Insights of a Novel HEA Database Created from a Materials Perspective, Focusing on Wear and Corrosion Applications
Abstract
1. Introduction
2. Methodology
2.1. Data Acquisition and Key Parameters
2.2. Database Records
3. Results: HEA Database Representation
4. Applications
4.1. Wear Resistance
4.2. Corrosion Resistance
4.3. Corrosion and Wear Resistance
5. Conclusions
- Composition and microstructure directly affect the material’s properties. BCC or FCC + BCC structures are harder and more compressive-resistant, while FCC structures are more ductile. Likewise, adding elements such as Al, Ti, Mo, Cr, and V also increases hardness. This enables the design of alloys with properties that adapt to the industry’s requirements.
- In terms of coatings, the deposition technique has a significant influence on performance. HVOF coatings tend to be harder and denser because of flame temperatures and deposition speeds. On the other hand, APS coatings, due to their greater porosity, are slightly softer. Finally, CGS coatings have the lowest values and need more optimization.
- The wear resistance of HEAs is generally high compared to that of commercial alloys, highlighting the good results of the AlCoCrFeMnNi and AlCoCrCuFeMnNi systems. The best bulk material is CoCrFeMnNiC0.6. However, this can change depending on the coating deposition parameters. Likewise, adding elements such as Al or Ti and ceramic oxides improves resistance, and FeCoNiCrSiAl0.5 is the best coating sprayed by APS, CoCrFeNi is the best HEA sprayed by CGS, and Al0.6TiCrFeCoNi is the best HEA sprayed by HVOF.
- The corrosion resistance of HEA coatings is excellent compared to that of other materials, indicating greater stability in aggressive environments. The best materials are those with a composition of AlCoCrFeMnNi and derivatives, the most superior of these being the CoCrFeNi alloy. Regarding coatings, HVOF coatings obtained better results than APS coatings; meanwhile, CGS coatings exhibit an intermediate range of values. Therefore, CoCrFeN is the best HEA for corrosion resistance sprayed by APS, CoCrFeNiMn is the best HEA sprayed by CGS, and CoNiCrMnFe is the best HEA obtained by HVOF.
- If there is a need for both corrosion and wear resistance at the same time, the main HEA candidate with the highest potential reported in the literature is CoCrFeNi. However, the number of HEA compositions currently in development is increasing exponentially, and these conclusions will need to be updated in the near future.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Nagini, M.; Murty, B.S. Advanced High-Entropy Alloys: A Next Generation Materials. Trans. Indian Natl. Acad. Eng. 2024, 9, 541–557. [Google Scholar] [CrossRef]
- Balaji, V.; Xavior, A. Development of high entropy alloys (HEAs): Current trends. Heliyon 2024, 10, e26464. [Google Scholar] [CrossRef] [PubMed]
- Miracle, D.B. High entropy alloys as a bold step forward in alloy development. Nat. Commun. 2019, 10, 1805. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, S. Research and Application Progress of High-Entropy Alloys. Coatings 2023, 13, 1916. [Google Scholar] [CrossRef]
