Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (191)

Search Parameters:
Keywords = thermal reservoir evaluation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 54426 KiB  
Article
Artificial Intelligence-Driven Identification of Favorable Geothermal Sites Based on Radioactive Heat Production: Case Study from Western Türkiye
by Elif Meriç İlkimen, Cihan Çolak, Mahrad Pisheh Var, Hakan Başağaoğlu, Debaditya Chakraborty and Ali Aydın
Appl. Sci. 2025, 15(14), 7842; https://doi.org/10.3390/app15147842 - 13 Jul 2025
Viewed by 363
Abstract
In recent years, the exploration and utilization of geothermal energy have received growing attention as a sustainable alternative to conventional energy sources. Reliable, data-driven identification of geothermal reservoirs, particularly in crystalline basement terrains, is crucial for reducing exploration uncertainties and costs. In such [...] Read more.
In recent years, the exploration and utilization of geothermal energy have received growing attention as a sustainable alternative to conventional energy sources. Reliable, data-driven identification of geothermal reservoirs, particularly in crystalline basement terrains, is crucial for reducing exploration uncertainties and costs. In such geological settings, magnetic susceptibility, radioactive heat production, and seismic wave characteristics play a vital role in evaluating geothermal energy potential. Building on this foundation, our study integrates in situ and laboratory measurements, collected using advanced sensors from spatially diverse locations, with statistical and unsupervised artificial intelligence (AI) clustering models. This integrated framework improves the effectiveness and reliability of identifying clusters of potential geothermal sites. We applied this methodology to the migmatitic gneisses within the Simav Basin in western Türkiye. Among the statistical and AI-based models evaluated, Density-Based Spatial Clustering of Applications with Noise and Autoencoder-Based Deep Clustering identified the most promising and spatially confined subregions with high geothermal production potential. The potential geothermal sites identified by the AI models align closely with those identified by statistical models and show strong agreement with independent datasets, including existing drilling locations, thermal springs, and the distribution of major earthquake epicenters in the region. Full article
(This article belongs to the Special Issue Applications of Machine Learning in Earth Sciences—2nd Edition)
Show Figures

Figure 1

18 pages, 4609 KiB  
Article
Optimizing Solvent-Assisted SAGD in Deep Extra-Heavy Oil Reservoirs: Mechanistic Insights and a Case Study in Liaohe
by Ying Zhou, Siyuan Huang, Simin Yang, Qi Jiang, Zhongyuan Wang, Hongyuan Wang, Lifan Yue and Tengfei Ma
Energies 2025, 18(14), 3599; https://doi.org/10.3390/en18143599 - 8 Jul 2025
Viewed by 296
Abstract
This study investigates the feasibility and optimization of Expanding Solvent Steam-Assisted Gravity Drainage (ES-SAGD) in deep extra-heavy oil reservoirs, with a focus on the Shu 1-38-32 block in the Liaohe Basin. A modified theoretical model that accounts for steam quality reduction with increasing [...] Read more.
This study investigates the feasibility and optimization of Expanding Solvent Steam-Assisted Gravity Drainage (ES-SAGD) in deep extra-heavy oil reservoirs, with a focus on the Shu 1-38-32 block in the Liaohe Basin. A modified theoretical model that accounts for steam quality reduction with increasing reservoir depth was applied to evaluate SAGD performance. The results demonstrate that declining steam quality at greater burial depths significantly reduces thermal efficiency, the oil–steam ratio (OSR), and overall recovery in conventional SAGD operations. To overcome these challenges, numerical simulations were conducted to evaluate the effect of hexane co-injection in ES-SAGD. A 3 vol% hexane concentration was found to improve oil recovery by 17.3%, increase the peak oil production rate by 36.5%, and raise the cumulative oil–steam ratio from 0.137 to 0.218 compared to conventional SAGD. Sensitivity analyses further revealed that optimal performance is achieved with cyclic injection during the horizontal expansion stage and chamber pressures maintained above 3 MPa. Field-scale forecasting based on five SAGD well pairs showed that the proposed ES-SAGD configuration could enhance the cumulative recovery factor from 28.7% to 63.3% over seven years. These findings clarify the fundamental constraints imposed by steam quality in deep reservoirs and provide practical strategies for optimizing solvent-assisted SAGD operations under such conditions. Full article
Show Figures

