Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (681)

Search Parameters:
Keywords = thermal spray coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2180 KiB  
Article
Study on Preparation of Nano-CeO2 Modified Aluminized Coating by Low Temperature Pack Aluminizing on γ-TiAl Intermetallic Compound
by Jiahui Song, Yunmei Long, Yifan He, Yichen Li, Dianqi Huang, Yan Gu, Xingyao Wang, Jinlong Wang and Minghui Chen
Coatings 2025, 15(8), 914; https://doi.org/10.3390/coatings15080914 - 5 Aug 2025
Viewed by 40
Abstract
TiAl alloy offers advantages including low density, high specific strength and stiffness, and excellent high-temperature creep resistance. It is widely used in the aerospace, automotive, and chemical sectors, as well as in other fields. However, at temperatures of 800 °C and above, it [...] Read more.
TiAl alloy offers advantages including low density, high specific strength and stiffness, and excellent high-temperature creep resistance. It is widely used in the aerospace, automotive, and chemical sectors, as well as in other fields. However, at temperatures of 800 °C and above, it forms a porous oxide film predominantly composed of TiO2, which fails to provide adequate protection. Applying high-temperature protective coatings is therefore essential. Oxides demonstrating protective efficacy at elevated temperatures include Al2O3, Cr2O3, and SiO2. The Pilling–Bedworth Ratio (PBR)—defined as the ratio of the volume of the oxide formed to the volume of the metal consumed—serves as a critical criterion for assessing oxide film integrity. A PBR value greater than 1 but less than 2 indicates superior film integrity and enhanced oxidation resistance. Among common oxides, Al2O3 exhibits a PBR value within this optimal range (1−2), rendering aluminum-based compound coatings the most extensively utilized. Aluminum coatings can be applied via methods such as pack cementation, thermal spraying, and hot-dip aluminizing. Pack cementation, being the simplest to operate, is widely employed. In this study, a powder mixture with the composition Al:Al2O3:NH4Cl:CeO2 = 30:66:3:1 was used to aluminize γ-TiAl intermetallic compound specimens via pack cementation at 600 °C for 5 h. Subsequent isothermal oxidation at 900 °C for 20 h yielded an oxidation kinetic curve adhering to the parabolic rate law. This treatment significantly enhanced the high-temperature oxidation resistance of the γ-TiAl intermetallic compound, thereby broadening its potential application scenarios. Full article
(This article belongs to the Special Issue High-Temperature Protective Coatings)
Show Figures

Figure 1

31 pages, 5261 KiB  
Review
Wear- and Corrosion-Resistant Coatings for Extreme Environments: Advances, Challenges, and Future Perspectives
by Subin Antony Jose, Zachary Lapierre, Tyler Williams, Colton Hope, Tryon Jardin, Roberto Rodriguez and Pradeep L. Menezes
Coatings 2025, 15(8), 878; https://doi.org/10.3390/coatings15080878 - 26 Jul 2025
Viewed by 762
Abstract
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well [...] Read more.
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well as cryogenic and space applications. A comprehensive overview of promising coating materials is provided, including ceramic-based coatings, metallic and alloy coatings, and polymer and composite systems, as well as nanostructured and multilayered architectures. These materials are deployed using advanced coating technologies such as thermal spraying (plasma spray, high-velocity oxygen fuel (HVOF), and cold spray), chemical and physical vapor deposition (CVD and PVD), electrochemical methods (electrodeposition), additive manufacturing, and in situ coating approaches. Key degradation mechanisms such as adhesive and abrasive wear, oxidation, hot corrosion, stress corrosion cracking, and tribocorrosion are examined with coating performance. The review also explores application-specific needs in aerospace, marine, energy, biomedical, and mining sectors operating in aggressive physiological environments. Emerging trends in the field are highlighted, including self-healing and smart coatings, environmentally friendly coating technologies, functionally graded and nanostructured coatings, and the integration of machine learning in coating design and optimization. Finally, the review addresses broader considerations such as scalability, cost-effectiveness, long-term durability, maintenance requirements, and environmental regulations. This comprehensive analysis aims to synthesize current knowledge while identifying future directions for innovation in protective coatings for extreme environments. Full article
(This article belongs to the Special Issue Advanced Tribological Coatings: Fabrication and Application)
Show Figures