- Bhaskaran Nair, R.; Supekar, R.; Morteza Javid, S.; Wang, W.; Zou, Y.; McDonald, A.; Mostaghimi, J.; Stoyanov, P. High-Entropy Alloy Coatings Deposited by Thermal Spraying: A Review of Strengthening Mechanisms, Performance Assessments and Perspectives on Future Applications. Metals 2023, 13, 579. [Google Scholar] [CrossRef]
- Nartita, R.; Ionita, D.; Demetrescu, I. A Modern Approach to HEAs: From Structure to Properties and Potential Applications. Crystals 2024, 14, 451. [Google Scholar] [CrossRef]
- Gromov, V.E.; Shlyarova, Y.A.; Konovalov, S.V.; Vorob’ev, S.V.; Peregudov, O.A. Application of High-Entropy Alloys. Steel Transl. 2021, 51, 700–704. [Google Scholar] [CrossRef]
- Meghwal, A.; Anupam, A.; Murty, B.S.; Berndt, C.C.; Kottada, R.S.; Ang, A.S.M. Thermal Spray High-Entropy Alloy Coatings: A Review. J. Therm. Spray Technol. 2020, 29, 857–893. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Y. Microhardness, wear resistance, and corrosion resistance of AlxCrFeCoNiCu high-entropy alloy coatings on aluminum by laser cladding. Opt. Laser Technol. 2021, 134, 106632. [Google Scholar] [CrossRef]
- Guo, Q.; Pan, Y.; Hou, H.; Zhao, Y. Predicting the hardness of high-entropy alloys based on compositions. Int. J. Refract. Met. Hard Mater. 2023, 112, 106116. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, W.; Yu, J.; Chen, C.; Zhou, L. The Role of Carbon in Wear Resistance of CoCrFeNiTi0.5 High-Entropy Alloy Layer. J. Mater. Eng. Perform. 2025, 34, 1417–1429. [Google Scholar] [CrossRef]
- Choi, S.; Yi, S.; Kim, J.; Shin, B.; Hyun, S. High-Entropy Alloys Properties Prediction Model by Using Artificial Neural Network Algorithm. Metals 2021, 11, 1559. [Google Scholar] [CrossRef]
- Wang, J.; Kwon, H.; Kim, H.S.; Lee, B.-J. A neural network model for high entropy alloy design. npj Comput. Mater. 2023, 9, 60. [Google Scholar] [CrossRef]
- Zhang, Y. Simulation and Calculation for Predicting Structures and Properties of High-Entropy Alloys; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Hou, S.; Sun, M.; Bai, M.; Lin, D.; Li, Y.; Liu, W. A hybrid prediction frame for HEAs based on empirical knowledge and machine learning. Acta Mater. 2022, 228, 117742. [Google Scholar] [CrossRef]
- Deshmukh, A.A.; Ranganathan, R. Recent advances in modelling structure-property correlations in high-entropy alloys. J. Mater. Sci. Technol. 2025, 204, 127–151. [Google Scholar] [CrossRef]
- Davis, J.R. (Ed.) Surface Engineering for Corrosion and Wear Resistance; ASM International: Detroit, MI, USA, 2001. [Google Scholar] [CrossRef]
- Gorsse, S.; Nguyen, M.H.; Senkov, O.N.; Miracle, D.B. Database on the mechanical properties of high entropy alloys and complex concentrated alloys. Data Brief 2018, 21, 2664–2678. [Google Scholar] [CrossRef] [PubMed]
- Zirari, T.; Trabadelo, V. A review on wear, corrosion, and wear-corrosion synergy of high entropy alloys. Heliyon 2024, 10, e25867. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Yang, B.; Liaw, K. Corrosion-Resistant High-Entropy Alloys: A Review. Metals 2017, 7, 43. [Google Scholar] [CrossRef]
