mechanical (THM) mathematical model that accounts for the influence of the stress field when determining the distribution of wellbore [...] Read more.
In the production process of horizontal wells, wellbore temperature data play a critical role in predicting shale gas production. This study proposes a coupled thermo-hydro-mechanical (THM) mathematical model that accounts for the influence of the stress field when determining the distribution of wellbore temperature. The model integrates the effects of heat transfer in the temperature field, gas transport in the seepage field, and the mechanical deformation of shale induced by the stress field. The coupled model is solved using the finite difference method. The model was validated against field data from shale gas production, and sensitivity analyses were conducted on seven key parameters related to the stress field. The findings indicate that the stress field exerts an influence on both the wellbore temperature distribution and the total gas production. Neglecting the stress field effects may lead to an overestimation of shale gas production by up to 12.9%. Further analysis reveals that reservoir porosity and Langmuir volume are positively correlated with wellbore temperature, while permeability, Young’s modulus, Langmuir pressure, the coefficient of thermal expansion, and adsorption strain are negatively correlated with wellbore temperature. Full article
Show Figures

Figure 1

15 pages, 5490 KB  
Article
Ultra-Low Frequency Oscillation in a Thermal Power System Induced by Doubly-Fed Induction Generators with Inertia Control
by Wei Huang, Suwei Zhai, Xuegang Lu, Xiaojie Zhang, Yanjun Liu, Wei He and Yifan Fang
Processes 2025, 13(5), 1368; https://doi.org/10.3390/pr13051368 - 29 Apr 2025
Viewed by 503
Abstract
Ultra-low frequency oscillation has been regarded as a typical instability issue in power systems consisting of hydro turbine synchronous generators due to the water hammer phenomenon. However, the increasing installation of renewable power generators gradually changes the stability mechanisms within multiple frequency bands. [...] Read more.
Ultra-low frequency oscillation has been regarded as a typical instability issue in power systems consisting of hydro turbine synchronous generators due to the water hammer phenomenon. However, the increasing installation of renewable power generators gradually changes the stability mechanisms within multiple frequency bands. In this digest, a new kind of ultra-low frequency oscillation caused by doubly-fed induction generators (DFIGs) equipped with a df/dt controller in a thermal power generation system is introduced. To reveal the underlying mechanism, the motion equation model of the DFIG is constructed, and the simplified analytical model is proposed. The results show that when integrating a df/dt-controlled DFIG into a normal three-machine, nine-bus system, the damping ratio decreases to more than 0.2 when the virtual inertia parameter increases from 5 to 20, leading to a conflict between fast virtual inertial response and stability requirements. Other controllers related to active power regulation are also vital to stability. The frequency domain characteristics of the system are studied to illustrate the influence of key parameters on system stability. Finally, simulation verifications are conducted in MATLAB/Simulink. Full article
Show Figures

Figure 1

23 pages, 16749 KB  
Article
A Thermo-Hydro-Mechanical Damage Coupling Model for Stability Analysis During the In Situ Conversion Process
by Guoping Li, Juan Jin, Weixi Chen, Minghui Zhao, Jiandong Liu, Bo Fang and Tingfu Ye
Energies 2025, 18(6), 1424; https://doi.org/10.3390/en18061424 - 13 Mar 2025
Viewed by 662
Abstract
This study addresses stability challenges in oil shale reservoirs during the in situ conversion process by developing a thermo-hydro-mechanical damage (THMD) coupling model. The THMD model integrates thermo-poroelasticity theory with a localized gradient damage approach, accounting for thermal expansion and pore pressure effects [...] Read more.
This study addresses stability challenges in oil shale reservoirs during the in situ conversion process by developing a thermo-hydro-mechanical damage (THMD) coupling model. The THMD model integrates thermo-poroelasticity theory with a localized gradient damage approach, accounting for thermal expansion and pore pressure effects on stress evolution and avoiding mesh dependency issues present in conventional local damage models. To capture tensile–compressive asymmetry in geotechnical materials, an equivalent strain based on strain energy density is introduced, which regularizes the tensile component of the elastic strain energy density. Additionally, the model simulates the multi-layer wellbore structure and the dynamic heating and extraction processes, recreating the in situ environment. Validation through a comparison of numerical solutions with both experimental and analytical results confirms the accuracy and reliability of the proposed model. Wellbore stability analysis reveals that damage tends to propagate in the horizontal direction due to the disparity between horizontal and vertical in situ stresses, and the damaged area at a heating temperature of 600 °C is nearly three times that at a heating temperature of 400 °C. In addition, a cement sheath thickness of approximately 50 mm is recommended to optimize heat transfer efficiency and wellbore integrity to improve economic returns. Our study shows that high extraction pressure (−4 MPa) nearly doubles the reservoir’s damage area and increases subsidence from −3.6 cm to −6.5 cm within six months. These results demonstrate the model’s ability to guide improved extraction efficiency and mitigate environmental risks, offering valuable insights for optimizing in situ conversion strategies. Full article
(This article belongs to the Special Issue Advanced Technologies in Oil Shale Conversion)
Show Figures

