Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = thermal-flow diagnostics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3813 KB  
Article
Three-Electrode Dynamic Electrochemical Impedance Spectroscopy as an Innovative Diagnostic Tool for Advancing Redox Flow Battery Technology
by Eliza Hałas, Wojciech Bącalski, Łukasz Gaweł, Paweł Ślepski and Joanna Krakowiak
Energies 2026, 19(1), 256; https://doi.org/10.3390/en19010256 - 3 Jan 2026
Viewed by 309
Abstract
Vanadium redox flow batteries (VRFBs) experience performance losses driven by electrode ageing, yet the underlying mechanisms remain poorly resolved under operational conditions. This work presents a novel application of dynamic electrochemical impedance spectroscopy (DEIS) in both full-cell and three-electrode configurations to monitor kinetic [...] Read more.
Vanadium redox flow batteries (VRFBs) experience performance losses driven by electrode ageing, yet the underlying mechanisms remain poorly resolved under operational conditions. This work presents a novel application of dynamic electrochemical impedance spectroscopy (DEIS) in both full-cell and three-electrode configurations to monitor kinetic and transport processes throughout complete charge–discharge cycles. Carbon felt electrodes subjected to thermal activation, chemical degradation, and electrochemical ageing were systematically examined to capture a broad range of ageing-induced modifications. Complementary electrochemical impedance spectroscopy (EIS) measurements at selected states of charge were performed to highlight the substantial differences between spectra recorded under load and at open-circuit conditions. The results reveal that the impedance response of the full cell is dominated by processes occurring at the negative electrode, and that ageing leads to increased charge-transfer resistance and enhanced state of charge-dependent variation. X-ray photoelectron spectroscopy (XPS) analysis confirms significant modifications in surface chemistry, including variations in the sp2/sp3 carbon distribution and the enrichment of oxygen-containing functional groups, which correlate with the observed electrochemical behavior. Overall, this study demonstrates—for the first time under realistic VRFB cycling conditions—that DEIS provides unique diagnostic capabilities, enabling mechanistic insights into electrode ageing that are inaccessible to conventional impedance approaches. Full article
(This article belongs to the Special Issue Innovations and Challenges in New Battery Generations)
Show Figures

Figure 1

15 pages, 1858 KB  
Article
Design and Validation of a High-Speed Miniaturized Thermocycler with Peltier Elements for Efficient PCR Thermal Cycling
by Passar Bamerni, Jan König, Lee-Ann Mistry, Katrin Schmitt and Jürgen Wöllenstein
Sensors 2025, 25(22), 7046; https://doi.org/10.3390/s25227046 - 18 Nov 2025
Viewed by 646
Abstract
We present a high-speed, miniaturized, Peltier-driven thermocycler for Polymerase Chain Reaction (PCR) with heating rates of 22.25 °C/s and cooling rates of 5.30 °C/s, using a standard aluminum block (a four-well section of a 96-well plate) and laterally arranged micro-thermoelectric coolers (TECs) to [...] Read more.
We present a high-speed, miniaturized, Peltier-driven thermocycler for Polymerase Chain Reaction (PCR) with heating rates of 22.25 °C/s and cooling rates of 5.30 °C/s, using a standard aluminum block (a four-well section of a 96-well plate) and laterally arranged micro-thermoelectric coolers (TECs) to induce predominantly horizontal heat flow. Simulations without copper preheating predict a cooling rate of 5.70 °C/s. Finite-element thermoelectric modeling (COMSOL 6.2) closely matches measurements. The selection of materials is guided by the introduction of the merit number Gβ that balances thermal diffusivity and volumetric heat capacity, enabling consistent comparison across candidate block materials. The performance of this system is evaluated against data reported in scientific literature, encompassing both recent academic developments and selected commercial systems that employ silver components to enhance thermal conductivity. Despite aluminum’s lower thermal conductivity, our device achieves superior thermal cycling rates, demonstrating that with innovative design, less expensive materials can compete with higher-performing ones. This work includes detailed numerical simulations, comparative analyses of block materials, design considerations, fabrication methods, and experimental validation. By integrating insights from current scientific research, this study contributes to the advancement of accessible and high-performance diagnostic technologies. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