- Supekar, R.; Nair, R.B.; McDonald, A.; Stoyanov, P. Sliding wear behavior of high entropy alloy coatings deposited through cold spraying and flame spraying: A comparative assessment. Wear 2023, 516–517, 204596. [Google Scholar] [CrossRef]
- Patel, P.; Nair, R.B.; Supekar, R.; McDonald, A.; Chromik, R.R.; Moreau, C.; Stoyanov, P. Enhanced wear resistance of AlCoCrFeMo high entropy coatings (HECs) through various thermal spray techniques. Surf. Coat. Technol. 2024, 477, 130311. [Google Scholar] [CrossRef]
- Nair, R.; Perumal, G.; McDonald, A. Effect of Microstructure on Wear and Corrosion Performance of Thermally Sprayed AlCoCrFeMo High-Entropy Alloy Coatings. Adv. Eng. Mater. 2022, 24, 2101713. [Google Scholar] [CrossRef]
- Shi, P.; Yu, Y.; Xiong, N.; Liu, M.; Qiao, Z.; Yi, G.; Yao, Q.; Zhao, G.; Xie, E.; Wang, Q. Microstructure and tribological behavior of a novel atmospheric plasma sprayed AlCoCrFeNi high entropy alloy matrix self-lubricating composite coatings. Tribol. Int. 2020, 151, 106470. [Google Scholar] [CrossRef]
- Meghwal, A.; Anupam, A.; Luzin, V.; Schulz, C.; Hall, C.; Murty, B.S.; Kottada, R.S.; Berndt, C.C.; Ang, A.S. Multiscale mechanical performance and corrosion behaviour of plasma sprayed AlCoCrFeNi high-entropy alloy coatings. J. Alloys Compd. 2021, 854, 157140. [Google Scholar] [CrossRef]
- Mu, Y.; Zhang, L.; Xu, L.; Prashanth, K.; Zhang, N.; Ma, X.; Jia, Y.; Xu, Y.; Jia, Y.; Wang, G. Frictional Wear and Corrosion Behavior of AlCoCrFeNi High-Entropy Alloy Coatings Synthesized by Atmospheric Plasma Spraying. Entropy 2020, 22, 740. [Google Scholar] [CrossRef] [PubMed]
- Noble, N.; Radhika, N.; Sathishkumar, M.; Saleh, B. Characterisation and property evaluation of High Entropy Alloy coating on 316L steel via thermal spray synthesis. Tribol. Int. 2023, 185, 108525. [Google Scholar] [CrossRef]
- Meghwal, A.; Singh, S.; Anupam, A.; King, H.J.; Schulz, C.; Hall, C.; Munroe, P.; Berndt, C.C.; Ang, A.S. Nano- and micro-mechanical properties and corrosion performance of a HVOF sprayed AlCoCrFeNi high-entropy alloy coating. J. Alloys Compd. 2022, 912, 165000. [Google Scholar] [CrossRef]
- Tian, L.; Fu, M.; Xiong, W. Microstructural Evolution of AlCoCrFeNiSi High-Entropy Alloy Powder during Mechanical Alloying and Its Coating Performance. Materials 2018, 11, 320. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.-K.; Wu, Y.-Q.; Chen, J.; Zhang, C. Microstructure and tribological properties of plasma sprayed FeCoNiCrSiAlx high entropy alloy coatings. Wear 2020, 448–449, 203209. [Google Scholar] [CrossRef]
- Jin, B.; Zhang, N.; Guan, S.; Zhang, Y.; Li, D. Microstructure and properties of laser re-melting FeCoCrNiAl0.5Six high-entropy alloy coatings. Surf. Coat. Technol. 2018, 349, 867–873. [Google Scholar] [CrossRef]
- Hsu, W.-L.; Yang, Y.-C.; Chen, C.-Y.; Yeh, J.-W. Thermal sprayed high-entropy NiCo0.6Fe0.2Cr1.5SiAlTi0.2 coating with improved mechanical properties and oxidation resistance. Intermetallics 2017, 89, 105–110. [Google Scholar] [CrossRef]
- Hsu, W.-L.; Murakami, H.; Yeh, J.-W.; Yeh, A.-C.; Shimoda, K. On the study of thermal-sprayed Ni0.2Co0.6Fe0.2CrSi0.2AlTi0.2 HEA overlay coating. Surf. Coat. Technol. 2017, 316, 71–74. [Google Scholar] [CrossRef]