Figure 1

26 pages, 8525 KB  
Article
Response of Thermo-Hydro-Mechanical Fields to Pile Material in Pile–Soil System Under Freezing Based on Numerical Analysis
by Dongxue Hao, Yexian Shi, Rong Chen, Zhao Lu, Yue Ji, Zhonghua Lv and Liguo Liu
Buildings 2025, 15(4), 534; https://doi.org/10.3390/buildings15040534 - 9 Feb 2025
Cited by 1 | Viewed by 983
Abstract
In engineering practice, various types of pile foundations are commonly employed to mitigate the impact of differential frost heave on structures in cold regions. However, the studies on how pile material properties influence the thermo-hydro-mechanical coupling fields during the freezing of the pile–soil [...] Read more.
In engineering practice, various types of pile foundations are commonly employed to mitigate the impact of differential frost heave on structures in cold regions. However, the studies on how pile material properties influence the thermo-hydro-mechanical coupling fields during the freezing of the pile–soil system remain limited. To address this, a finite element model was developed to simulate the response of the pile–soil system under unidirectional freezing conditions. The numerical model in simulating ground temperature field and frost heave was first verified by comparison with experimental results. Then, the simulations for piles made of different materials, specifically steel and concrete piles at field scale, were conducted to obtain real-time temperature, moisture, and displacement fields during the freezing process. The results demonstrate that pile–soil systems of the two materials exhibit clearly different freezing patterns. The thermal conductivity of concrete, being similar to that of the surrounding soil, results in a unidirectional freezing pattern of soil around concrete piles, with the frost depth line parallel to the frost heave surface, forming a “一-shaped” freezing zone. In contrast, the high thermal conductivity of steel piles significantly accelerates the freezing rate and increases the frost depth in the surrounding soil, leading to both vertical and horizontal bidirectional freezing around the piles, creating an “inverted L-shaped” freezing zone. This bidirectional freezing generates greater tangential frost heave forces, pile frost jacking, and soil displacement around piles compared to concrete piles under identical freezing conditions. The numerical simulation also identifies the critical hydraulic conductivity at which moisture migration in the frozen soil layer ceases and describes the variation of relative ice content with temperature. These findings offer valuable insights into considering soil frost heave and pile displacement when using steel for foundation construction in cold regions, providing guidance for anti-frost heave measures in such environments. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 3972 KB  
Article
Numerical Simulation of Thermo-Hydro-Mechanical Coupling of Model Test for Nuclear Waste Disposal
by Yu-Ping Wang, Zhe Wang, Fa-Cheng Yi, Lei Fu and Ying Luo
Appl. Sci. 2025, 15(2), 930; https://doi.org/10.3390/app15020930 - 18 Jan 2025
Viewed by 929
Abstract
This article presents a simulation of a long-term retardation performance Mock-up test of the multi-field coupling of buffer materials, with the aim to study the thermo-hydro-mechanical (THM) processes occurring in the engineered barrier system of a high-level waste (HLW) repository. In view of [...] Read more.
This article presents a simulation of a long-term retardation performance Mock-up test of the multi-field coupling of buffer materials, with the aim to study the thermo-hydro-mechanical (THM) processes occurring in the engineered barrier system of a high-level waste (HLW) repository. In view of the theory of mixtures and mechanics of continuous media, the coupled THM mathematical model of unsaturated buffer materials is established, considering heat transport and multiphase fluid flow. Using the buffer material Mock-up test of multi-field coupling as a model, the partial differential equation (PDE) module in the general finite element software COMSOL Multiphysics was developed by a second development stage. The dynamic response process of buffer material under the condition of THM coupling was numerically simulated, and the spatial distribution and variation law of suction, porosity, horizontal displacement, temperature and swelling pressure in the engineered barrier were investigated. The porosity of the buffer material under THM coupling was influenced by the swelling pressure and the suction. The welling pressure evolution of the buffer material may be influenced by the thermal expansion induced by high temperature and the swelling pressure generated by buffer material saturation. The evolution of the horizontal displacement of the heater used to simulate a container with radioactive waste was validated. This paper provides technical reference for the design and safety evaluation of underground laboratory barrier engineering in China. Full article
Show Figures