Figure 1

17 pages, 6623 KiB  
Article
Numerical Study on Flow Field Optimization and Wear Mitigation Strategies for 600 MW Pulverized Coal Boilers
by Lijun Sun, Miao Wang, Peian Chong, Yunhao Shao and Lei Deng
Energies 2025, 18(15), 3947; https://doi.org/10.3390/en18153947 - 24 Jul 2025
Viewed by 173
Abstract
To compensate for the instability of renewable energy sources during China’s energy transition, large thermal power plants must provide critical operational flexibility, primarily through deep peaking. To investigate the combustion performance and wear and tear of a 600 MW pulverized coal boiler under [...] Read more.
To compensate for the instability of renewable energy sources during China’s energy transition, large thermal power plants must provide critical operational flexibility, primarily through deep peaking. To investigate the combustion performance and wear and tear of a 600 MW pulverized coal boiler under deep peaking, the gas–solid flow characteristics and distributions of flue gas temperature, wall heat flux, and wall wear rate in a 600 MW tangentially fired pulverized coal boiler under variable loads (353 MW, 431 MW, 519 MW, and 600 MW) are investigated in this study employing computational fluid dynamics numerical simulation method. Results demonstrate that increasing the boiler load significantly amplifies gas velocity, wall heat flux, and wall wear rate. The maximum gas velocity in the furnace rises from 20.9 m·s−1 (353 MW) to 37.6 m·s−1 (600 MW), with tangential airflow forming a low-velocity central zone and high-velocity peripheral regions. Meanwhile, the tangential circle diameter expands by ~15% as the load increases. The flue gas temperature distribution exhibits a “low-high-low” profile along the furnace height. As the load increases from 353 MW to 600 MW, the primary combustion zone’s peak temperature rises from 1750 K to 1980 K, accompanied by a ~30% expansion in the coverage area of the high-temperature zone. Wall heat flux correlates strongly with temperature distribution, peaking at 2.29 × 105 W·m−2 (353 MW) and 2.75 × 105 W·m−2 (600 MW) in the primary combustion zone. Wear analysis highlights severe erosion in the economizer due to elevated flue gas velocities, with wall wear rates escalating from 3.29 × 10−7 kg·m−2·s−1 (353 MW) to 1.23 × 10−5 kg·m−2·s−1 (600 MW), representing a 40-fold increase under full-load conditions. Mitigation strategies, including ash removal optimization, anti-wear covers, and thermal spray coatings, are proposed to enhance operational safety. This work provides critical insights into flow field optimization and wear management for large-scale coal-fired boilers under flexible load operation. Full article
Show Figures

Figure 1

19 pages, 4000 KiB  
Article
Insights of a Novel HEA Database Created from a Materials Perspective, Focusing on Wear and Corrosion Applications
by Lorena Betancor-Cazorla, Genís Clavé, Camila Barreneche and Sergi Dosta
Coatings 2025, 15(8), 865; https://doi.org/10.3390/coatings15080865 - 23 Jul 2025
Viewed by 325
Abstract
In recent years, interest in HEAs has increased exponentially due to their extraordinary properties, especially for wear- and corrosion-resistant applications. However, the main problem involves correctly selecting the HEA composition required for a specific application, as most of the data are scattered throughout [...] Read more.
In recent years, interest in HEAs has increased exponentially due to their extraordinary properties, especially for wear- and corrosion-resistant applications. However, the main problem involves correctly selecting the HEA composition required for a specific application, as most of the data are scattered throughout the literature, and only a limited number of models accurately predict the properties. Therefore, a database of 415 HEA alloys (bulk) and coatings obtained using thermal spray (TS) techniques has been created, compiled from scientific studies over the past 20 years. This tool collects information on physical, mechanical, and chemical properties, with a particular emphasis on corrosion and wear resistance. This facilitates material comparison and selection according to the needs of a specific application. In particular, the database highlights how composition and deposition technique also affect performance, identifying CoCrFeNi (CGS and in bulk) as a promising candidate for simultaneous wear and corrosion resistance. Full article
(This article belongs to the Special Issue Advances in Thermal Spray Coatings: Technologies and Applications)
Show Figures

