Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (884)

Search Parameters:
Keywords = thermal stability of proteins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2994 KiB  
Article
Structural Insights and Calcium-Switching Mechanism of Fasciola hepatica Calcium-Binding Protein FhCaBP4
by Byeongmin Shin, Seonha Park, Ingyo Park, Hongchul Shin, Kyuhyeon Bang, Sulhee Kim and Kwang Yeon Hwang
Int. J. Mol. Sci. 2025, 26(15), 7584; https://doi.org/10.3390/ijms26157584 - 5 Aug 2025
Abstract
Fasciola hepatica remains a global health and economic concern, and treatment still relies heavily on triclabendazole. At the parasite–host interface, F. hepatica calcium-binding proteins (FhCaBPs) have a unique EF-hand/DLC-like domain fusion found only in trematodes. This makes it a parasite-specific target for small [...] Read more.
Fasciola hepatica remains a global health and economic concern, and treatment still relies heavily on triclabendazole. At the parasite–host interface, F. hepatica calcium-binding proteins (FhCaBPs) have a unique EF-hand/DLC-like domain fusion found only in trematodes. This makes it a parasite-specific target for small compounds and vaccinations. To enable novel therapeutic strategies, we report the first elevated-resolution structure of a full-length FhCaBP4. The apo structure was determined at 1.93 Å resolution, revealing a homodimer architecture that integrates an N-terminal, calmodulin-like, EF-hand pair with a C-terminal dynein light chain (DLC)-like domain. Structure-guided in silico mutagenesis identified a flexible, 16-residue β4–β5 loop (LTGSYWMKFSHEPFMS) with an FSHEPF core that demonstrates greater energetic variability than its FhCaBP2 counterpart, likely explaining the distinct ligand-binding profiles of these paralogs. Molecular dynamics simulations and AlphaFold3 modeling suggest that EF-hand 2 acts as the primary calcium-binding site, with calcium coordination inducing partial rigidification and modest expansion of the protein structure. Microscale thermophoresis confirmed calcium as the major ligand, while calmodulin antagonists bound with lower affinity and praziquantel demonstrated no interaction. Thermal shift assays revealed calcium-dependent stabilization and a merger of biphasic unfolding transitions. These results suggest that FhCaBP4 functions as a calcium-responsive signaling hub, with an allosterically coupled EF-hand–DLC interface that could serve as a structurally tractable platform for drug targeting in trematodes. Full article
(This article belongs to the Special Issue Calcium Homeostasis of Cells in Health and Disease: Third Edition)
Show Figures

Figure 1

20 pages, 1743 KiB  
Article
Encapsulation of Lactobacillus reuteri in Chia–Alginate Hydrogels for Whey-Based Functional Powders
by Alma Yadira Cid-Córdoba, Georgina Calderón-Domínguez, María de Jesús Perea-Flores, Alberto Peña-Barrientos, Fátima Sarahi Serrano-Villa, Rigoberto Barrios-Francisco, Marcela González-Vázquez and Rentería-Ortega Minerva
Gels 2025, 11(8), 613; https://doi.org/10.3390/gels11080613 - 4 Aug 2025
Viewed by 226
Abstract
This study aimed to develop a functional powder using whey and milk matrices, leveraging the protective capacity of chia–alginate hydrogels and the advantages of electrohydrodynamic spraying (EHDA), a non-thermal technique suitable for encapsulating probiotic cells under stress conditions commonly encountered in food processing. [...] Read more.
This study aimed to develop a functional powder using whey and milk matrices, leveraging the protective capacity of chia–alginate hydrogels and the advantages of electrohydrodynamic spraying (EHDA), a non-thermal technique suitable for encapsulating probiotic cells under stress conditions commonly encountered in food processing. A hydrogel matrix composed of chia seed mucilage and sodium alginate was used to form a biopolymeric network that protected probiotic cells during processing. The encapsulation efficiency reached 99.0 ± 0.01%, and bacterial viability remained above 9.9 log10 CFU/mL after lyophilization, demonstrating the excellent protective capacity of the hydrogel matrix. Microstructural analysis using confocal laser scanning microscopy (CLSM) revealed well-retained cell morphology and homogeneous distribution within the hydrogel matrix while, in contrast, scanning electron microscopy (SEM) showed spherical, porous microcapsules with distinct surface characteristics influenced by the encapsulation method. Encapsulates were incorporated into beverages flavored with red fruits and pear and subsequently freeze-dried. The resulting powders were analyzed for moisture, protein, lipids, carbohydrates, fiber, and color determinations. The results were statistically analyzed using ANOVA and response surface methodology, highlighting the impact of ingredient ratios on nutritional composition. Raman spectroscopy identified molecular features associated with casein, lactose, pectins, anthocyanins, and other functional compounds, confirming the contribution of both matrix and encapsulants maintaining the structural characteristics of the product. The presence of antioxidant bands supported the functional potential of the powder formulations. Chia–alginate hydrogels effectively encapsulated L. reuteri, maintaining cell viability and enabling their incorporation into freeze-dried beverage powders. This approach offers a promising strategy for the development of next-generation functional food gels with enhanced probiotic stability, nutritional properties, and potential application in health-promoting dairy systems. Full article
(This article belongs to the Special Issue Food Gels: Fabrication, Characterization, and Application)
Show Figures