20 pages, 7865 KB  
Article
Study on Development of Hydrogen Peroxide Generation Reactor with Pin-to-Water Atmospheric Discharges
by Sung-Young Yoon, Eun Jeong Hong, Junghyun Lim, Seungil Park, Sangheum Eom, Seong Bong Kim and Seungmin Ryu
Plasma 2025, 8(4), 41; https://doi.org/10.3390/plasma8040041 - 14 Oct 2025
Viewed by 983
Abstract
We present an experimentally validated, engineering-oriented framework for the design and operation of pin-to-water (PTW) atmospheric discharges to produce hydrogen peroxide (H2O2) on demand. Motivated by industrial needs for safe, point-of-use oxidant supply, we combine time-resolved diagnostics (FTIR, OES), [...] Read more.
We present an experimentally validated, engineering-oriented framework for the design and operation of pin-to-water (PTW) atmospheric discharges to produce hydrogen peroxide (H2O2) on demand. Motivated by industrial needs for safe, point-of-use oxidant supply, we combine time-resolved diagnostics (FTIR, OES), liquid-phase analysis (ion chromatography, pH, conductivity), and coupled plasma-chemistry/fluid simulations to link plasma state to aqueous H2O2 yield. Under the tested conditions (14.3 kHz, 0.2 kW; electrode to quartz wall distance 12–14 mm; coolant setpoints 0–40 °C), H2O2 concentration follows a reproducible non-monotonic trajectory: rapid accumulation during the early treatment (typical peak at ~15–25 min), followed by decline with continued operation. The decline coincides with a robust vibrational-temperature (Tvib) threshold near ~4900 K measured from N2 emission, and with concurrent NOX accumulation and bulk acidification. Global chemistry modeling and Fluent flow fields reproduce the observed trend and show that both vibrational excitation (kinetics) and convective transport (mass/heat transfer) determine the productive time window. Based on these results, we formulate practical design rules—electrode gap (power density), discharge current control, thermal/flow management, water quality, and OES-based Tvib monitoring with an automated stop rule—that maximize H2O2 yield while avoiding NOX-dominated suppression. The study provides a clear path for transforming mechanistic plasma insights into deployable, industrial H2O2 generator designs. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Figure 1

25 pages, 6178 KB  
Article
Thermo-Fluid Dynamic Performance of Self-Similar Dendritic Networks: CFD Analysis of Structural Isomers
by Vinicius Pepe, Antonio F. Miguel, Flávia Zinani and Luiz Rocha
Symmetry 2025, 17(10), 1715; https://doi.org/10.3390/sym17101715 - 13 Oct 2025
Viewed by 482
Abstract
This study investigates the asymmetric effects applying heat transfer as a diagnostic tool in dendritic networks with symmetrical branching, characterized by the geometric property of self-similarity. Using a Computational Fluid Dynamics (CFD) model, we analyze five structural isomers of a three-level dichotomous branching [...] Read more.
This study investigates the asymmetric effects applying heat transfer as a diagnostic tool in dendritic networks with symmetrical branching, characterized by the geometric property of self-similarity. Using a Computational Fluid Dynamics (CFD) model, we analyze five structural isomers of a three-level dichotomous branching network to evaluate the relationship between fluid dynamics, heat transfer, and geometric configuration. The main constraints are geometrical; that is, the volume at each branching level remains constant, and homothetic relationships respect the Hess–Murray law both for diameters and angles between sister tubes. The model considers an incompressible and stationary Newtonian fluid flow with Reynolds numbers ranging from 10 to 2000 and heat transfer in the range 1 to 1000 W/m2. Our results show that significant asymmetries in flow distribution and temperature profiles emerge in these symmetric structures, primarily due to the successive alignment of tubes between different branching levels. We found that the isomer with the lowest pressure drop is not the same as the one providing the most uniform flow distribution. Crucially, thermal analysis proves to be more sensitive than fluid dynamic analysis for detecting flow asymmetries, particularly at low Reynolds numbers less than 50 and q″ = 1000 W/m2. While heat transfer does not significantly alter the fluid dynamic asymmetry, its application as a diagnostic tool for identifying flow asymmetries is effective and crucial for such purposes. Full article
(This article belongs to the Special Issue Symmetry in Computational Fluid Dynamics)
Show Figures