Figure 1

15 pages, 3416 KiB  
Article
The Study of Tribological Characteristics of YSZ/NiCrAlY Coatings and Their Resistance to CMAS at High Temperatures
by Dastan Buitkenov, Zhuldyz Sagdoldina, Aiym Nabioldina and Cezary Drenda
Appl. Sci. 2025, 15(14), 8109; https://doi.org/10.3390/app15148109 - 21 Jul 2025
Viewed by 297
Abstract
This paper presents the results of a comprehensive study of the structure, phase composition, thermal corrosion, and tribological properties of multilayer gradient coatings based on YSZ/NiCrAlY obtained using detonation spraying. X-ray phase analysis showed that the coatings consist entirely of metastable tetragonal zirconium [...] Read more.
This paper presents the results of a comprehensive study of the structure, phase composition, thermal corrosion, and tribological properties of multilayer gradient coatings based on YSZ/NiCrAlY obtained using detonation spraying. X-ray phase analysis showed that the coatings consist entirely of metastable tetragonal zirconium dioxide (t’-ZrO2) phase stabilized by high temperature and rapid cooling during spraying. SEM analysis confirmed the multilayer gradient phase distribution and high density of the structure. Wear resistance, optical profilometry, wear quantification, and coefficient of friction measurements were used to evaluate the operational stability. The results confirm that the structural parameters of the coating, such as porosity and phase gradient, play a key role in improving its resistance to thermal corrosion and CMAS melt, which makes such coatings promising for use in high-temperature applications. It is shown that a dense and thick coating effectively prevents the penetration of aggressive media, providing a high barrier effect and minimal structural damage. Tribological tests in the temperature range from 21 °C to 650 °C revealed that the best characteristics are observed at 550 °C: minimum coefficient of friction (0.63) and high stability in the stage of stable wear. At room temperature and at 650 °C, there is an increase in wear due to the absence or destabilization of the protective layer. Full article
Show Figures

Figure 1

16 pages, 10539 KiB  
Article
Comparative Corrosion and Wear Behaviors of Cermet Coatings Obtained from Conventional and Recycled Powders
by Dino Woelk, Julian Eßler, Ion-Dragos Utu and Gabriela Marginean
Appl. Sci. 2025, 15(14), 7654; https://doi.org/10.3390/app15147654 - 8 Jul 2025
Viewed by 346
Abstract
Many components in industry are subjected to high loads during operation and therefore often do not reach their intended service life. Conventional steels frequently do not provide sufficient protection against wear and corrosion. One solution is to coat these components using methods like [...] Read more.
Many components in industry are subjected to high loads during operation and therefore often do not reach their intended service life. Conventional steels frequently do not provide sufficient protection against wear and corrosion. One solution is to coat these components using methods like thermal spraying to apply cermet coatings such as Cr3C2-NiCr or WC-Co-Cr. In light of increasingly strict environmental regulations, more eco-friendly alternatives are needed, especially ones that use little or no Cr, Ni, Co, or W. Another alternative is the recycling of powder materials, which is the focus of this research project. This study investigated whether filter dust from an HVOF system could be used to develop a new coating suitable for use in applications requiring resistance to wear and corrosion. This is challenging as the filter dusts have heterogeneous compositions and irregular particle sizes. Nevertheless, this recycled material, referred to as “Green Cermets” (GCs), offers previously untapped potential that may also be of ecological interest. An established WC-Co-Cr coating served as a reference. In addition to friction wear and corrosion resistance, the study also examined particle size distribution, hardness, microstructure, and susceptibility to crack formation at the interface and inside the coating. Even though the results revealed a diminished performance of the GC coatings relative to the conventional WC-CoCr, they may still be applicable in various industrial applications. Full article
Show Figures