Graphical abstract

25 pages, 2451 KiB  
Article
Complexation and Thermal Stabilization of Protein–Polyelectrolyte Systems via Experiments and Molecular Simulations: The Poly(acrylic acid)/Lysozyme Case
by Sokratis N. Tegopoulos, Sisem Ektirici, Vagelis Harmandaris, Apostolos Kyritsis, Anastassia N. Rissanou and Aristeidis Papagiannopoulos
Polymers 2025, 17(15), 2125; https://doi.org/10.3390/polym17152125 - 1 Aug 2025
Viewed by 346
Abstract
Protein–polyelectrolyte nanostructures assembled via electrostatic interactions offer versatile applications in biomedicine, tissue engineering, and food science. However, several open questions remain regarding their intermolecular interactions and the influence of external conditions—such as temperature and pH—on their assembly, stability, and responsiveness. This study explores [...] Read more.
Protein–polyelectrolyte nanostructures assembled via electrostatic interactions offer versatile applications in biomedicine, tissue engineering, and food science. However, several open questions remain regarding their intermolecular interactions and the influence of external conditions—such as temperature and pH—on their assembly, stability, and responsiveness. This study explores the formation and stability of networks between poly(acrylic acid) (PAA) and lysozyme (LYZ) at the nanoscale upon thermal treatment, using a combination of experimental and simulation measures. Experimental techniques of static and dynamic light scattering (SLS and DLS), Fourier transform infrared spectroscopy (FTIR), and circular dichroism (CD) are combined with all-atom molecular dynamics simulations. Model systems consisting of multiple PAA and LYZ molecules explore collective assembly and complexation in aqueous solution. Experimental results indicate that electrostatic complexation occurs between PAA and LYZ at pH values below LYZ’s isoelectric point. This leads to the formation of nanoparticles (NPs) with radii ranging from 100 to 200 nm, most pronounced at a PAA/LYZ mass ratio of 0.1. These complexes disassemble at pH 12, where both LYZ and PAA are negatively charged. However, when complexes are thermally treated (TT), they remain stable, which is consistent with earlier findings. Atomistic simulations demonstrate that thermal treatment induces partially reversible structural changes, revealing key microscopic features involved in the stabilization of the formed network. Although electrostatic interactions dominate under all pH and temperature conditions, thermally induced conformational changes reorganize the binding pattern, resulting in an increased number of contacts between LYZ and PAA upon thermal treatment. The altered hydration associated with conformational rearrangements emerges as a key contributor to the stability of the thermally treated complexes, particularly under conditions of strong electrostatic repulsion at pH 12. Moreover, enhanced polymer chain associations within the network are observed, which play a crucial role in complex stabilization. These insights contribute to the rational design of protein–polyelectrolyte materials, revealing the origins of association under thermally induced structural rearrangements. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Graphical abstract