Figure 1

16 pages, 3170 KB  
Article
Assessment of Attenuation Coefficient and Blood Flow at Depth in Pediatric Thermal Hand Injuries Using Optical Coherence Tomography: A Clinical Study
by Beke Sophie Larsen, Tina Straube, Kathrin Kelly, Robert Huber, Madita Göb, Julia Siebert, Lutz Wünsch and Judith Lindert
Eur. Burn J. 2025, 6(4), 54; https://doi.org/10.3390/ebj6040054 - 1 Oct 2025
Viewed by 539
Abstract
Background: Optical Coherence Tomography (OCT) is a high-resolution imaging technique capable of quantifying Blood Flow at Depth (BD) and the Attenuation Coefficient (AC). However, the clinical relevance of these parameters in burn assessment remains unclear. This study investigated whether OCT-derived metrics can differentiate [...] Read more.
Background: Optical Coherence Tomography (OCT) is a high-resolution imaging technique capable of quantifying Blood Flow at Depth (BD) and the Attenuation Coefficient (AC). However, the clinical relevance of these parameters in burn assessment remains unclear. This study investigated whether OCT-derived metrics can differentiate between superficial and deep pediatric hand burns. Method: This prospective, single-center study analyzed 73 OCT scans from 37 children with thermal hand injuries. A structured algorithm was used to evaluate AC and BD. Results: The mean AC was 1.61 mm−1 (SD ± 0.48), with significantly higher values in deep burns (2.11 mm−1 ± 0.53) compared to superficial burns (1.49 mm−1 ± 0.38; p < 0.001), reflecting increased optical density in more severe burns. BD did not differ significantly between burn depths, although superficial burns more often showed visible capillary networks. Conclusions: This is the first study to assess both AC and BD using OCT in pediatric hand burns. AC demonstrated potential as a diagnostic marker for burn depth, whereas BD had limited utility. Image quality limitations highlight the need for technical improvements to enhance OCT’s clinical application. Full article
Show Figures

Figure 1

32 pages, 2103 KB  
Review
Temperature Control in Microfluidic Devices: Approaches, Challenges, and Future Directions
by Faisal bin Nasser Sarbaland, Masashi Kobayashi, Daiki Tanaka, Risa Fujita, Nobuyuki Tanaka and Masahiro Furuya
Appl. Sci. 2025, 15(18), 9902; https://doi.org/10.3390/app15189902 - 10 Sep 2025
Cited by 1 | Viewed by 3067
Abstract
Accurate temperature regulation is essential in microfluidic apparatus, particularly for procedures such as polymerase chain reaction (PCR), cellular analysis, and chemical reactions that rely on stable thermal conditions. However, achieving temperature uniformity at the microscale remains challenging due to rapid heat dissipation, small [...] Read more.
Accurate temperature regulation is essential in microfluidic apparatus, particularly for procedures such as polymerase chain reaction (PCR), cellular analysis, and chemical reactions that rely on stable thermal conditions. However, achieving temperature uniformity at the microscale remains challenging due to rapid heat dissipation, small thermal mass, and intricate flow–heat interactions. This work reviews contemporary methodologies to enhance thermal control in microfluidic systems, including proportional–integral–derivative (PID) and fuzzy PID controllers, liquid metal-based sensing, thermoelectric cooling (TECs), and evaporation or integrated heating elements for precise thermal output management. Emerging fabrication technologies, such as additive manufacturing, enable the direct integration of heating elements and sensors within microchips, improving thermal efficiency and device compactness. Advanced materials, including carbon nanotubes infused with gallium and temperature-sensitive quantum dots, offer innovative, non-contact thermal monitoring capabilities. Furthermore, artificial intelligence-driven feedback systems present opportunities for adaptive, real-time thermal optimization. By consolidating these strategies, this review highlights pathways to develop more dependable, efficient, and application-ready microfluidic devices, with implications for diagnostics, research, and other practical uses. Full article
Show Figures