Figure 1

31 pages, 4803 KiB  
Review
Advanced HVOF-Sprayed Carbide Cermet Coatings as Environmentally Friendly Solutions for Tribological Applications: Research Progress and Current Limitations
by Basma Ben Difallah, Yamina Mebdoua, Chaker Serdani, Mohamed Kharrat and Maher Dammak
Technologies 2025, 13(7), 281; https://doi.org/10.3390/technologies13070281 - 3 Jul 2025
Viewed by 541
Abstract
Thermally sprayed carbide cermet coatings, particularly those based on tungsten carbide (WC) and chromium carbide (Cr3C2) and produced with the high velocity oxygen fuel (HVOF) process, are used in tribological applications as environmentally friendly alternatives to electroplated hard chrome [...] Read more.
Thermally sprayed carbide cermet coatings, particularly those based on tungsten carbide (WC) and chromium carbide (Cr3C2) and produced with the high velocity oxygen fuel (HVOF) process, are used in tribological applications as environmentally friendly alternatives to electroplated hard chrome coatings. These functional coatings are especially prevalent in the automotive industry, offering excellent wear resistance. However, their mechanical and tribological performances are highly dependent on factors such as feedstock powders, spray parameters, and service conditions. This review aims to gain deeper insights into the above elements. It also outlines emerging advancements in HVOF technology—including in situ powder mixing, laser treatment, artificial intelligence integration, and the use of novel materials such as rare earth elements or transition metals—which can further enhance coating performance and broaden their applications to sectors such as the aerospace and hydro-machinery industries. Finally, this literature review focuses on process optimization and sustainability, including environmental and health impacts, critical material use, and operational limitations. It uses a life cycle assessment (LCA) as a tool for evaluating ecological performance and addresses current challenges such as exposure risks, process control constraints, and the push toward safer, more sustainable alternatives to traditional WC and Cr3C2 cermet coatings. Full article
Show Figures

Figure 1

14 pages, 4228 KiB  
Article
A Simple Method to Prepare Superhydrophobic Surfaces Based on Bamboo Cellulose, and an Investigation of Surface Properties
by Yu Wang, Junting Li, JingHai Guo, Tiancheng Yuan and Yanjun Li
Coatings 2025, 15(7), 740; https://doi.org/10.3390/coatings15070740 - 20 Jun 2025
Viewed by 426
Abstract
The present work introduces a sustainable, low-carbon method to fabricate durable, non-toxic superhydrophobic surfaces using bamboo-derived cellulose. Uniform TEMPO-carboxylated cellulose particles (TOC-Ps), approximately 2 μm in diameter, were synthesized through thermal polymerization and spray drying. These particles, featuring a nano-scale convex structure formed [...] Read more.
The present work introduces a sustainable, low-carbon method to fabricate durable, non-toxic superhydrophobic surfaces using bamboo-derived cellulose. Uniform TEMPO-carboxylated cellulose particles (TOC-Ps), approximately 2 μm in diameter, were synthesized through thermal polymerization and spray drying. These particles, featuring a nano-scale convex structure formed by intertwined TOC nanofibers, were applied to substrates and modified with low-surface-energy materials to achieve superhydrophobicity. At an optimal TOC-P mass ratio of 6%, the surface displayed a water contact angle of 156.2° and a sliding angle of 7°. The coating maintained superhydrophobicity after extensive mechanical testing—120 cm of abrasion, 100 bending cycles, and continuous trampling—and exhibited robust chemical stability across harsh conditions, including subjection to high temperatures, UV irradiation, and corrosive solutions (pH 2–12). The hierarchical micro–nano structure was found to enhance both hydrophobicity and durability, offering an environmentally friendly alternative for self-cleaning surfaces, textiles, and building applications. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

24 pages, 5461 KiB  
Article
Classification and Prediction of Unknown Thermal Barrier Coating Thickness Based on Hybrid Machine Learning and Terahertz Nondestructive Characterization
by Zhou Xu, Jianfei Xu, Yiwen Wu, Changdong Yin, Suqin Chen, Qiang Liu, Xin Ge, Luanfei Wan and Dongdong Ye
Coatings 2025, 15(6), 725; https://doi.org/10.3390/coatings15060725 - 17 Jun 2025
Viewed by 482
Abstract
Thickness inspection of thermal barrier coatings is crucial to safeguard the reliability of high-temperature components of aero-engines, but traditional destructive inspection methods are difficult to meet the demand for rapid assessment in the field. In this study, a new non-destructive testing method integrating [...] Read more.
Thickness inspection of thermal barrier coatings is crucial to safeguard the reliability of high-temperature components of aero-engines, but traditional destructive inspection methods are difficult to meet the demand for rapid assessment in the field. In this study, a new non-destructive testing method integrating terahertz time-domain spectroscopy and machine learning algorithms is proposed to systematically study the thickness inspection of 8YSZ coatings prepared by two processes, namely atmospheric plasma spraying (APS) and electron beam physical vapor deposition (EB-PVD). By optimizing the preparation process parameters, 620 sets of specimens with thicknesses of 100–400 μm are prepared, and three types of characteristic parameters, namely, time delay Δt, frequency shift Δf, and energy decay η, are extracted by combining wavelet threshold denoising and time-frequency joint analysis. A CNN-RF cascade model is constructed to realize coating process classification, and an attention-LSTM and SVR weighted fusion model is developed for thickness regression prediction. The results show that the multimodal feature fusion reduces the root-mean-square error of thickness prediction to 8.9 μm, which further improves the accuracy over the single feature model. The classification accuracy reaches 96.8%, of which the feature importance of time delay Δt accounts for 62%. The hierarchical modeling strategy reduces the detection mean absolute error from 6.2 μm to 4.1 μm. the method provides a high-precision solution for intelligent quality assessment of thermal barrier coatings, which is of great significance in promoting the progress of intelligent manufacturing technology for high-end equipment. Full article
Show Figures