46 pages, 5039 KiB  
Review
Harnessing Insects as Novel Food Ingredients: Nutritional, Functional, and Processing Perspectives
by Hugo M. Lisboa, Rogério Andrade, Janaina Lima, Leonardo Batista, Maria Eduarda Costa, Ana Sarinho and Matheus Bittencourt Pasquali
Insects 2025, 16(8), 783; https://doi.org/10.3390/insects16080783 - 30 Jul 2025
Viewed by 586
Abstract
The rising demand for sustainable protein is driving interest in insects as a raw material for advanced food ingredients. This review collates and critically analyses over 300 studies on the conversion of crickets, mealworms, black soldier flies, and other farmed species into powders, [...] Read more.
The rising demand for sustainable protein is driving interest in insects as a raw material for advanced food ingredients. This review collates and critically analyses over 300 studies on the conversion of crickets, mealworms, black soldier flies, and other farmed species into powders, protein isolates, oils, and chitosan-rich fibers with targeted techno-functional roles. This survey maps how thermal pre-treatments, blanch–dry–mill routes, enzymatic hydrolysis, and isoelectric solubilization–precipitation preserve or enhance the water- and oil-holding capacity, emulsification, foaming, and gelation, while also mitigating off-flavors, allergenicity, and microbial risks. A meta-analysis shows insect flours can absorb up to 3.2 g of water g−1, stabilize oil-in-water emulsions for 14 days at 4 °C, and form gels with 180 kPa strength, outperforming or matching eggs, soy, or whey in specific applications. Case studies demonstrate a successful incorporation at 5–15% into bakery, meat analogs and dairy alternatives without sensory penalties, and chitin-derived chitosan films extend the bread shelf life by three days. Comparative life-cycle data indicate 45–80% lower greenhouse gas emissions and land use than equivalent animal-derived ingredients. Collectively, the evidence positions insect-based ingredients as versatile, safe, and climate-smart tools to enhance food quality and sustainability, while outlining research gaps in allergen mitigation, consumer acceptance, and regulatory harmonization. Full article
(This article belongs to the Special Issue Insects and Their Derivatives for Human Practical Uses 3rd Edition)
Show Figures

Figure 1

16 pages, 2870 KiB  
Article
Development and Characterization of Modified Biomass Carbon Microsphere Plugging Agent for Drilling Fluid Reservoir Protection
by Miao Dong
Processes 2025, 13(8), 2389; https://doi.org/10.3390/pr13082389 - 28 Jul 2025
Viewed by 303
Abstract
Using common corn stalks as raw materials, a functional dense-structured carbon microsphere with good elastic deformation and certain rigid support was modified from biomass through a step-by-step hydrothermal method. The composition, thermal stability, fluid-loss reduction performance, and reservoir protection performance of the modified [...] Read more.
Using common corn stalks as raw materials, a functional dense-structured carbon microsphere with good elastic deformation and certain rigid support was modified from biomass through a step-by-step hydrothermal method. The composition, thermal stability, fluid-loss reduction performance, and reservoir protection performance of the modified carbon microspheres were studied. Research indicates that after hydrothermal treatment, under the multi-level structural action of a small amount of proteins in corn stalks, the naturally occurring cellulose, polysaccharide organic compounds, and part of the ash in the stalks are adsorbed and encapsulated within the long-chain network structure formed by proteins and cellulose. By attaching silicate nanoparticles with certain rigidity from the ash to the relatively stable chair-type structure in cellulose, functional dense-structured carbon microspheres were ultimately prepared. These carbon microspheres could still effectively reduce fluid loss at 200 °C. The permeability recovery value of the cores treated with modified biomass carbon microspheres during flowback reached as high as 88%, which was much higher than that of the biomass itself. With the dense network-like chain structure supplemented by small-molecule aldehydes and silicate ash, the subsequent invasion of drilling fluid was successfully prevented, and a good sealing effect was maintained even under high-temperature and high-pressure conditions. Moreover, since this functional dense-structured carbon microsphere achieved sealing through a physical mechanism, it did not cause damage to the formation, showing a promising application prospect. Full article
Show Figures