Figure 1

28 pages, 4828 KB  
Article
Study on Determining the Efficiency of a High-Power Hydrogenerator Using the Calorimetric Method
by Elisabeta Spunei, Dorian Anghel, Gheorghe Liuba, Cristian Paul Chioncel and Mihaela Martin
Energies 2025, 18(18), 4813; https://doi.org/10.3390/en18184813 - 10 Sep 2025
Viewed by 754
Abstract
The global energy crisis demands efficient electricity production solutions, especially for isolated communities where hydraulic energy can be harnessed sustainably. This paper presents a case study analyzing the efficiency of a 13,330 kW hydrogenerator, consisting of a bulb-type hydro-aggregate using the calorimetric method—a [...] Read more.
The global energy crisis demands efficient electricity production solutions, especially for isolated communities where hydraulic energy can be harnessed sustainably. This paper presents a case study analyzing the efficiency of a 13,330 kW hydrogenerator, consisting of a bulb-type hydro-aggregate using the calorimetric method—a viable alternative when testing at nominal load is not feasible due to technical limitations. The method involves measuring the thermal energy absorbed by the cooling water under three operating conditions: no-load unexcited, no-load excited, and symmetric three-phase short-circuit. Measurements followed IEC standards and were conducted with high-precision instruments for temperature, flow, voltage, and current. The results quantify mechanical, ventilation, iron, and copper losses, as well as additional losses via radiation and convection. Thermal analysis revealed significant heat accumulation in the rotor and stator windings, indicating the need for improved cooling solutions. The calorimetric method enables efficiency evaluation without interrupting generator operation, offering a valuable tool for diagnostics, predictive maintenance, and informed decisions on modernization. Furthermore, integrating an intelligent operational control system could enhance efficiency and improve the quality of the supplied energy, supporting long-term sustainability in hydroelectric power generation. Full article
(This article belongs to the Special Issue Novel and Emerging Energy Systems)
Show Figures

Figure 1

25 pages, 5780 KB  
Article
Investigation on the Vibration Induced by the Rotary-Shaft-Seal Condition in a Centrifugal Pump
by Jiamin Zou, Yin Luo, Yuejiang Han, Yakun Fan and Chao Wang
Sensors 2025, 25(17), 5399; https://doi.org/10.3390/s25175399 - 1 Sep 2025
Viewed by 1046
Abstract
During operation, failures in a centrifugal pump’s rotary shaft seal—such as wear, deformation, or thermal cracking—can adversely affect system performance. This study utilizes both theoretical and experimental methods to investigate the vibration characteristics of centrifugal pumps under different rotary-shaft-seal conditions. Vibration signals are [...] Read more.
During operation, failures in a centrifugal pump’s rotary shaft seal—such as wear, deformation, or thermal cracking—can adversely affect system performance. This study utilizes both theoretical and experimental methods to investigate the vibration characteristics of centrifugal pumps under different rotary-shaft-seal conditions. Vibration signals are collected and processed using empirical mode decomposition (EMD) and autoregressive (AR) modeling to generate an EMD-AR spectrum. The results show that rotary-shaft-seal failure leads to decreases in both the head and efficiency of the centrifugal pump. For improved operation stability, centrifugal pumps should operate at or slightly above their design flow rates (Qd), while avoiding low-flow conditions. Furthermore, the amplitude of the EMD-AR spectrum increases progressively as rotary-shaft-seal degradation worsens. Therefore, the EMD-AR spectrum provides a reliable diagnostic indicator for detecting rotary-shaft-seal damage. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

25 pages, 3418 KB  
Review
Review on the Theoretical and Practical Applications of Symmetry in Thermal Sciences, Fluid Dynamics, and Energy
by Nattan Roberto Caetano
Symmetry 2025, 17(8), 1240; https://doi.org/10.3390/sym17081240 - 5 Aug 2025
Cited by 2 | Viewed by 1718
Abstract
This literature review explores the role of symmetry in thermal sciences, fluid dynamics, and energy applications, emphasizing the theoretical and practical implications. Symmetry is a fundamental tool for simplifying complex problems, enhancing computational efficiency, and improving system design across multiple engineering and physics [...] Read more.
This literature review explores the role of symmetry in thermal sciences, fluid dynamics, and energy applications, emphasizing the theoretical and practical implications. Symmetry is a fundamental tool for simplifying complex problems, enhancing computational efficiency, and improving system design across multiple engineering and physics domains. Thermal and fluid processes are applied in several modern energy use technologies, essentially involving the complex, multidimensional interaction of fluid mechanics and thermodynamics, such as renewable energy applications, combustion diagnostics, or Computational Fluid Dynamics (CFD)-based optimization, where symmetry is highly considered to simplify geometric parameters. Indeed, the interconnection between experimental analysis and the numerical simulation of processes is an important field. Symmetry operates as a unifying principle, its presence determining everything from the stability of turbulent flows to the efficiency of nuclear reactors, revealing hidden patterns that transcend scales and disciplines. Rotational invariance in pipelines; rotors of hydraulic, thermal, and wind turbines, and in many other cases, for instance, not only lowers computational cost but also guarantees that solutions validated in the laboratory can be effectively scaled up to industrial applications, demonstrating its crucial role in bridging theoretical concepts and real-world implementation. Thus, a wide range of symmetry solutions is exhibited in this research area, the results of which contribute to the development of science and fast information for decision making in industry. In this review, essential findings from prominent research were synthesized, highlighting how symmetry has been conceptualized and applied in these contexts. Full article
(This article belongs to the Special Issue Symmetry in Thermal Fluid Sciences and Energy Applications)
Show Figures