Figure 1

20 pages, 14981 KiB  
Article
Multi-Scale Modelling of Residual Stress on Arbitrary Substrate Geometry in Atmospheric Plasma Spray Process
by Jose Martínez-García, Venancio Martínez-García and Andreas Killinger
Coatings 2025, 15(6), 723; https://doi.org/10.3390/coatings15060723 - 17 Jun 2025
Viewed by 612
Abstract
This work presents an exhaustive parametric study of the multi-scale residual stress analysis on arbitrary substrate geometry based on a one-way-coupled thermo-mechanical model in an Atmospheric Plasma Spray process. It was carried out by modifying key process parameters, such as substrate surface geometry, [...] Read more.
This work presents an exhaustive parametric study of the multi-scale residual stress analysis on arbitrary substrate geometry based on a one-way-coupled thermo-mechanical model in an Atmospheric Plasma Spray process. It was carried out by modifying key process parameters, such as substrate surface geometry, substrate pre-heating temperature, and coating thickness, in an Al2O3 coating process on an aluminium substrate. The relationship of these parameters to the generation of quenching stress, thermal stress and residual stress was analysed at three different sub-modelling scales, from the macroscopic dimension of the substrate to the microscopic dimension of the splats. The thermo-mechanical phenomena occurring during the deposition process at the microscopic level were discussed in the proposed cases. Understanding these phenomena helps to optimise the parameters of the coating process by identifying the underlying mechanisms responsible for the generation of residual stresses. The simulated residual stresses of the 200 μm Al2O3 outer coated aluminium cylinder were experimental validated using the incremental high-speed micro-hole drilling and milling method. Full article
(This article belongs to the Special Issue Advances in Surface Coatings for Wear and Corrosion Protection)
Show Figures

Figure 1

14 pages, 1812 KiB  
Article
Influence of Rigid Polyurethane Foam Production Technology on Cryogenic Water Uptake
by Vladimir Yakushin, Vanesa Dhalivala, Laima Vevere and Ugis Cabulis
Polymers 2025, 17(12), 1669; https://doi.org/10.3390/polym17121669 - 16 Jun 2025
Viewed by 482
Abstract
This study explores how production technology influences spray-applied rigid polyurethane (PUR) foam insulation’s cryogenic performance. In cryogenic applications such as liquid gas storage, insulation must minimise heat transfer and resist moisture ingress under severe thermal gradients. Experimental aluminium vessels were insulated with PUR [...] Read more.
This study explores how production technology influences spray-applied rigid polyurethane (PUR) foam insulation’s cryogenic performance. In cryogenic applications such as liquid gas storage, insulation must minimise heat transfer and resist moisture ingress under severe thermal gradients. Experimental aluminium vessels were insulated with PUR foam of varying thicknesses and surface conditions—rough, machined smooth, and with a urea-based protective coating—and then tested using dynamic boil-off of liquid nitrogen (LN2). Foam properties, including adhesion, mechanical strength, thermal expansion, thermal conductivity, and closed-cell content, were evaluated. The results revealed that thicker insulation reduced both effective thermal conductivity and moisture uptake. Although the urea-coated vessel showed minimal water absorption, the coating increased overall thermal conductivity due to its heat conduction and condensation behaviour. Moisture was primarily absorbed near the foam surface, and no cumulative effects were observed during repeated tests. The effective thermal conductivity was determined by interpolating boil-off data, confirming that insulation performance strongly depends on thickness, surface condition, and environmental humidity. These findings provide valuable guidance for the design and application of PUR foam insulation in cryogenic environments. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