- Löbel, M.; Lindner, T.; Kohrt, C.; Lampke, T. Processing of AlCoCrFeNiTi high entropy alloy by atmospheric plasma spraying. IOP Conf. Ser. Mater. Sci. Eng. 2017, 181, 012015. [Google Scholar] [CrossRef]
- Tian, L.-H.; Xiong, W.; Liu, C.; Lu, S.; Fu, M. Microstructure and Wear Behavior of Atmospheric Plasma-Sprayed AlCoCrFeNiTi High-Entropy Alloy Coating. J. Mater. Eng. Perform. 2016, 25, 5513–5521. [Google Scholar] [CrossRef]
- Löbel, M.; Lindner, T.; Mehner, T.; Lampke, T. Microstructure and Wear Resistance of AlCoCrFeNiTi High-Entropy Alloy Coatings Produced by HVOF. Coatings 2017, 7, 144. [Google Scholar] [CrossRef]
- Löbel, M.; Lindner, T.; Lampke, T. High-temperature wear behaviour of AlCoCrFeNiTi0.5 coatings produced by HVOF. Surf. Coat. Technol. 2020, 403, 126379. [Google Scholar] [CrossRef]
- Tian, L.; Feng, Z.; Xiong, W. Microstructure, Microhardness, and Wear Resistance of AlCoCrFeNiTi/Ni60 Coating by Plasma Spraying. Coatings 2018, 8, 112. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Yan, C.; Zhang, X.; Xiong, D. Microstructure and Tribological Properties of Plasma-Sprayed Al0.2Co1.5CrFeNi1.5Ti-Ag Composite Coating from 25 to 750 °C. J. Mater. Eng. Perform. 2020, 29, 1640–1649. [Google Scholar] [CrossRef]
- Chen, L.; Bobzin, K.; Zhou, Z.; Zhao, L.; Oete, M.; Königstein, T.; Tan, Z.; He, D. Wear behavior of HVOF-sprayed Al0.6TiCrFeCoNi high entropy alloy coatings at different temperatures. Surf. Coat. Technol. 2019, 358, 215–222. [Google Scholar] [CrossRef]
- Vallimanalan, A.; Babu, S.K.; Muthukumaran, S.; Murali, M.; Gaurav, V.; Mahendran, R. Corrosion behaviour of thermally sprayed Mo added AlCoCrNi high entropy alloy coating. Mater. Today 2020, 27, 2398–2400. [Google Scholar] [CrossRef]
- Zhu, J.; Cheng, X.; Zhang, L.; Hui, X.; Wu, Y.; Zheng, H.; Ren, Z.; Zhao, Y.; Wang, W.; Zhu, S.; et al. Microstructures, wear resistance and corrosion resistance of CoCrFeNi high entropy alloys coating on AZ91 Mg alloy prepared by cold spray. J. Alloys Compd. 2022, 925, 166698. [Google Scholar] [CrossRef]
- Mahaffey, J.; Vackel, A.; Whetten, S.; Melia, M.; Kustas, A.B. Structure Evolution and Corrosion Performance of CoCrFeMnNi High Entropy Alloy Coatings Produced via Plasma Spray and Cold Spray. J. Therm. Spray Technol. 2022, 31, 1143–1154. [Google Scholar] [CrossRef]
- Xiao, J.-K.; Tan, H.; Wu, Y.-Q.; Chen, J.; Zhang, C. Microstructure and wear behavior of FeCoNiCrMn high entropy alloy coating deposited by plasma spraying. Surf. Coat. Technol. 2020, 385, 125430. [Google Scholar] [CrossRef]
- Harfouche, M.M.; Alidokht, S.A.; Grandy, L.; Aghasibeig, M.; Mauzeroll, J.; Chromik, R.R. Microstructural, Micromechanical, Wear, and Corrosion Properties of Cold Spray and Laser-Assisted Cold Spray CrMnCoFeNi Cantor HEA Coatings. J. Therm. Spray Technol. 2024, 34, 550–569. [Google Scholar] [CrossRef]
- Silvello, A.; Cavaliere, P.; Yin, S.; Lupoi, R.; Cano, I.G.; Dosta, S. Microstructural, Mechanical and Wear Behavior of HVOF and Cold-Sprayed High-Entropy Alloys (HEAs) Coatings. J. Therm. Spray Technol. 2022, 31, 118–1206. [Google Scholar] [CrossRef]