Figure 1

15 pages, 2137 KiB  
Article
Performance Evolution and Prediction Model of Dam Polyurethane Insulation Materials Under Multi-Field Coupling Conditions in Hot Summer and Cold Winter Climate Zones
by Lingmin Liao, Hui Liang, Ting Zhao, Wei Han, Yun Dong, Da Zhang and Zhenhua Su
Materials 2025, 18(13), 3208; https://doi.org/10.3390/ma18133208 - 7 Jul 2025
Viewed by 389
Abstract
This study evaluates the performance degradation of spray rigid polyurethane foam (RPUF) insulation on reservoir dam structures under multi-physics coupling conditions. Focusing on characteristic environmental exposures in Hot Summer and Cold Winter (HSCW) climate zones, accelerated aging tests simulating coupled temperature–humidity effects were [...] Read more.
This study evaluates the performance degradation of spray rigid polyurethane foam (RPUF) insulation on reservoir dam structures under multi-physics coupling conditions. Focusing on characteristic environmental exposures in Hot Summer and Cold Winter (HSCW) climate zones, accelerated aging tests simulating coupled temperature–humidity effects were conducted to comparatively analyze the thermal resistance and durability evolution between unprotected and encapsulated RPUF configurations. Scanning electron microscopy (SEM), infrared spectroscopy (IR), and other methods were used to characterize and analyze the structure of RPUF. Research has shown that in HSCW climate zones, the thermal conductivity of RPUF gradually increases with the number of degradation cycles, and the insulation performance decreases, mainly due to the damage of the pore structure caused by temperature aging and the combined effect of moisture absorption aging. In comparison, the RPUF after protection can effectively slow down the rate and degree of decline of its insulation performance. On this basis, a time-varying prediction model for the thermal conductivity of RPUF under long-term service in HSCW climate environments was fitted, providing a scientific basis for the durability evaluation of reservoir dam insulation. Full article
Show Figures

Figure 1

16 pages, 1787 KiB  
Article
Experimental Adsorption Study of Pure CH4 and CO2 on Organic-Rich Shales from the Cesar-Ranchería Basin, Colombia
by Olga Patricia Ortiz Cancino and Nicolas Santos Santos
Processes 2025, 13(7), 2108; https://doi.org/10.3390/pr13072108 - 3 Jul 2025
Viewed by 304
Abstract
This study presents a comprehensive experimental evaluation of pure methane (CH4) and carbon dioxide (CO2) adsorption on organic-rich shale samples from the Cesar-Ranchería Basin, Colombia. Adsorption isotherms were measured at two temperatures (50 °C and 80 °C) and up [...] Read more.
This study presents a comprehensive experimental evaluation of pure methane (CH4) and carbon dioxide (CO2) adsorption on organic-rich shale samples from the Cesar-Ranchería Basin, Colombia. Adsorption isotherms were measured at two temperatures (50 °C and 80 °C) and up to 3 MPa using a manometric method. The data were fitted using the Langmuir model. The samples exhibit high total organic carbon (TOC) contents, ranging from 33.44% to 69.63%, but surprisingly low BET surface areas (1–7 m2/g), an uncommon combination in shale systems. Despite these low surface areas, the samples showed notable adsorption capacities, particularly for CO2, which consistently outperformed CH4 across all conditions. Maximum CO2 adsorption capacities reached up to 1.6 mol/kg, while CH4 values peaked at 0.49 mol/kg. The Langmuir parameters reflect a stronger affinity and greater capacity for CO2, supporting its potential role in enhanced gas recovery and CO2 sequestration. These findings contribute to understanding gas–shale interactions in thermally immature and highly organic-rich formations and highlight the importance of mineralogy and organic matter characteristics beyond surface area alone. This work provides novel insights into the adsorption behavior of Colombian shales and serves as a valuable reference for future gas in-place estimations and shale reservoir evaluations in similar geological contexts. Full article
Show Figures