Figure 1

32 pages, 21139 KB  
Article
Numerical Simulation on Two-Dimensional Dual-Zone Axisymmetric Consolidation for Marine Soft Soil Improved by PVTD Considering Interfacial Thermal Resistance
by Kejie Tang, Minjie Wen, Yi Tian, Xiaoqiang Gu, Wenbing Wu, Yiming Zhang, Guoxiong Mei, Pan Ding, Yuan Tu, Anyuan Sun and Kaifu Liu
J. Mar. Sci. Eng. 2024, 12(10), 1878; https://doi.org/10.3390/jmse12101878 - 19 Oct 2024
Cited by 1 | Viewed by 1067
Abstract
Prefabricated vertical drains combined with heating is a new approach to improving the mechanical properties of soft clay foundations. Rising temperatures cause the formation of concentric and radially aligned soil regions with distinct heterogeneous characteristics. This results in incomplete contact between adjacent soil [...] Read more.
Prefabricated vertical drains combined with heating is a new approach to improving the mechanical properties of soft clay foundations. Rising temperatures cause the formation of concentric and radially aligned soil regions with distinct heterogeneous characteristics. This results in incomplete contact between adjacent soil layers, with the water in the interstices impeding heat transfer and manifesting as a thermal resistance effect. Based on the theory of thermo-hydro-mechanical coupling, a two-dimensional dual-zone axisymmetric marine soft soil model improved by a prefabricated vertical thermo-drain has been established. A generalized incomplete thermal contact model has been proposed to describe the thermal resistance effect at the interface of concentric soil regions. The effectiveness of the numerical solution presented in this paper is verified by comparison with semi-analytical solutions and model experiments. The thermal consolidation characteristics of concentric regions of soil at various depths under different thermal contact models were discussed by comprehensively analyzing the effects of different parameters under various thermal contact models. The outcomes indicate that the generalized incomplete thermal contact model provides a more accurate description of the radial thermal consolidation characteristics of concentric regions of soil. The influence of the thermal conductivity coefficient on the consolidation characteristics of the concentric regions soil is related to the thermal resistance effect. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

22 pages, 7958 KB  
Article
THC Modelling of Bentonite Barrier of Geological Repository in Granite and Its Impact on Long-Term Safety
by Asta Narkuniene, Dalia Grigaliuniene and Gintautas Poskas
Appl. Sci. 2024, 14(17), 7851; https://doi.org/10.3390/app14177851 - 4 Sep 2024
Cited by 2 | Viewed by 3198
Abstract
As in any other industry, nuclear energy results in the accumulation of some waste, which needs to be managed safely and responsibly due to its radiotoxicity. In the case of highly radioactive waste, geological disposal in stable rock is considered a broadly accepted [...] Read more.
As in any other industry, nuclear energy results in the accumulation of some waste, which needs to be managed safely and responsibly due to its radiotoxicity. In the case of highly radioactive waste, geological disposal in stable rock is considered a broadly accepted solution. For the evaluation of the long-term safety of a geological repository, the assessment of radionuclide transport needs to be carried out. Radionuclide transport through engineered and natural barriers of the repository will highly depend on the barriers’ transport-related properties, which will be determined by coupled thermal, hydraulic, chemical, mechanical, biological, and radiation processes taking place in those barriers. In this study, the thermo-hydro-chemical (THC) state of bentonite was analysed considering CO2 gas diffusion and temperature-dependent solubility in water. Reactive transport modelling of bentonite under non-isothermal conditions was performed with the COMSOL Multiphysics software (v6.0), coupled with the geochemical solver Phreeqc via the iCP interface. The modelling demonstrated that the consideration of chemical processes in bentonite had no significant influence on non-reactive Cl transport; however, it would be important for other radionuclides whose sorption in porous media depends on the porewater pH. Based on the modelling results, changes in the bentonite mineralogical composition and, subsequently, porosity depend on the partial CO2 pressure at the bentonite–granite boundary. In the case of low CO2 partial pressure at the bentonite–granite interface, the calcite dissolution led to a slight porosity increase, while higher CO2 partial pressure led to decreased porosity near the interface. Full article
Show Figures