- Yin, S.; Li, W.; Song, B.; Yan, X.; Kuang, M.; Xu, Y.; Wen, K.; Lupoi, R. Deposition of FeCoNiCrMn high entropy alloy (HEA) coating via cold spraying. J. Mater. Sci. Technol. 2018, 35, 1003–1007. [Google Scholar] [CrossRef]
- Patel, P.; Alidokht, S.A.; Sharifi, N.; Roy, A.; Harrington, K.; Stoyanov, P.; Chromik, R.R.; Moreau, C. Microstructural and Tribological Behavior of Thermal Spray CrMnFeCoNi High Entropy Alloy Coatings. J. Therm. Spray Technol. 2022, 31, 1285–1301. [Google Scholar] [CrossRef]
- Li, T.; Liu, Y.; Liu, B.; Guo, W.; Xu, L. Microstructure and Wear Behavior of FeCoCrNiMo0.2 High Entropy Coatings Prepared by Air Plasma Spray and the High Velocity Oxy-Fuel Spray Processes. Coatings 2017, 7, 151. [Google Scholar] [CrossRef]
- Wang, W.; Qi, W.; Xie, L.; Yang, X.; Li, J.; Zhang, Y. Microstructure and Corrosion Behavior of (CoCrFeNi)95Nb5 High-Entropy Alloy Coating Fabricated by Plasma Spraying. Materials 2019, 12, 694. [Google Scholar] [CrossRef] [PubMed]
- Abhijith, N.V.; Kumar, D.; Kalyansundaram, D. Development of Single-Stage TiNbMoMnFe High-Entropy Alloy Coating on 304L Stainless Steel Using HVOF Thermal Spray. J. Therm. Spray Technol. 2022, 31, 1032–1044. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, M.; Wu, Y.; Ma, C. Advances in High-Temperature Molten Salt-Based Carbon Nanofluid Research. Energies 2023, 16, 2178. [Google Scholar] [CrossRef]
- Sorkin, V.; Yu, Z.G.; Chen, S.; Tan, T.L.; Aitken, Z.; Zhang, Y.-W. First principles-based design of lightweight high entropy alloys. Sci. Rep. 2023, 13, 22549. [Google Scholar] [CrossRef] [PubMed]
- Oksa, M.; Turunen, E.; Suhonen, T.; Varis, T.; Hannula, S.-P. Optimization and Characterization of High Velocity Oxy-fuel Sprayed Coatings: Techniques, Materials, and Applications. Coatings 2011, 1, 17–52. [Google Scholar] [CrossRef]
- Gaur, U.; Kumari, E. Applications of Thermal Spray Coatings: A Review. J. Therm. Spray Eng. 2024, 4, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Nikbakht, R.; Alidokht, S.A.; Bessette, S.; Gauvin, R.; Chromik, R.R. New insights on bonding mechanism of FCC and BCC high entropy alloy microparticles upon supersonic impact using micromechanical adhesion test. Surf. Coat. Technol. 2024, 483, 130752. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Zhang, Y. Science and Technology in High-Entropy Alloys. Sci. China Mater. 2018, 61, 2–22. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Q.Y.; Li, W.; Li, D.Y. Microstructure, mechanical properties, and wear behavior of AlCoCrFeNi high-entropy alloy and AlCrFeNi medium-entropy alloy with WC addition. Wear 2023, 522, 204701. [Google Scholar] [CrossRef]
- ASM International. ASM Handbook: Friction, Lubrication, and Wear Technology; ASM International: Detroit, MI, USA, 1992; Volume 18. [Google Scholar]
- Andrade, C.; Alonso, C. Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method. Mater. Struct. 2004, 37, 623–643. [Google Scholar] [CrossRef]
Key Properties and Parameters | ||
---|---|---|
Numerical attributes | Physical and mechanical | Compressive yield strength, σy (MPa) |
Compressive ultimate strength, σmax (MPa) | ||
Tensile yield strength, σy (MPa) | ||
Tensile ultimate strength, σmax (MPa) | ||