Figure 1

41 pages, 2824 KiB  
Review
Assessing Milk Authenticity Using Protein and Peptide Biomarkers: A Decade of Progress in Species Differentiation and Fraud Detection
by Achilleas Karamoutsios, Pelagia Lekka, Chrysoula Chrysa Voidarou, Marilena Dasenaki, Nikolaos S. Thomaidis, Ioannis Skoufos and Athina Tzora
Foods 2025, 14(15), 2588; https://doi.org/10.3390/foods14152588 - 23 Jul 2025
Viewed by 733
Abstract
Milk is a nutritionally rich food and a frequent target of economically motivated adulteration, particularly through substitution with lower-cost milk types. Over the past decade, significant progress has been made in the authentication of milk using advanced proteomic and chemometric approaches, with a [...] Read more.
Milk is a nutritionally rich food and a frequent target of economically motivated adulteration, particularly through substitution with lower-cost milk types. Over the past decade, significant progress has been made in the authentication of milk using advanced proteomic and chemometric approaches, with a focus on the discovery and application of protein and peptide biomarkers for species differentiation and fraud detection. Recent innovations in both top-down and bottom-up proteomics have markedly improved the sensitivity and specificity of detecting key molecular targets, including caseins and whey proteins. Peptide-based methods are especially valuable in processed dairy products due to their thermal stability and resilience to harsh treatment, although their species specificity may be limited when sequences are conserved across related species. Robust chemometric approaches are increasingly integrated with proteomic pipelines to handle high-dimensional datasets and enhance classification performance. Multivariate techniques, such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), are frequently employed to extract discriminatory features and model adulteration scenarios. Despite these advances, key challenges persist, including the lack of standardized protocols, variability in sample preparation, and the need for broader validation across breeds, geographies, and production systems. Future progress will depend on the convergence of high-resolution proteomics with multi-omics integration, structured data fusion, and machine learning frameworks, enabling scalable, specific, and robust solutions for milk authentication in increasingly complex food systems. Full article
Show Figures

Figure 1

22 pages, 2139 KiB  
Article
Nutritional and Technological Benefits of Pine Nut Oil Emulsion Gel in Processed Meat Products
by Berik Idyryshev, Almagul Nurgazezova, Zhanna Assirzhanova, Assiya Utegenova, Shyngys Amirkhanov, Madina Jumazhanova, Assemgul Baikadamova, Assel Dautova, Assem Spanova and Assel Serikova
Foods 2025, 14(15), 2553; https://doi.org/10.3390/foods14152553 - 22 Jul 2025
Viewed by 344
Abstract
A high intake of saturated fats and cholesterol from processed meats is associated with increased cardiovascular disease risk. This study aimed to develop a nutritionally enhanced Bologna-type sausage by partially replacing the beef content with a structured emulsion gel (EG) formulated from pine [...] Read more.
A high intake of saturated fats and cholesterol from processed meats is associated with increased cardiovascular disease risk. This study aimed to develop a nutritionally enhanced Bologna-type sausage by partially replacing the beef content with a structured emulsion gel (EG) formulated from pine nut oil, inulin, carrageenan, and whey protein concentrate. The objective was to improve its lipid quality and functional performance while maintaining product integrity and consumer acceptability. Three sausage formulations were prepared: a control and two variants with 7% and 10% EG, which substituted for the beef content. The emulsion gel was characterized regarding its physical and thermal stability. Sausages were evaluated for their proximate composition, fatty acid profile, cholesterol content, pH, cooking yield, water-holding capacity, emulsion stability, instrumental texture, microstructure (via SEM), oxidative stability (TBARSs), and sensory attributes. Data were analyzed using a one-way and two-way ANOVA with Duncan’s test (p < 0.05). The EG’s inclusion significantly reduced the total and saturated fat and cholesterol, while increasing protein and unsaturated fatty acids. The 10% EG sample achieved a PUFA/SFA ratio of 1.00 and an over 80% reduction in atherogenic and thrombogenic indices. Functional improvements were observed in emulsion stability, cooking yield, and water retention. Textural and visual characteristics remained within acceptable sensory thresholds. SEM images showed more homogenous matrix structures in the EG samples. TBARS values increased slightly over 18 days of refrigeration but remained below rancidity thresholds. This period was considered a pilot-scale evaluation of oxidative trends. Sensory testing confirmed that product acceptability was not negatively affected. The partial substitution of beef content with pine nut oil-based emulsion gel offers a clean-label strategy to enhance the nutritional quality of Bologna-type sausages while preserving functional and sensory performance. This approach may support the development of health-conscious processed meat products aligned with consumer and regulatory demands. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