Figure 1

21 pages, 5776 KiB  
Article
Thermal Effects on Fines Migration: Insights from Sand Pack Experiments
by Fernando Rengifo Barbosa, Rahman Miri, Mahmood Salimi and Alireza Nouri
Energies 2025, 18(13), 3471; https://doi.org/10.3390/en18133471 - 1 Jul 2025
Viewed by 283
Abstract
Mobilisation of in situ fine particles within oil sands reservoirs plays a critical role in permeability reduction and pore throat blockage, ultimately impairing reservoir performance and diminishing well productivity during thermal recovery operations. Variations in reservoir fluid conditions, such as changes in salinity [...] Read more.
Mobilisation of in situ fine particles within oil sands reservoirs plays a critical role in permeability reduction and pore throat blockage, ultimately impairing reservoir performance and diminishing well productivity during thermal recovery operations. Variations in reservoir fluid conditions, such as changes in salinity and temperature, trigger the detachment, transport, and redeposition of fines within porous media. This study introduces a novel high-pressure high-temperature (HP-HT) sand retention testing (SRT) facility designed for evaluating formation damage by fines migration in SAGD producer wells, under salinity change and elevated temperature conditions. Such an integrated approach accounting for conditions closer to near-wellbore SAGD producers has not been explored in previous SRT methodologies. Laboratory tests were conducted on synthetic sand mixtures replicating the particle size distribution (PSD) and sand composition of the McMurray Formation, packed over a slotted liner coupon as a common sand control device used in SAGD producer wells. Produced fines concentration analysis, permeability measurements, and post-mortem retention profile analysis were employed to explain the fines transport mechanisms. The results highlighted the influence of repulsive electrostatic forces in mobilising, transport mechanisms and retention of fine particles at elevated temperature and low salinity conditions. The findings of this paper provide a deeper understanding of fines migration in SAGD reservoirs, delivering insights for optimising field strategies to mitigate fines-related flow restrictions and enhance bitumen recovery efficiency. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

32 pages, 3326 KiB  
Article
Thermo-Hydro-Mechanical–Chemical Modeling for Pressure Solution of Underground sCO2 Storage
by Selçuk Erol
Modelling 2025, 6(3), 59; https://doi.org/10.3390/modelling6030059 - 1 Jul 2025
Cited by 1 | Viewed by 419
Abstract
Underground production and injection operations result in mechanical compaction and mineral chemical reactions that alter porosity and permeability. These changes impact the flow and, eventually, the long-term sustainability of reservoirs utilized for CO2 sequestration and geothermal energy. Even though mechanical and chemical [...] Read more.
Underground production and injection operations result in mechanical compaction and mineral chemical reactions that alter porosity and permeability. These changes impact the flow and, eventually, the long-term sustainability of reservoirs utilized for CO2 sequestration and geothermal energy. Even though mechanical and chemical deformations in rocks take place at the pore scale, it is important to investigate their impact at the continuum scale. Rock deformation can be examined using intergranular pressure solution (IPS) models, primarily for uniaxial compaction. Because the reaction rate parameters are estimated using empirical methods and the assumption of constant mineral saturation indices, these models frequently overestimate the rates of compaction and strain by several orders of magnitude. This study presents a new THMC algorithm by combining thermo-mechanical computation with a fractal approach and hydrochemical computations using PHREEQC to evaluate the pressure solution. Thermal stress and strain under axisymmetric conditions are calculated analytically by combining a derived hollow circle mechanical structure with a thermal resistance model. Based on the pore scale, porosity and its impact on the overall excessive stress and strain rate in a domain are estimated by applying the fractal scaling law. Relevant datasets from CO2 core flooding experiments are used to validate the proposed approach. The comparison is consistent with experimental findings, and the novel analytical method allows for faster inspection compared to numerical simulations. Full article
Show Figures