Figure 1

27 pages, 4412 KB  
Review
Coupling Agents in Acoustofluidics: Mechanisms, Materials, and Applications
by Shenhao Deng, Yiting Yang, Menghui Huang, Cheyu Wang, Enze Guo, Jingui Qian and Joshua E.-Y. Lee
Micromachines 2025, 16(7), 823; https://doi.org/10.3390/mi16070823 - 19 Jul 2025
Cited by 2 | Viewed by 3609
Abstract
Acoustic coupling agents serve as critical interfacial materials connecting piezoelectric transducers with microfluidic chips in acoustofluidic systems. Their performance directly impacts acoustic wave transmission efficiency, device reusability, and reliability in biomedical applications. Considering the rapidly growing body of research in the field of [...] Read more.
Acoustic coupling agents serve as critical interfacial materials connecting piezoelectric transducers with microfluidic chips in acoustofluidic systems. Their performance directly impacts acoustic wave transmission efficiency, device reusability, and reliability in biomedical applications. Considering the rapidly growing body of research in the field of acoustic microfluidics, this review aims to serve as an all-in-one reference on the role of acoustic coupling agents and relevant considerations pertinent to acoustofluidic devices for anyone working in or seeking to enter the field of disposable acoustofluidic devices. To this end, this review seeks to summarize and categorize key aspects of acoustic couplants in the implementation of acoustofluidic devices by examining their underlying physical mechanisms, material classifications, and core applications of coupling agents in acoustofluidics. Gel-based coupling agents are particularly favored for their long-term stability, high coupling efficiency, and ease of preparation, making them integral to acoustic flow control applications. In practice, coupling agents facilitate microparticle trapping, droplet manipulation, and biosample sorting through acoustic impedance matching and wave mode conversion (e.g., Rayleigh-to-Lamb waves). Their thickness and acoustic properties (sound velocity, attenuation coefficient) further modulate sound field distribution to optimize acoustic radiation forces and thermal effects. However, challenges remain regarding stability (evaporation, thermal degradation) and chip compatibility. Further aspects of research into gel-based agents requiring attention include multilayer coupled designs, dynamic thickness control, and enhancing biocompatibility to advance acoustofluidic technologies in point-of-care diagnostics and high-throughput analysis. Full article
(This article belongs to the Special Issue Recent Development of Micro/Nanofluidic Devices, 2nd Edition)
Show Figures

Figure 1

42 pages, 23380 KB  
Review
A Review of Recent Research on Flow and Heat Transfer Analysis in Additively Manufactured Transpiration Cooling for Gas Turbines
by Kirttayoth Yeranee and Yu Rao
Energies 2025, 18(13), 3282; https://doi.org/10.3390/en18133282 - 23 Jun 2025
Cited by 9 | Viewed by 4415
Abstract
Advanced gas turbine cooling technologies are required to bridge the gap between turbine inlet temperatures and component thermal limits. Transpiration cooling has emerged as a promising method, leveraging porous structures to enhance cooling effectiveness. Recent advancements in additive manufacturing (AM) enable precise fabrication [...] Read more.
Advanced gas turbine cooling technologies are required to bridge the gap between turbine inlet temperatures and component thermal limits. Transpiration cooling has emerged as a promising method, leveraging porous structures to enhance cooling effectiveness. Recent advancements in additive manufacturing (AM) enable precise fabrication of complex transpiration cooling architectures, such as triply periodic minimal surface (TPMS) and biomimetic designs. This review analyzes AM-enabled transpiration cooling for gas turbines, elucidating key parameters, heat transfer mechanisms, and flow characteristics of AM-fabricated designs through experimental and numerical studies. Previous research has concluded that well-designed transpiration cooling achieves cooling effectiveness up to five times higher than the traditional film cooling methods, minimizes jet lift-off, improves temperature uniformity, and reduces coolant requirements. Optimized coolant controls, graded porosity designs, complex topologies, and hybrid cooling architectures further enhance the flow uniformity and cooling effectiveness in AM transpiration cooling. However, challenges remain, including 4–77% porosity shrinkage in perforated transpiration cooling for 0.5–0.06 mm holes, 15% permeability loss from defects, and 10% strength reduction in AM models. Emerging solutions include experimental validations using advanced diagnostics, high-fidelity multiphysics simulations, AI-driven and topology optimizations, and novel AM techniques, which aim at revolutionizing transpiration cooling for next-generation gas turbines operating under extreme conditions. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