11 pages, 838 KiB  
Review
The Role of Heat Shock Proteins in Insect Stress Response, Immunity, and Climate Adaptation
by Davide Banfi, Tommaso Bianchi, Maristella Mastore and Maurizio Francesco Brivio
Insects 2025, 16(7), 741; https://doi.org/10.3390/insects16070741 - 21 Jul 2025
Viewed by 390
Abstract
Heat shock proteins (HSPs) play a key role in enhancing insect resilience to abiotic and biotic stresses by preserving cellular integrity and modulating immune responses. This review summarizes the main functions of HSPs in insects, including protein stabilization, interaction with antioxidant systems, and [...] Read more.
Heat shock proteins (HSPs) play a key role in enhancing insect resilience to abiotic and biotic stresses by preserving cellular integrity and modulating immune responses. This review summarizes the main functions of HSPs in insects, including protein stabilization, interaction with antioxidant systems, and involvement in the innate immune response. The expression of HSPs under environmental conditions reflects their evolutionary adaptation to various stressors, including thermal changes, chemical exposure, and pathogens. Future research should focus on the interaction between HSPs and other stress response systems to improve our understanding of insect adaptation. Furthermore, in the context of global climate change, HSPs emerge as a crucial resilience factor and potential biomarkers for environmental monitoring. Full article
(This article belongs to the Special Issue Research on Insect Molecular Biology)
Show Figures

Figure 1

17 pages, 2912 KiB  
Article
Effects of Encapsulation and In Vitro Digestion on Anthocyanin Composition and Antioxidant Activity of Raspberry Juice Powder
by Mokgaetji Johanna Mokale, Sreejarani Kesavan Pillai and Dharini Sivakumar
Foods 2025, 14(14), 2492; https://doi.org/10.3390/foods14142492 - 16 Jul 2025
Viewed by 331
Abstract
Microbeads of raspberry extract were produced using encapsulation matrices alginate + pea protein isolate + psyllium mucilage, alginate + pea protein isolate + psyllium mucilage + okra, and alginate + pea protein isolate + psyllium mucilage + Aloe ferox gel + gallic [...] Read more.
Microbeads of raspberry extract were produced using encapsulation matrices alginate + pea protein isolate + psyllium mucilage, alginate + pea protein isolate + psyllium mucilage + okra, and alginate + pea protein isolate + psyllium mucilage + Aloe ferox gel + gallic acid using freeze-drying method. The microbeads were characterised and assessed for their effectiveness on the release, bioaccessibility, of anthocyanin components and antioxidant activities during in vitro digestion. Alginate + pea protein isolate + psyllium mucilage + Aloe ferox gel + gallic acid matrix showed the highest encapsulation efficiency of 91.60% while the lowest encapsulation efficiency was observed in alginate + pea protein isolate + psyllium mucilage + okra (69.94%). Scanning electron microscope images revealed spherical shapes and varying surface morphologies for different encapsulation matrices. Despite the differences observed in Fourier transform infrared spectra, microbeads showed similar thermal degradation patterns. X-ray diffractograms showed amorphous structures for different encapsulation matrices. Comparatively, alginate+ pea protein isolate + psyllium mucilage + Aloe ferox gel + gallic acid microbeads exhibited the highest bioaccessibility for total phenols (93.14%), cyanidin-3-O-sophoroside (54.61%), and cyanidin-3-O-glucoside (55.30%). The encapsulation matrices of different biopolymer combinations (alginate+ pea protein isolate+ psyllium mucilage, alginate + pea protein isolate + psyllium mucilage + okra, and alginate + pea protein isolate + psyllium mucilage + Aloe ferox gel + gallic acid) enhanced anthocyanin stability and protected it against in vitro degradation of bioactive compounds. Full article
Show Figures