Elongation, ε (%) | ||
Density, ρ (g/cm3) | ||
Hardness (HV) | ||
Young’s modulus, E (GPa) | ||
Wear resistance | Coefficient of friction, COF | |
Volume Wear Rate (mm3/Nm) | ||
Corrosion resistance | Corrosion current density, Icorr (µA/cm2) | |
Corrosion Rate (mm/year) | ||
Discrete attributes | Physical | Crystalline Structure |
Coating technique deposition | ||
Wear resistance | Wear test material |
HEAs Family | HEA | Coating Technique | Structure | Volume Wear Rate [*] | Other Properties | Corrosion Resistance | Ref. |
---|---|---|---|---|---|---|---|
AlCoCrFeMo | AlCoCrFeMo | CGS | BCC | 7.2–14 × 10−4 mm3/N·m (Al2O3) | Hardness: 313–409 HV COF: 0.49 | Icorr: 4.7 µA/cm2 CR: 0.036 mm/year | [23,24,25] |
AlCoCrFeMo | FS | BCC | 1–5.5 × 10−4 mm3/N·m (Al2O3) | Hardness: 546–632 HV COF: 0.58 | Icorr: 9.8 µA/cm2 CR: 0.064 mm/year | [23,25] | |
AlCoCrFeMo | HVOF | BCC | 0.4 × 10−4 mm3/N·m (Al2O3) | Hardness: 670–734 HV COF: 0.55 | - | [24] | |
AlCoCrFeNi | AlCoCrFeNi | APS | FCC + BCC | 2.5–3.9 × 10−4 mm3/N·m (Al2O3) | Hardness: 377–534 HV COF: 0.80–0.89 E: 99–113 GPa ρ: 6.7 g/cm3 | Icorr: 0.8 µA/cm2 | [20,26,27] |
AlCoCrFeNi | APS | FCC + BCC | - | Hardness: 504–609 HV COF: 0.38–0.49 E: 118–160 GPa ρ: 6.7 g/cm3 | Icorr: 33.9–81.3 µA/cm2 | [20,28] | |
AlCoCrFeNi | APS | BCC | 13 × 10−4 mm3/N·m (Steel) | Hardness: 177–801 HV ρ: 6.7 g/cm3 | Icorr: 0.5 µA/cm2 | [20,29] | |
AlCoCrFeNi | HVOF | BCC | 4.4 × 10−4 mm3/N·m (Al2O3) | Hardness: 635–791 HV COF: 0.79 E: 177–193 GPa ρ: 6.7 g/cm3 | Icorr: 0.06 µA/cm2 | [20,30] | |
AlCoCrFeNiSi | AlCoCrFeNiSi | APS | FCC + BCC | 0.4 × 10−4 mm3/N·m (Si3N4) | Hardness: 571–653 HV ρ: 5.7 g/cm3 | - | [20,31] |
FeCoNiCrSiAl0.5 | APS | FCC + BCC | 0.01–0.6 × 10−4 mm3/N·m (WC-Co) | Hardness: 418–655 HV COF: 0.55–0.65 | - | [32] | |
FeCoNiCrSiAl1.0 | APS | FCC + BCC | 0.07–0.4 × 10−4 mm3/N·m (WC-Co) | Hardness: 439–666 HV COF: 0.55–0.65 | - | [32] | |
FeCoNiCrSiAl1.5 | APS | FCC + BCC | 0.08–0.35 × 10−4 mm3/N·m (WC-Co) | Hardness: 426–568 HV COF: 0.55–0.65 | - | [32] | |
FeCoCrNiAl0.5Si0.5 | APS | FCC + BCC | 12.9 × 10−4 mm3/N·m (Si3N4) | Hardness: 500 HV COF: 0.48 | - | [33] | |
FeCoCrNiAl0.5Si1.0 | APS | FCC + BCC | 8.3 × 10−4 mm3/N·m (Si3N4) | Hardness: 669 HV COF: 0.40 | - | [33] | |
FeCoCrNiAl0.5Si1.5 | APS | BCC | 4.1 × 10−4 mm3/N·m (Si3N4) | Hardness: 889 HV COF: 0.30 | - | [33] | |
FeCoCrNiAl0.5Si2.0 | APS | BCC | 2.6 × 10−4 mm3/N·m (Si3N4) | Hardness: 1100 HV COF: 0.25 | - | [33] | |
AlCoCrFeNiSiTi | NiCo0.6Fe0.2Cr1.5SiAlTi0.2 | APS | BCC | 12 × 10−4 mm3/N·m (SiC) | Hardness: 429 HV | - | [34] |
Ni0.2Co0.6Fe0.2CrSi0.2AlTi0.2 | APS | BCC | 48.6 × 10−4 mm3/N·m (SiC) | Hardness: 429–770 HV | - | [35] | |
Ni0.2Co0.6Fe0.2CrSi0.2AlTi0.2 | HVOF | BCC | 51 × 10−4 mm3/N·m (SiC) | Hardness: 450–740 HV | - | [35] | |
AlCoCrFeNiTi | AlCoCrFeNiTi | APS | FCC + BCC | 0.05 × 10−4 mm3/N·m (Al2O3) | Hardness: 599 HV ρ: 6.2 g/cm3 | - | [20,36] |
AlCoCrFeNiTi | APS | FCC + BCC | 0.8 × 10−4 mm3/N·m (Si3N4) | Hardness: 642 HV ρ: 6.2 g/cm3 | - | [20,37] | |
AlCoCrFeNiTi | HVOF | BCC | 0.02 × 10−4 mm3/N·m (Al2O3) | Hardness: 648–812 HV ρ: 6.2 g/cm3 | - | [20,38] | |