Figure 1

26 pages, 9279 KB  
Article
Fracture Evolution during CO2 Fracturing in Unconventional Formations: A Simulation Study Using the Phase Field Method
by Bing Yang, Qianqian Ren, Hai Huang, Haizhu Wang, Yong Zheng, Liangbin Dou, Yanlong He, Wentong Zhang, Haoyu Chen and Ruihong Qiao
Processes 2024, 12(8), 1682; https://doi.org/10.3390/pr12081682 - 12 Aug 2024
Cited by 1 | Viewed by 1736
Abstract
With the introduction of China’s “dual carbon” goals, CO2 is increasingly valued as a resource and is being utilized in unconventional oil and gas development. Its application in fracturing operations shows promising prospects, enabling efficient extraction of oil and gas while facilitating [...] Read more.
With the introduction of China’s “dual carbon” goals, CO2 is increasingly valued as a resource and is being utilized in unconventional oil and gas development. Its application in fracturing operations shows promising prospects, enabling efficient extraction of oil and gas while facilitating carbon sequestration. The process of reservoir stimulation using CO2 fracturing is complex, involving coupled phenomena such as temperature variations, fluid behavior, and rock mechanics. Currently, numerous scholars have conducted fracturing experiments to explore the mechanisms of supercritical CO2 (SC-CO2)-induced fractures in relatively deep formations. However, there is relatively limited numerical simulation research on the coupling processes involved in CO2 fracturing. Some simulation studies have simplified reservoir and operational parameters, indicating a need for further exploration into the multi-field coupling mechanisms of CO2 fracturing. In this study, a coupled thermo-hydro-mechanical fracturing model considering the CO2 properties and heat transfer characteristics was developed using the phase field method. The multi-field coupling characteristics of hydraulic fracturing with water and SC-CO2 are compared, and the effects of different geological parameters (such as in situ stress) and engineering parameters (such as the injection rate) on fracturing performance in tight reservoirs were investigated. The simulation results validate the conclusion that CO2, especially in its supercritical state, effectively reduces reservoir breakdown pressures and induces relatively complex fractures compared with water fracturing. During CO2 injection, heat transfer between the fluid and rock creates a thermal transition zone near the wellbore, beyond which the reservoir temperature remains relatively unchanged. Larger temperature differentials between the injected CO2 fluid and the formation result in more complicated fracture patterns due to thermal stress effects. With a CO2 injection, the displacement field of the formation deviated asymmetrically and changed abruptly when the fracture formed. As the in situ stress difference increased, the morphology of the SC-CO2-induced fractures tended to become simpler, and conversely, the fracture presented a complicated distribution. Furthermore, with an increasing injection rate of CO2, the fractures exhibited a greater width and extended over longer distances, which are more conducive to reservoir volumetric enhancement. The findings of this study validate the authenticity of previous experimental results, and it analyzed fracture evolution through the multi-field coupling process of CO2 fracturing, thereby enhancing theoretical understanding and laying a foundational basis for the application of this technology. Full article
Show Figures

Figure 1

23 pages, 7639 KB  
Article
Experimental Study on the Water Absorption, Compaction Effect, and Pull-Out Bearing Characteristics of Water-Absorbing and Compaction Anchoring Bolts
by Xin Ren, Tianhu He, Feng Yue and Pengfei He
Appl. Sci. 2024, 14(16), 6960; https://doi.org/10.3390/app14166960 - 8 Aug 2024
Cited by 2 | Viewed by 1345
Abstract
In response to a series of engineering disasters encountered during the excavation and support construction of loess tunnels, considering the issues of water enrichment in surrounding rock induced by excavation disturbance and system bolt failure, drawing on the concepts of lime pile composite [...] Read more.
In response to a series of engineering disasters encountered during the excavation and support construction of loess tunnels, considering the issues of water enrichment in surrounding rock induced by excavation disturbance and system bolt failure, drawing on the concepts of lime pile composite foundation and composite bearing arch, and based on the principle of the New Austrian Tunneling Method (NATM) that fully mobilizes and leverages the self-supporting capacity of surrounding rock, this study comprehensively considers the wetting and stress adjustment processes of the surrounding rock after excavation disturbance in loess tunnels. By adopting the technical principle of “water absorption and densification of shallow surrounding rock, suspension and anchoring of deep surrounding rock, and composite arch bearing”, a new type of water-absorbing, densifying, and anchoring bolt was developed that can reduce the water content of surrounding rock while enhancing its resistance. To further investigate the water absorption, densification effect, and pull-out bearing characteristics of this new bolt, laboratory model tests were conducted, examining the temperature, pore water pressure, densification stress of the soil around the bolt, as well as the physical properties of the soil in the consolidation zone. The test results indicate that a cylindrical heat source forms around the water-absorbing, densifying, and anchoring bolt, significantly inducing the thermal consolidation of the surrounding soil. The variations in temperature, pore water pressure, and densification stress of the soil around the bolt truly reflect the qualitative patterns of hydro-thermal–mechanical changes during the water absorption, curing, and exothermic reaction processes. The water absorption and densification segment of the bolt effectively enhances the density of the soil in the water absorption, densification, and consolidation zone, improving soil strength parameters. Compared to traditional mortar-bonded bolts, the water-absorbing, densifying, and anchoring bolt exhibits a greater pull-out bearing capacity. The research findings provide important guidance for the theoretical design and engineering application of this new type of bolt. Full article
Show Figures