Graphical abstract

15 pages, 2695 KiB  
Article
Gelling Characteristics and Mechanisms of Heat-Triggered Soy Protein Isolated Gels Incorporating Curdlan with Different Helical Conformations
by Pei-Wen Long, Shi-Yong Liu, Yi-Xin Lin, Lin-Feng Mo, Yu Wu, Long-Qing Li, Le-Yi Pan, Ming-Yu Jin and Jing-Kun Yan
Foods 2025, 14(14), 2484; https://doi.org/10.3390/foods14142484 - 16 Jul 2025
Viewed by 235
Abstract
This study investigated the effects of curdlan (CUR) with different helical conformations on the gelling behavior and mechanisms of heat-induced soy protein isolate (SPI) gels. The results demonstrated that CUR significantly improved the functional properties of SPI gels, including water-holding capacity (0.31–5.06% increase), [...] Read more.
This study investigated the effects of curdlan (CUR) with different helical conformations on the gelling behavior and mechanisms of heat-induced soy protein isolate (SPI) gels. The results demonstrated that CUR significantly improved the functional properties of SPI gels, including water-holding capacity (0.31–5.06% increase), gel strength (7.01–240.51% enhancement), textural properties, viscoelasticity, and thermal stability. The incorporation of CUR facilitated the unfolding and cross-linking of SPI molecules, leading to enhanced network formation. Notably, SPI composite gels containing CUR with an ordered triple-helix bundled structure exhibited superior gelling performance compared to other helical conformations, characterized by a more compact and uniform microstructure. This improvement was attributed to stronger hydrogen bonding interactions between the triple-helix CUR and SPI molecules. Furthermore, the entanglement of triple-helix CUR with SPI promoted the formation of a denser and more homogeneous interpenetrating polymer network. These findings indicate that triple-helix CUR is highly effective in optimizing the gelling characteristics of heat-induced SPI gels. This study provides new insights into the structure–function relationship of CUR in SPI-based gel systems, offering potential strategies for designing high-performance protein–polysaccharide composite gels. The findings establish a theoretical foundation for applications in the food industry. Full article
(This article belongs to the Special Issue Natural Polysaccharides: Structure and Health Functions)
Show Figures

Figure 1

20 pages, 2935 KiB  
Article
Multilayer Double Emulsion Encapsulation of Limosilactobacillus reuteri Using Pectin-Protein Systems
by Kattya Rodríguez, Diego Catalán, Tatiana Beldarraín-Iznaga, Juan Esteban Reyes-Parra, Keyla Tortoló Cabañas, Marbelis Valdés Veliz and Ricardo Villalobos-Carvajal
Foods 2025, 14(14), 2455; https://doi.org/10.3390/foods14142455 - 12 Jul 2025
Viewed by 424
Abstract
The development of bakeable foods supplemented with probiotics requires novel strategies to preserve the functionality of probiotic cells during thermal and gastrointestinal stress conditions. The objective of the present study was to evaluate the protective effect of multilayer double emulsions (W1/O/W [...] Read more.
The development of bakeable foods supplemented with probiotics requires novel strategies to preserve the functionality of probiotic cells during thermal and gastrointestinal stress conditions. The objective of the present study was to evaluate the protective effect of multilayer double emulsions (W1/O/W2) stabilized with pectin-protein complexes on the viability of Limosilactobacillus reuteri (Lr) under thermal treatment (95 °C, 30 min), storage (4 °C, 28 d), and simulated gastrointestinal conditions. Emulsions were prepared with whey protein isolate (WPI) or sodium caseinate (Cas) as outer aqueous phase emulsifiers, followed by pectin coating and ionic gelation with calcium. All emulsions were stable and exhibited high encapsulation efficiency (>92%) with initial viable counts of 9 log CFU/mL. Double emulsions coated with ionically gelled pectin showed the highest protection against heat stress and gastrointestinal conditions due to the formation of a denser layer with lower permeability, regardless of the type of protein used as an emulsifier. At the end of storage, Lr viability exceeded 7 log CFU/mL in cross-linked pectin-coated microcapsules. These microcapsules maintained >6 log CFU/mL after thermal treatment, while viability remained >6.5 log CFU/mL during digestion and >5.0 log CFU/mL after consecutive heat treatment and simulated digestion. According to these results, the combination of double emulsion, multilayer formation and ionic crosslinking emerges as a promising microencapsulation technique. This approach offers enhanced protection for probiotics against extreme thermal and digestive conditions compared to previous studies that only use double emulsions. These findings support the potential application of this encapsulation method for the formulation of functional bakeable products. Full article
Show Figures