Figure 1

19 pages, 5474 KiB  
Article
Structure and Fractal Characteristics of Organic Matter Pores in Wufeng–Lower Longmaxi Formations in Southern Sichuan Basin, China
by Quanzhong Guan, Dazhong Dong, Bin Deng, Cheng Chen, Chongda Li, Kun Jiao, Yuehao Ye, Haoran Liang and Huiwen Yue
Fractal Fract. 2025, 9(7), 410; https://doi.org/10.3390/fractalfract9070410 - 25 Jun 2025
Viewed by 611
Abstract
Organic matter pores constitute a significant storage space in shale gas reservoirs, contributing to approximately 50% of the total porosity. This study employed a comprehensive approach, utilizing scanning electron microscopy, low-pressure N2 adsorption, thermal analysis, image statistics, and fractal theory, to quantitatively [...] Read more.
Organic matter pores constitute a significant storage space in shale gas reservoirs, contributing to approximately 50% of the total porosity. This study employed a comprehensive approach, utilizing scanning electron microscopy, low-pressure N2 adsorption, thermal analysis, image statistics, and fractal theory, to quantitatively characterize the structure and complexity of organic matter pores in the Wufeng–lower Longmaxi Formations (WLLFs). The WLLFs exhibit a high organic matter content, averaging 3.20%. Organic matter pores are typically well-developed, predominantly observed within organic matter clusters, organic matter–clay mineral complexes, and the internal organic matter of pyrite framboid. The morphology of these pores is generally elliptical and spindle-shaped, with the primary pore diameter displaying a bimodal distribution at 10~40 nm and 100~160 nm, potentially influenced by the observational limit of scanning electron microscopy. Shales from greater burial depths within the same gas well contain more organic matter pores; however, the development of organic matter pores in deep gas wells is roughly equivalent to that in medium and shallow gas wells. Fractal dimension values can be utilized to characterize the complexity of organic matter pores, with organic matter macropores (D>50) being more complex than organic matter mesopores (D2–50), which in turn are more complex than organic matter micropores (D<2). The development of macropores and mesopores is a key factor in the heterogeneity of organic matter pores. The complexity of organic matter pores in the same well increases gradually with the burial depth of the shale, and the complexity of organic matter pores in deep gas wells is roughly equivalent to that in medium and shallow gas wells. The structure and fractal characteristics of organic matter pores in shale are primarily controlled by components, diagenesis, tectonism, etc. The lower Longmaxi shale exhibit a high biogenic quartz content and robust hydrocarbon generation from organic matter. This composition effectively shields organic matter pores from multi-directional extrusion, leading to the formation of macropores and mesopores without specific orientation. High-quality shale sections (one and two sublayers) have relatively high fractal dimension D2–50 and D>50 values of organic matter pores and gas content. Consequently, the quality parameters of shale and fractal dimension characteristics can be comprehensively evaluated to identify high-quality shale sections. Full article
Show Figures

Figure 1

17 pages, 3979 KiB  
Article
Sugar Alcohols as Crosslinking Delay Additives for Fracturing Fluids
by Tariq Almubarak, Mohammed I. Alabdrabalnabi, Abdualilah Albaiz and Mohammed Yami
Gels 2025, 11(6), 457; https://doi.org/10.3390/gels11060457 - 15 Jun 2025
Viewed by 503
Abstract
The development of thermally stable fracturing fluids is essential for the effective stimulation of deep and low-permeability reservoirs. The stabilizing additives used in these fluids typically fall into three categories: crosslinking delay molecules, oxygen scavengers, and pH buffers. However, many conventional additives raise [...] Read more.
The development of thermally stable fracturing fluids is essential for the effective stimulation of deep and low-permeability reservoirs. The stabilizing additives used in these fluids typically fall into three categories: crosslinking delay molecules, oxygen scavengers, and pH buffers. However, many conventional additives raise toxicity and environmental concerns, prompting the search for safer alternatives. This study investigates the use of sugar alcohols, commonly used as low-calorie sweeteners, as environmentally responsible additives for high-temperature fracturing fluids. A guar-based fluid system was formulated at a pH of 10 and evaluated using a high-pressure high-temperature (HPHT) rheometer under simulated field pumping conditions at 300 °F for a 90 min period. The viscosity was measured at a shear rate of 100 s−1, with intermittent low-shear rates introduced to assess the structural recovery and fluid integrity. The effect of sugar alcohol concentration on crosslinking delay was examined across systems containing varying amounts of a zirconium-based crosslinker ranging from 1 to 4 gpt. The results demonstrated that sugar alcohols effectively delayed crosslinking, allowing for controlled viscosity development and improved stability at elevated temperatures. When optimized at concentrations of 2 ppt of the sugar alcohol with 4 gpt of the crosslinker, the fluid generated a peak viscosity of 600 cP after 2.5 min and maintained a viscosity above 300 cP throughout the 90 min test. Breaker results showed a controlled viscosity reduction, with final viscosity values reaching 10 cP. The proppant settling experiments confirmed the suspension of more than 95% of the proppant during the treatment window. These findings highlight the potential of sugar alcohols as effective and environmentally safer crosslinking delay additives for hydraulic fracturing applications. Full article
(This article belongs to the Special Issue Polymer Gels for the Oil and Gas Industry)
Show Figures