25 pages, 1085 KB  
Review
Emerging Technologies and Integrated Strategies for Microbial Detection and Control in Fresh Produce
by Ayman Elbehiry, Eman Marzouk, Feras Alzaben, Abdulaziz Almuaither, Banan Abead, Mohammed Alamri, Abdulaziz M. Almuzaini and Akram Abu-Okail
Microorganisms 2025, 13(7), 1447; https://doi.org/10.3390/microorganisms13071447 - 21 Jun 2025
Cited by 8 | Viewed by 3907
Abstract
The global consumption of fresh and ready-to-eat (RTE) fruits and vegetables has surged due to increasing awareness of their nutritional benefits. However, this trend has been accompanied by a rise in foodborne illness outbreaks linked to microbial contamination. This narrative review synthesizes current [...] Read more.
The global consumption of fresh and ready-to-eat (RTE) fruits and vegetables has surged due to increasing awareness of their nutritional benefits. However, this trend has been accompanied by a rise in foodborne illness outbreaks linked to microbial contamination. This narrative review synthesizes current knowledge on the prevalence and diversity of foodborne pathogens in fresh produce, including bacterial, viral, and fungal agents. It critically evaluates both conventional and emerging detection methods, ranging from culture-based techniques and immunoassays to advanced molecular diagnostics, biosensors, flow cytometry (FC), and hyperspectral imaging (HSI). Additionally, this review discusses cutting-edge control strategies, such as natural antifungal agents, essential oils, biocontrol methods, and non-thermal technologies like cold plasma and UV-C treatment. Emphasis is placed on sampling methodologies, sustainability, One Health perspectives, and regulatory considerations. By highlighting recent technological advances and their limitations, this review aims to support the development of integrated, effective, and safe microbial control approaches for the fresh produce supply chain. Full article
(This article belongs to the Special Issue Microbial Safety and Beneficial Microorganisms in Foods)
Show Figures

Figure 1

13 pages, 2123 KB  
Article
CRISPR-Cas12a/RPA Dual-Readout Assay for Rapid Field Detection of Porcine Rotavirus with Visualization
by Xinjie Jiang, Yun Huang, Yi Jiang, Guang Yang, Xiaocong Zheng and Shuai Gao
Viruses 2025, 17(7), 872; https://doi.org/10.3390/v17070872 - 20 Jun 2025
Cited by 1 | Viewed by 1428
Abstract
PoRV is a significant etiological agent of neonatal diarrhea in piglets, resulting in substantial economic losses within the global swine industry due to elevated mortality rates and reduced productivity. To address the urgent need for accessible and rapid diagnostics in resource-limited settings, we [...] Read more.
PoRV is a significant etiological agent of neonatal diarrhea in piglets, resulting in substantial economic losses within the global swine industry due to elevated mortality rates and reduced productivity. To address the urgent need for accessible and rapid diagnostics in resource-limited settings, we have developed a CRISPR/Cas12a-based assay integrated with recombinase polymerase amplification (RPA) for the visual detection of PoRV. This platform specifically targets the conserved VP6 gene using optimized RPA primers and crRNA, harnessing Cas12a’s collateral cleavage activity to enable dual-readout via fluorescence or lateral flow dipsticks (LFDs). The assay demonstrates a detection limit of 102 copies/μL within 1 h, exhibiting no cross-reactivity with phylogenetically related pathogens such as Transmissible Gastroenteritis Virus (TGEV). By eliminating reliance on thermal cyclers or specialized equipment, this method is fully deployable in swine farms, veterinary clinics, or field environments. The lateral flow format provides immediate colorimetric results that require minimal technical expertise, while the fluorescence mode allows for semi-quantitative analysis. This study presents a robust and cost-effective platform for decentralized PoRV surveillance in swine populations, addressing the critical need for portable diagnostics in resource-limited settings and enhancing veterinary health management. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