18 pages, 8036 KiB  
Article
Research on High-Temperature Frictional Performance Optimization and Synergistic Effects of Phosphate-Based Composite Lubricating Coatings
by Yong Ding, Shengjun Wang, Youxin Zhou, Hongmei Lv and Baoping Yang
Coatings 2025, 15(6), 704; https://doi.org/10.3390/coatings15060704 - 11 Jun 2025
Viewed by 497
Abstract
In high-temperature, high-pressure, and corrosive industrial environments, frictional wear of metallic components stands as a critical determinant governing the long-term operational reliability of mechanical systems. To address the challenge of traditional lubricating coating failure under a broad temperature range (−50 to 500 °C), [...] Read more.
In high-temperature, high-pressure, and corrosive industrial environments, frictional wear of metallic components stands as a critical determinant governing the long-term operational reliability of mechanical systems. To address the challenge of traditional lubricating coating failure under a broad temperature range (−50 to 500 °C), this study developed a phosphate-based composite lubricating coating. Through air-spraying technology and orthogonal experimental optimization, the optimal formulation was determined as follows: binder/filler ratio = 6:4, 5% graphite, 15% MoS2, and 10% aluminum powder. Experimental results demonstrated that at 500 °C, the coating forms an Al–O–P cross-linked network structure, with MoS2 oxidation generating MoO3 and aluminum powder transforming into Al2O3, significantly enhancing density and oxidation resistance. Friction tests revealed that the composite coating achieves a friction coefficient as low as 0.12 at room temperature with a friction time of 260 min. At 500 °C, the friction coefficient stabilizes at 0.24, providing 40 min of effective protection. This technology not only resolves the high-temperature instability of traditional coatings but also ensures an environmentally friendly preparation process with no harmful emissions, offering a technical solution for the protection of high-temperature equipment such as thermal power plant boiler tubes and petrochemical reactors. Full article
Show Figures

Figure 1

11 pages, 3189 KiB  
Article
Robotic-Assisted XRF Testing System for In-Situ Areal Density Measurement of Light-Sensitive Explosive Coatings
by Chang Xu, Haibin Xu, Ke Wu, Bo Chen, Pengju Dong, Yaguang Sui and Hai Chen
Sensors 2025, 25(12), 3581; https://doi.org/10.3390/s25123581 - 6 Jun 2025
Viewed by 459
Abstract
The light-sensitive explosive (silver acetylide–silver nitrate, SASN) sprayed on structural surfaces can be synchronously initiated by intense pulsed flash, thereby simulating cold X-ray blow-off events characterized by thermal–mechanical coupling effects. By adjusting the areal density of SASN coatings, proportional blow-off impulse levels can [...] Read more.
The light-sensitive explosive (silver acetylide–silver nitrate, SASN) sprayed on structural surfaces can be synchronously initiated by intense pulsed flash, thereby simulating cold X-ray blow-off events characterized by thermal–mechanical coupling effects. By adjusting the areal density of SASN coatings, proportional blow-off impulse levels can be achieved. To address the challenge of in situ and non-destructive areal density measurement for SASN coatings, this study developed an X-ray fluorescence (XRF) detection system integrated with a six-axis spray robot. Excitation parameters (50 kV, 20 μA) and geometric configuration (6 cm focal distance) were optimized to establish a quadratic calibration model between Ag Kα counts and areal density (0–80 mg/cm2) with high correlation (R2 = 0.9987). Validation experiments were conducted on a uniformly coated SASN plate (20 × 20 cm) to evaluate the consistency between XRF and sampling methods. The XRF-measured areal density averaged 12.722 mg/cm2 with a coefficient of variation (CV) of 3.19%. The reference value obtained by the sampling method was 12.718 mg/cm2 (CV = 1.57%). The relative deviation between the two methods was only 0.03%, confirming the feasibility of XRF for the quantification of SASN coatings. The XRF system completed measurements in 1 h, achieving a 77.8% time reduction compared to conventional sampling (4.5 h), significantly enhancing efficiency. This work provides a reliable solution for in situ and non-destructive quality control of energetic material coatings. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