Graphical abstract

20 pages, 3092 KiB  
Article
Comparative Study of Opuntia ficus-indica Polymers, HPAM, and Their Mixture for Enhanced Oil Recovery in the Hassi Messaoud Reservoir, Algeria
by Kamila Bourkaib, Adel Elamri, Abdelkader Hadjsadok, Charaf Eddine Izountar, Mohamed Fouad Abimouloud, Amin Bouhafs, Ammar Isseri, Djamila Maatalah, Meriem Braik, Abdelali Guezei and Omar Anis Harzallah
Processes 2025, 13(6), 1794; https://doi.org/10.3390/pr13061794 - 5 Jun 2025
Viewed by 629
Abstract
This study explores the potential of biopolymers as sustainable alternatives to synthetic polymers in enhanced oil recovery (EOR), aiming to reduce reliance on partially hydrolyzed polyacrylamides (HPAM). Mucilage extracted from Opuntia ficus-indica cladodes was investigated individually and in combination with HPAM in an [...] Read more.
This study explores the potential of biopolymers as sustainable alternatives to synthetic polymers in enhanced oil recovery (EOR), aiming to reduce reliance on partially hydrolyzed polyacrylamides (HPAM). Mucilage extracted from Opuntia ficus-indica cladodes was investigated individually and in combination with HPAM in an 80/20 blend. The objective was to evaluate the physicochemical and rheological properties of these formulations, and their efficiency in improving oil recovery under realistic reservoir conditions. The materials were characterized using thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR). Rheological tests showed that both Opuntia mucilage and the HPAM–mucilage blend displayed favorable viscoelastic behavior in saline environments (2% NaCl) at high concentrations (10,000 ppm). The mucilage also exhibited thermal stability above 200 °C, making it suitable for harsh reservoir conditions. Core flooding experiments conducted at 120 °C using core plugs from Algerian reservoirs revealed enhanced oil recovery performance. The recovery factors were 63.3% for HPAM, 84.35% for Opuntia mucilage, and 94.28% for the HPAM–mucilage blend. These results highlight not only the synergistic effect of the blend but also the standalone efficiency of the natural biopolymer in improving oil mobility and pore permeability. This study confirms the viability of using locally sourced biopolymers in EOR strategies. Opuntia ficus-indica mucilage offers a cost-effective, eco-friendly, and thermally stable alternative to conventional polymers for enhanced oil recovery, particularly in saline and high-temperature reservoirs such as Hassi Messaoud in Algeria. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 2054 KiB  
Article
Phenotypic Variability of Local Latvian Common Bean (Phaseolus vulgaris L.) and Its Position Within European Germplasm
by Gunārs Lācis, Shreya Jagtap, Laila Dubova, Tetiana Harbovska, Daniels Udalovs, Liene Ziediņa and Ina Alsiņa
Int. J. Plant Biol. 2025, 16(2), 59; https://doi.org/10.3390/ijpb16020059 - 30 May 2025
Viewed by 303
Abstract
Common beans (Phaseolus vulgaris L.) are considered a socially and economically important crop, with the biggest growers in India, Myanmar, and Brazil. Traditionally, common beans are also grown in most parts of Europe, including Latvia, where cultivation areas have remained relatively constant [...] Read more.
Common beans (Phaseolus vulgaris L.) are considered a socially and economically important crop, with the biggest growers in India, Myanmar, and Brazil. Traditionally, common beans are also grown in most parts of Europe, including Latvia, where cultivation areas have remained relatively constant since the middle of the last century. This is explained by the plant’s higher thermal requirements compared to peas and faba beans more widely grown here. Despite this, landraces adapted to local conditions have been developed, whose origin and potential relationship with another European common bean germplasm is very limited. Therefore, the study aimed to characterise the morphology of the common bean germplasm collected and grown in Latvia to identify the most valuable material for further crop development and evaluate the local landraces in the European common bean germplasm context. The 28 genotypes representing Latvian landraces and European reference genotypes were phenotyped using 26 traits of bean seeds, pods, leaves, flowers, and stems, which were evaluated according to an internationally applied methodology. Latvian varieties showed phenotypical variability and characteristics that were different from those found in other European regions, showing the significance of the germplasm under study and highlighting the need for conservation. Local varieties (landraces) are reservoirs of unique genetic traits. Their adaptability to local environmental conditions, resistance to pests and diseases, and their potential to enhance nutritional quality make them invaluable resources for in situ conservation efforts and targeted genetic improvement programmes. Emphasising the utilisation of these landraces can contribute to sustainable agriculture, climate resilience, and food security. Full article
(This article belongs to the Section Plant Biochemistry and Genetics)
Show Figures