Figure 1

19 pages, 6809 KB  
Article
Quantitative Analysis of Fracture Roughness and Multi-Field Effects for CO2-ECBM Projects
by Lingshuo Zhang and Yafei Shan
Energies 2024, 17(12), 2851; https://doi.org/10.3390/en17122851 - 10 Jun 2024
Cited by 2 | Viewed by 952
Abstract
Carbon Dioxide-Enhanced Coalbed Methane (CO2-ECBM), a progressive technique for extracting coalbed methane, substantially boosts gas recovery and simultaneously reduces greenhouse gas emissions. In this process, the dynamics of coalbed fractures, crucial for CO2 and methane migration, significantly affect carbon storage [...] Read more.
Carbon Dioxide-Enhanced Coalbed Methane (CO2-ECBM), a progressive technique for extracting coalbed methane, substantially boosts gas recovery and simultaneously reduces greenhouse gas emissions. In this process, the dynamics of coalbed fractures, crucial for CO2 and methane migration, significantly affect carbon storage and methane retrieval. However, the extent to which fracture roughness, under the coupled thermal-hydro-mechanic effects, impacts engineering efficiency remains ambiguous. Addressing this, our study introduces a pioneering, cross-disciplinary mathematical model. This model innovatively quantifies fracture roughness, incorporating it with gas flow dynamics under multifaceted field conditions in coalbeds. This comprehensive approach examines the synergistic impact of CO2 and methane adsorption/desorption, their pressure changes, adsorption-induced coalbed stress, ambient stress, temperature variations, deformation, and fracture roughness. Finite element analysis of the model demonstrates its alignment with real-world data, precisely depicting fracture roughness in coalbed networks. The application of finite element analysis to the proposed mathematical model reveals that (1) fracture roughness ξ markedly influences residual coalbed methane and injected CO2 pressures; (2) coalbed permeability and porosity are inversely proportional to ξ; and (3) adsorption/desorption reactions are highly sensitive to ξ. This research offers novel insights into fracture behavior quantification in coalbed methane extraction engineering. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

16 pages, 7857 KB  
Article
Coupled Processes at Micro- and Macroscopic Levels for Long-Term Performance Assessment Studies of Nuclear Waste Repositories
by Hua Shao, Eike Radeisen, Jürgen Hesser, Wenqing Wang and Olaf Kolditz
Minerals 2024, 14(5), 453; https://doi.org/10.3390/min14050453 - 25 Apr 2024
Cited by 1 | Viewed by 1664
Abstract
Performance assessment of nuclear waste repositories requires state-of-the-art knowledge of radionuclide transport properties. Additionally, the short-term development under thermal pulses and the long-term development of the near field—due to influences such as gas generation—must be evaluated. Key thermal-hydro-mechanical-chemical processes are strongly coupled on [...] Read more.
Performance assessment of nuclear waste repositories requires state-of-the-art knowledge of radionuclide transport properties. Additionally, the short-term development under thermal pulses and the long-term development of the near field—due to influences such as gas generation—must be evaluated. Key thermal-hydro-mechanical-chemical processes are strongly coupled on different spatial and temporal scales. To understand these coupling mechanisms, numerous material models and numerical codes have been developed. However, the existing constitutive approaches—which have been adapted to describe small-scale laboratory experiments and validated against real-scale field observations—are often unable to capture long-term material behavior with sufficient precision. To build the confidence, a more comprehensive understanding of the system at micro- and macroscopic scales is required. Most observed macroscopic processes result from microscopic changes in the crystal structure and/or crystalline aggregates, as well as changes in material properties under the influence of various factors. To characterize these physical fields in crystals, microscopic investigations, such as visualization, or geophysical methods are introduced to verify the understanding at the microscale. Two cases are demonstrated for the presented concept using microscale information: one deals with the mechanically and thermally driven migration of fluid inclusions in rock salt, the other with dilatancy-controlled gas transport in water-saturated clay material. Full article
Show Figures

Figure 1

Back to TopTop