Graphical abstract

15 pages, 3901 KiB  
Article
Construction and Anti-Cancer Activity of a Self-Assembly Composite Nano-Delivery System Loaded with Curcumin
by Liang Chen, Qiao Wu, Chen Yang, Xiulan Xin, Zhaochu Xu, Shuai Luo and Hao Liang
Molecules 2025, 30(14), 2940; https://doi.org/10.3390/molecules30142940 - 11 Jul 2025
Viewed by 291
Abstract
Natural products possess potent pharmacological activities and health benefits. However, drawbacks such as water insolubility, poor stability, and low bioavailability limit their practical applications. This research is dedicated to the development of suitable natural self-assembled nano-delivery systems to encapsulate natural molecule drugs, improving [...] Read more.
Natural products possess potent pharmacological activities and health benefits. However, drawbacks such as water insolubility, poor stability, and low bioavailability limit their practical applications. This research is dedicated to the development of suitable natural self-assembled nano-delivery systems to encapsulate natural molecule drugs, improving their dispersion and stability in aqueous solution. As a model drug, curcumin (Cur) was encapsulated in zinc–adenine nanoparticles (Zn–Adenine), based on the self-assembly of a coordination matrix material. Hyaluronic acid (HA) was further functionalized on the surface of Cur@(Zn–Adenine) to realize a tumor-targeted delivery system. The morphology was characterized through TEM and zeta potential analyses, while the encapsulation mechanism of the nanoparticles was researched via XRD and FTIR. The formed Cur@(Zn–Adenine)@HA nanoparticles exhibited good drug loading efficiency and drug loading rate. Moreover, compared to free Cur, Cur-loaded (Zn–Adenine)@HA showed enhanced pH stability and thermal stability. In particular, Cur@(Zn–Adenine)@HA demonstrated excellent biocompatibility and strong specificity for targeting CD44 protein on cancer cells. The above results indicate that (Zn–Adenine)@HA NPs can serve as an effective nano-delivery system for hydrophobic substances. Full article
Show Figures

Figure 1

38 pages, 783 KiB  
Review
Clean-Label Strategies for the Replacement of Nitrite, Ascorbate, and Phosphate in Meat Products: A Review
by Minhyeong Kim, Su Min Bae, Yeongmi Yoo, Jibin Park and Jong Youn Jeong
Foods 2025, 14(14), 2442; https://doi.org/10.3390/foods14142442 - 11 Jul 2025
Viewed by 585
Abstract
The clean-label movement has markedly increased consumer demand for meat products free from synthetic additives, such as sodium nitrite, ascorbate, and phosphate. This review summarizes strategies to replace these additives with natural alternatives while preserving the functional and quality properties of traditionally cured [...] Read more.
The clean-label movement has markedly increased consumer demand for meat products free from synthetic additives, such as sodium nitrite, ascorbate, and phosphate. This review summarizes strategies to replace these additives with natural alternatives while preserving the functional and quality properties of traditionally cured meats. Nitrite replacement commonly employs nitrate-rich vegetables, alongside nitrate-reducing starter cultures or pre-converted nitrite powders for adequate nitric oxide production and meat pigment stabilization. Ascorbate substitutes include vitamin C-rich materials and polyphenol-based antioxidants from green tea and rosemary, supporting nitrite reduction and contributing to meat pigment and oxidative stability. To compensate for phosphate functions, natural substitutes such as hydrocolloids, dietary fibers, protein isolates, and calcium powders from eggshells or oyster shells have shown partial success in restoring water-holding capacity, pH buffering, and textural integrity. In addition, non-thermal processing technologies, such as high-pressure processing, ultrasound, and cold plasma are explored as complementary strategies to enhance the efficacy of natural ingredients and support industrial scalability. However, challenges persist regarding ingredient variability, dose-dependent effects, and consistency in functional performance. Future research should focus on synergistic ingredient combinations, formulation standardization, and scalable application in industrial production to ensure the production of high-quality clean-label meat products. Full article
Show Figures