Figure 1

19 pages, 4932 KiB  
Article
Deep Learning-Based Fluid Identification with Residual Vision Transformer Network (ResViTNet)
by Yunan Liang, Bin Zhang, Wenwen Wang, Sinan Fang, Zhansong Zhang, Liang Peng and Zhiyang Zhang
Processes 2025, 13(6), 1707; https://doi.org/10.3390/pr13061707 - 29 May 2025
Cited by 1 | Viewed by 418
Abstract
The tight sandstone gas reservoirs in the LX area of the Ordos Basin are characterized by low porosity, poor permeability, and strong heterogeneity, which significantly complicate fluid type identification. Conventional methods based on petrophysical logging and core analysis have shown limited effectiveness in [...] Read more.
The tight sandstone gas reservoirs in the LX area of the Ordos Basin are characterized by low porosity, poor permeability, and strong heterogeneity, which significantly complicate fluid type identification. Conventional methods based on petrophysical logging and core analysis have shown limited effectiveness in this region, often resulting in low accuracy of fluid identification. To improve the precision of fluid property identification in such complex tight gas reservoirs, this study proposes a hybrid deep learning model named ResViTNet, which integrates ResNet (residual neural network) with ViT (vision transformer). The proposed method transforms multi-dimensional logging data into thermal maps and utilizes a sliding window sampling strategy combined with data augmentation techniques to generate high-dimensional image inputs. This enables automatic classification of different reservoir fluid types, including water zones, gas zones, and gas–water coexisting zones. Application of the method to a logging dataset from 80 wells in the LX block demonstrates a fluid identification accuracy of 97.4%, outperforming conventional statistical methods and standalone machine learning algorithms. The ResViTNet model exhibits strong robustness and generalization capability, providing technical support for fluid identification and productivity evaluation in the exploration and development of tight gas reservoirs. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