AlCoCrFeNiTi0.5 | HVOF | BCC | 4.8 × 10−4 mm3/N·m (Al2O3) | Hardness: 579–641 HV COF: 1.3 ρ: 6.4 g/cm3 | - | [20,39] | |
AlCoCrFeNiTi/Ni60 | APS | FCC + BCC | 0.55 × 10−4 mm3/N·m (Si3N4) | Hardness: 676 HV COF: 0.75 | - | [40] | |
Al0.2Co1.5CrFeNi1.5Ti | APS | FCC + BCC | 0.4 × 10−4 mm3/N·m (Si3N4) | COF: 0.49 | - | [41] | |
Al0.2Co1.5CrFeNi1.5Ti-5Ag | APS | FCC | 0.1 × 10−4 mm3/N·m (Si3N4) | Hardness: 393 HV COF: 0.43 | - | [41] | |
Al0.6TiCrFeCoNi | HVOF | BCC | 1.04 × 10−4 mm3/N·m (Al2O3) | Hardness: 735–843 HV COF: 0.75 E: 157 GPa ρ: 6.6 g/cm3 | - | [20,42] | |
AlCoCrNiMo | AlCoCrMo0.5Ni | HVOF | BCC | - | Hardness: 665 HV | Icorr: 0.01 µA/cm2 CR: 0.004 mm/year | [43] |
AlCoCrNiMo | HVOF | BCC | - | Hardness: 665 HV | Icorr: 0.01 µA/cm2 CR: 0.003 mm/year | [43] | |
CoCrFeNi | CoCrFeNi | CGS | FCC | 0.4 × 10−4 mm3/N·m (Al2O3) | Hardness: 305–330 HV COF: 0.50 ρ: 8.2 g/cm3 | Icorr: 0.048–0.08 µA/cm2 | [20,44] |
CoCrFeNiMn | FeCoNiCrMn | APS | FCC | 2.3–5.3 × 10−4 mm3/N·m (WC-Co) | Hardness: 272–382 HV COF: 0.73 ρ: 8 g/cm3 | Icorr: 0.83 µA/cm2 | [20,45,46] |
FeCoNiCrMn | CGS | FCC | 1.4–4.9 × 10−4 mm3/N·m (WC-Co) | Hardness: 400–460 HV COF: 0.60–0.80 ρ: 8 g/cm3 | Icorr: 1.1–14 µA/cm2 CR: 0.001–0.02 mm/year | [20,45,47,48] | |
FeCoNiCrMn | CGS | FCC | 1.9–4.8 × 10−4 mm3/N·m (WC-Co) | Hardness: 337–398 HV COF: 0.73–0.80 ρ: 8 g/cm3 | Icorr: 5.5–6.7 µA/cm2 CR: 0.007 mm/year | [20,47,49] | |
FeCoNiCrMn | HVOF | FCC | 1.2 × 10−4 mm3/N·m (WC-Co) | Hardness: 390 HV COF: 0.81 ρ: 8 g/cm3 | Icorr: 0.29 µA/cm2 | [20,48] | |
FeCoNiCrMn | HVOF | FCC | 3.9 × 10−4 mm3/N·m (Al2O3) | Hardness: 390–423 HV COF: 0.55 ρ: 8 g/cm3 | - | [20,50] | |
CoCrFeNiMo | FeCoCrNiMo0.2 | APS | FCC | 0.4 × 10−4 mm3/N·m (Steel) | Hardness: 356 HV COF: 0.80 E: 91 GPa | - | [51] |
FeCoCrNiMo0.2 | HVOF | FCC | 4.75 × 10−4 mm3/N·m (Steel) | Hardness: 390 HV COF: 0.77 E: 127 GPa | - | [51] | |
CoCrFeNiNb | (CoCrFeNi)95Nb5 | APS | FCC | - | - | Icorr: 0.07 µA/cm2 | [52] |
TiNbMoMnFe | TiNbMoMnFe | HVOF | FCC + BCC | - | Hardness: 702–1021 HV | Icorr: 0.045–8.45 µA/cm2 CR: 0.003–0.12 mm/year | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Betancor-Cazorla, L.; Clavé, G.; Barreneche, C.; Dosta, S. Insights of a Novel HEA Database Created from a Materials Perspective, Focusing on Wear and Corrosion Applications. Coatings 2025, 15, 865. https://doi.org/10.3390/coatings15080865
Betancor-Cazorla L, Clavé G, Barreneche C, Dosta S. Insights of a Novel HEA Database Created from a Materials Perspective, Focusing on Wear and Corrosion Applications. Coatings. 2025; 15(8):865. https://doi.org/10.3390/coatings15080865
Chicago/Turabian StyleBetancor-Cazorla, Lorena, Genís Clavé, Camila Barreneche, and Sergi Dosta. 2025. "Insights of a Novel HEA Database Created from a Materials Perspective, Focusing on Wear and Corrosion Applications" Coatings 15, no. 8: 865. https://doi.org/10.3390/coatings15080865
APA StyleBetancor-Cazorla, L., Clavé, G., Barreneche, C., & Dosta, S. (2025). Insights of a Novel HEA Database Created from a Materials Perspective, Focusing on Wear and Corrosion Applications. Coatings, 15(8), 865. https://doi.org/10.3390/coatings15080865