Figure 1

19 pages, 2922 KiB  
Article
Identification, Antioxidant and Immunomodulatory Activities of a Neutral Exopolysaccharide from Lactiplantibacillus plantarum DMDL 9010
by Yanyan Huang, Weiting Liang, Yunhui Lu, Jie Xiong, Dongmei Liu and Xiangze Jia
Nutrients 2025, 17(14), 2265; https://doi.org/10.3390/nu17142265 - 9 Jul 2025
Viewed by 324
Abstract
Objectives: This study investigated the properties of a neutral exopolysaccharide (EPS-LP1) with an average molecular weight of 55,637 Da, isolated from Lactiplantibacillus plantarum DMDL 9010 (LP9010). Results: The composition of EPS-LP1 includes galactose (Gal), glucose (Glu) and mannose (Man) in a molar ratio [...] Read more.
Objectives: This study investigated the properties of a neutral exopolysaccharide (EPS-LP1) with an average molecular weight of 55,637 Da, isolated from Lactiplantibacillus plantarum DMDL 9010 (LP9010). Results: The composition of EPS-LP1 includes galactose (Gal), glucose (Glu) and mannose (Man) in a molar ratio of 5.35:86.25:8.40. Notably, EPS-LP1 exhibits a smooth and rod-like surface along with thermal stability. Methylation combined with nuclear magnetic resonance analysis revealed that EPS-LP1 structured as t-Galp(1→, →6)-Glcp(1→, 4)-Glcp(1→ and →4,6)-Galp(1→), with relative molar ratio of 1.016:9.874:4.355:78.693:6.062, respectively. In the concentration range of 50 to 400 mg/mL, we observed the absence of cytotoxic effects from EPS-LP1 on RAW264.7 cells. Furthermore, EPS-LP1 demonstrated protective effects on RAW264.7 cells against oxidative damage by reducing the production of reactive oxygen species (ROS), malondialdehyde (MDA), and lactate dehydrogenase (LDH) release. Conversely, an increase in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and concentrations of glutathione (GSH) was observed. Immunoreactivity assays indicated that EPS-LP1 can effectively reduce the production of nitric oxide (NO) and inhibit the secretion of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Additionally, it inhibited the activation of the mitogen-activated protein kinase (MAPK)/nuclear factor-kappa B gene binding (NF-kB) signaling pathway. Conclusions: This research provides a foundation basis for further investigations into the neutral exopolysaccharide derived from LP9010. Full article
(This article belongs to the Special Issue Effects of Dietary Polysaccharides and Their Molecular Mechanisms)
Show Figures

Figure 1

13 pages, 3428 KiB  
Article
Multi-Parametric Study on Flexural Behavior of Wool–Flax Hybrid Composites Under Thermal Conditions
by Tsegaye Lemmi, David Ranz and Clara Luna Martin
Materials 2025, 18(14), 3219; https://doi.org/10.3390/ma18143219 - 8 Jul 2025
Viewed by 334
Abstract
The increasing demand for sustainable materials has intensified the interest in natural fiber-reinforced composites (NFRCs) as environmentally friendly alternatives to synthetic composites. However, NFRCs often face limitations in thermal stability, restricting their use in high-temperature environments. To address this, the present study explores [...] Read more.
The increasing demand for sustainable materials has intensified the interest in natural fiber-reinforced composites (NFRCs) as environmentally friendly alternatives to synthetic composites. However, NFRCs often face limitations in thermal stability, restricting their use in high-temperature environments. To address this, the present study explores the hybridization of cellulosic flax fibers with protein-based wool fibers to improve thermal stability without compromising mechanical integrity. Wool–flax hybrid composites were fabricated using a bio-based epoxy resin through a resin infusion technique with different fiber proportions. The flexural properties of these composites were evaluated under varying temperature conditions to assess the influence of fiber composition and thermal conditions. This study specifically examined the impact of wool fiber content on the flexural performance of the composites under thermal conditions, including behavior near and above the matrix’s glass transition temperature. The results showed that the flexural properties of the hybrid biocomposites were significantly affected by temperature. Compared with specimens tested at room temperature, the flexural modulus of all variants decreased by 85–94%, while the flexural strength declined by 79–85% at 120 °C, depending on the variant. The composite variant with a higher wool content (variant 3W) exhibited enhanced flexural performance, demonstrating an average of 15% greater flexural strength than other variants at 60 °C and 5% higher at 120 °C. These findings suggest that incorporating wool fibers into flax-based composites can effectively improve thermal stability while maintaining flexural properties, supporting the development of sustainable biocomposites for structural applications. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

Back to TopTop