20 pages, 8410 KiB  
Review
CO2-ECBM from a Full-Chain Perspective: Mechanism Elucidation, Demonstration Practices, and Future Outlook
by Yinan Cui, Chao Li, Yuchen Tian, Bin Miao, Yanzhi Liu, Zekun Yue, Xuguang Dai, Jinghui Zhao, Hequn Gao, Hui Li, Yaozu Zhang, Guangrong Zhang, Bei Zhang, Shiqi Liu and Sijian Zheng
Energies 2025, 18(11), 2841; https://doi.org/10.3390/en18112841 - 29 May 2025
Viewed by 447
Abstract
CO2-enhanced coalbed methane recovery (CO2-ECBM) represents a promising pathway within carbon capture, utilization, and storage (CCUS) technologies, offering dual benefits of methane production and long-term CO2 sequestration. This review provides a comprehensive analysis of CO2-ECBM from [...] Read more.
CO2-enhanced coalbed methane recovery (CO2-ECBM) represents a promising pathway within carbon capture, utilization, and storage (CCUS) technologies, offering dual benefits of methane production and long-term CO2 sequestration. This review provides a comprehensive analysis of CO2-ECBM from a full-chain perspective (Mechanism, Practices, and Outlook), covering fundamental mechanisms and key engineering practices. It highlights the complex multi-physics processes involved, including competitive adsorption–desorption, diffusion and seepage, thermal effects, stress responses, and geochemical interactions. Recent progress in laboratory experiments, capacity assessments, site evaluations, monitoring techniques, and numerical simulations are systematically reviewed. Field studies indicate that CO2-ECBM performance is strongly influenced by reservoir pressure, temperature, injection rate, and coal seam properties. Structural conditions and multi-field coupling further affect storage efficiency and long-term security. This work also addresses major technical challenges such as real-time monitoring limitations, environmental risks, injection-induced seismicity, and economic constraints. Future research directions emphasize the need to deepen understanding of coupling mechanisms, improve monitoring frameworks, and advance integrated engineering optimization. By synthesizing recent advances and identifying research priorities, this review aims to provide theoretical support and practical guidance for the scalable deployment of CO2-ECBM, contributing to global energy transition and carbon neutrality goals. Full article
(This article belongs to the Special Issue Advances in Unconventional Reservoirs and Enhanced Oil Recovery)
Show Figures

Figure 1

16 pages, 5706 KiB  
Article
In Situ-Prepared Nanocomposite for Water Management in High-Temperature Reservoirs
by Hui Yang, Jian Zhang, Zhiwei Wang, Shichao Li, Qiang Wei, Yunteng He, Luyao Li, Jiachang Zhao, Caihong Xu and Zongbo Zhang
Gels 2025, 11(6), 405; https://doi.org/10.3390/gels11060405 - 29 May 2025
Viewed by 435
Abstract
In the field of enhanced oil recovery (EOR), particularly for water control in high-temperature reservoirs, there is a critical need for effective in-depth water shutoff and conformance control technologies. Polymer-based in situ-cross-linked gels are extensively employed for enhanced oil recovery (EOR), yet their [...] Read more.
In the field of enhanced oil recovery (EOR), particularly for water control in high-temperature reservoirs, there is a critical need for effective in-depth water shutoff and conformance control technologies. Polymer-based in situ-cross-linked gels are extensively employed for enhanced oil recovery (EOR), yet their short gelation time under high-temperature reservoir conditions (e.g., >120 °C) limits effective in-depth water shutoff and conformance control. To address this, we developed a hydrogel system via the in situ cross-linking of polyacrylamide (PAM) with phenolic resin (PR), reinforced by silica sol (SS) nanoparticles. We employed a variety of research methods, including bottle tests, viscosity and rheology measurements, scanning electron microscopy (SEM) scanning, density functional theory (DFT) calculations, differential scanning calorimetry (DSC) measurements, quartz crystal microbalance with dissipation (QCM-D) measurement, contact angle (CA) measurement, injectivity and temporary plugging performance evaluations, etc. The composite gel exhibits an exceptional gelation period of 72 h at 130 °C, surpassing conventional systems by more than 4.5 times in terms of duration. The gelation rate remains almost unchanged with the introduction of SS, due to the highly pre-dispersed silica nanoparticles that provide exceptional colloidal stability and the system’s pH changing slightly throughout the gelation process. DFT and SEM results reveal that synergistic interactions between organic (PAM-PR networks) and inorganic (SS) components create a stacked hybrid network, enhancing both mechanical strength and thermal stability. A core flooding experiment demonstrates that the gel system achieves 92.4% plugging efficiency. The tailored nanocomposite allows for the precise management of gelation kinetics and microstructure formation, effectively addressing water control and enhancing the plugging effect in high-temperature reservoirs. These findings advance the mechanistic understanding of organic–inorganic hybrid gel systems and provide a framework for developing next-generation EOR technologies under extreme reservoir conditions. Full article
Show Figures