15 pages, 2090 KiB  
Article
A Simple Setup for Thermoelectric Power Factor of Thermoelectric Coatings
by Mingda Lv, Chunzhu Jiang and Guangjun Zhang
Coatings 2025, 15(6), 679; https://doi.org/10.3390/coatings15060679 - 5 Jun 2025
Viewed by 493
Abstract
Thermal spraying technique has potential in manufacturing economic, profitable thermoelectric coatings. In order to characterize the electrical performance of thermoelectric coatings more conveniently, a simple setup for thermoelectric power factor of thermoelectric coatings is designed and developed. The indigenously designed setup is simple [...] Read more.
Thermal spraying technique has potential in manufacturing economic, profitable thermoelectric coatings. In order to characterize the electrical performance of thermoelectric coatings more conveniently, a simple setup for thermoelectric power factor of thermoelectric coatings is designed and developed. The indigenously designed setup is simple and low-cost. The compact structure makes it easy to cooperate with existing heating furnace, allowing a fast measurement in a variable temperature range. The differential method and the off-axis four-point geometry are used in Seebeck coefficient and electrical resistivity measurement, respectively. The Spring-load unit and other details of construction of the setup are described specifically. The Seebeck coefficient of the plasma-sprayed higher manganese silicide (HMS) coating was measured to be approximately 132.35 μV/K at 150 °C, with measurements showing high linearity (R2 > 0.99). The setup demonstrated reliable electrical resistivity results for Cr20Ni80 alloy, closely matching published values (1.16 × 10−6 Ω·m vs. 1.10 × 10−6 Ω·m). HMS coating was also characterized from 50 °C to 500 °C to validate the setup on thermoelectric performance characterization across a wide temperature range. These results confirm the reliability of the developed setup. Full article
Show Figures

Figure 1

17 pages, 8024 KiB  
Article
Advanced Biomaterial Design: Optimizing Porous Titanium with Hydroxyapatite Coating for Improved Joint Prosthesis Performance and Bone Integration
by Katia Rivera-Vicuña, Armando Tejeda-Ochoa, Ruben Castañeda-Balderas, Jose Martin Herrera-Ramirez, Jose Ernesto Ledezma-Sillas, Víctor Manuel Orozco-Carmona, Imelda Olivas-Armendariz and Caleb Carreño-Gallardo
Processes 2025, 13(6), 1768; https://doi.org/10.3390/pr13061768 - 3 Jun 2025
Viewed by 662
Abstract
The success of orthopedic implants critically depends on achieving mechanical and biological compatibility with bone tissue. Traditional titanium implants often suffer from high stiffness, which induces stress shielding, a phenomenon that compromises implant integration and accelerates prosthetic loosening. This study introduces an innovative [...] Read more.
The success of orthopedic implants critically depends on achieving mechanical and biological compatibility with bone tissue. Traditional titanium implants often suffer from high stiffness, which induces stress shielding, a phenomenon that compromises implant integration and accelerates prosthetic loosening. This study introduces an innovative approach to mitigate these limitations by engineering a porous titanium substrate with a controlled microstructure. Utilizing sodium chloride as a spacer holder, an elution and sintering process was applied at 1250 °C under high vacuum conditions to reduce the material’s elastic modulus. By manipulating NaCl volume fractions (20%, 25%, 30%, and 35%), porous titanium samples were created with elastic moduli between 16.37 and 22.56 GPa, closely matching cortical bone properties (4 to 20 GPa). A hydroxyapatite coating applied via plasma thermal spraying further enhanced osseointegration of the material. Comprehensive characterization through X-ray diffraction, scanning electron microscopy, and compression testing validated the material’s structural integrity. In vitro cytotoxicity assessments using osteoblast cells demonstrated exceptional cell viability exceeding 70%, confirming the material’s biocompatibility. These findings represent a significant advancement in biomaterial design, offering a promising strategy for developing next-generation joint prostheses with superior mechanical and biological adaptation to bone tissue. Full article
(This article belongs to the Special Issue Synthesis, Application and Structural Analysis of Composite Materials)
Show Figures

Figure 1

Back to TopTop