26 pages, 3160 KB  
Article
Application of Mathematical Modeling and Numerical Simulation of Blood Biomarker Transport in Paper-Based Microdevices
by Carlos E. Zambra, Diógenes Hernandez, Jorge O. Morales-Ferreiro and Diego Vasco
Mathematics 2025, 13(12), 1936; https://doi.org/10.3390/math13121936 - 10 Jun 2025
Viewed by 917
Abstract
This study introduces a novel mathematical model tailored to the unique fluid dynamics of paper-based microfluidic devices (PBMDs), focusing specifically on the transport behavior of human blood plasma, albumin, and heat. Unlike previous models that depend on generic commercial software, our custom-developed computational [...] Read more.
This study introduces a novel mathematical model tailored to the unique fluid dynamics of paper-based microfluidic devices (PBMDs), focusing specifically on the transport behavior of human blood plasma, albumin, and heat. Unlike previous models that depend on generic commercial software, our custom-developed computational incorporates the Richards equation to extend Darcy’s law for more accurately capturing capillary-driven flow and thermal transport in porous paper substrates. The model’s predictions were validated through experimental data and demonstrated high accuracy in both two- and three-dimensional simulations. Key findings include new analytical expressions for uniform paper wetting after sudden geometric expansions and the discovery that plasma and albumin preferentially migrate along paper edges—a phenomenon driven by surface tension and capillary effects that varies with paper type. Additionally, heat transfer analysis indicates that a one-minute equilibration period is necessary for the reaction zone to reach ambient temperature, an important parameter for assay timing. These insights provide a deeper physical understanding of PBMD operation and establish a robust modeling tool that bridges experimental and computational approaches, offering a foundation for the optimized design of next-generation diagnostic devices for biomedical applications. Full article
(This article belongs to the Special Issue Computation, Modeling and Simulation for Nanofluidics)
Show Figures

Figure 1

16 pages, 1767 KB  
Article
Common Food-Wrap Film as a Cost-Effective and Readily Available Alternative to Thermoplastic Polyurethane (TPU) Membranes for Microfluidic On-Chip Valves and Pumps
by Huu Anh Minh Nguyen, Mark Volosov, Jessica Maffei, Dae Jung Martins Cruz and Roman Voronov
Micromachines 2025, 16(6), 657; https://doi.org/10.3390/mi16060657 - 30 May 2025
Viewed by 3389
Abstract
Microfluidic devices rely on precise fluid control to enable complex operations in diagnostics, chemical synthesis, and biological research. Central to this control are microvalves, which regulate on-chip flow but require flexible membranes for active operation. While the laser cutting of thermoplastics offers a [...] Read more.
Microfluidic devices rely on precise fluid control to enable complex operations in diagnostics, chemical synthesis, and biological research. Central to this control are microvalves, which regulate on-chip flow but require flexible membranes for active operation. While the laser cutting of thermoplastics offers a fast, automated method for fabricating rigid microfluidic components, integrating flexible elements like valves and pumps remains a key challenge. Thermoplastic polyurethane (TPU) membranes have been adopted to address this need but are costly and difficult to procure reliably. In this study, we present commercial food-wrap film (FWF) as a low-cost, widely available alternative membrane material. We demonstrate FWF’s compatibility with laser-cut thermoplastic microfluidic devices by successfully fabricating Quake-style valves and peristaltic pumps. FWF valves maintained reliable sealing at 40 psi, maintained stable flow rates of ~1.33 μL/min during peristaltic operation, and sustained over one million continuous actuation cycles without performance degradation. Burst pressure testing confirmed robustness up to 60 psi. Additionally, FWF’s thermal resistance up to 140 °C enabled effective thermal bonding with PMMA layers, simplifying device assembly. These results establish FWF as a viable substitute for TPU membranes, offering an accessible and scalable solution for microfluidic device fabrication, particularly in resource-limited settings where TPU availability is constrained. Full article
Show Figures

Figure 1

Back to TopTop