Figure 1

19 pages, 5482 KiB  
Article
Multiscale Fractal Evolution Mechanism of Pore Heterogeneity in Hydrocarbon Source Rocks: A Thermal Simulation Experiment in the Xiamaling Formation
by Yang Wang, Baoyuan Zhong, Liu Yang, Yanming Zhu, Jie Xiang, Tong Zhang and Hanyu Zhang
Fractal Fract. 2025, 9(6), 351; https://doi.org/10.3390/fractalfract9060351 - 27 May 2025
Viewed by 419
Abstract
The heterogeneity of shale pore systems, which is controlled by thermal maturation, fundamentally governs hydrocarbon storage and migration. Artificial sequence maturity samples of Xiamaling shale were obtained through a temperature–pressure simulation experiment (350–680 °C, 15–41 MPa). In combination with low-pressure CO2/N [...] Read more.
The heterogeneity of shale pore systems, which is controlled by thermal maturation, fundamentally governs hydrocarbon storage and migration. Artificial sequence maturity samples of Xiamaling shale were obtained through a temperature–pressure simulation experiment (350–680 °C, 15–41 MPa). In combination with low-pressure CO2/N2 adsorption experiments, mercury intrusion porosimetry experiments and fractal theory, the heterogeneity of the pore size distribution of micropores, mesopores and macropores in shale of different maturities was quantitatively characterized. The results reveal that the total porosity follows a four-stage evolution with thermal maturity (Ro = 0.62–3.62%), peaking at 600 °C (Ro = 3.12%). Multifractal parameters indicate that areas with a low probability density are dominant in terms of pore size heterogeneity, while monofractal parameters reflect enhanced uniform development in ultra-over maturity (Ro > 3.2%). A novel Fractal Quality Index (FQI) was proposed to integrate porosity, heterogeneity, and connectivity, effectively classifying reservoirs into low-quality, medium-quality, and high-quality sweet-spot types. The findings contribute to the mechanistic understanding of pore evolution and offer a fractal-based framework for shale gas reservoir evaluation, with significant implications for hydrocarbon exploration in unconventional resources. Full article
(This article belongs to the Special Issue Multiscale Fractal Analysis in Unconventional Reservoirs)
Show Figures

Figure 1

28 pages, 4975 KiB  
Article
A Numerical Approach to Evaluate the Geothermal Potential of a Flooded Open-Pit Mine: Example from the Carey Canadian Mine (Canada)
by Samuel Lacombe, Félix-Antoine Comeau and Jasmin Raymond
Energies 2025, 18(11), 2714; https://doi.org/10.3390/en18112714 - 23 May 2025
Viewed by 339
Abstract
Abandoned mines represent an innovative and under-exploited resource to meet current energy challenges, particularly because of their geothermal potential. Flooded open-pits, such as those located in the Thetford Mines region (Eastern Canada), provide large, thermally stable water reservoirs, ideal for the use of [...] Read more.
Abandoned mines represent an innovative and under-exploited resource to meet current energy challenges, particularly because of their geothermal potential. Flooded open-pits, such as those located in the Thetford Mines region (Eastern Canada), provide large, thermally stable water reservoirs, ideal for the use of geothermal cooling systems. Thermal short-circuiting that can impact the system performance affected by both free and forced convective heat transfer is hard to evaluate in these large water reservoirs subject to various heat sink and sources. Thus, this study’s objective was to evaluate the impact of natural heat transfer mechanisms on the performance of an open-loop geothermal system that could be installed in a flooded open-pit mine. Energy needs of an industrial plant using water from the flooded Carey Canadian mine were considered to develop a 3D numerical finite element model to evaluate the thermal impact associated with the operation of the system considering free and forced convection in the flooded open-pit, the natural flow of water into the pit, climatic variations at the surface and the terrestrial heat flux. The results indicate that the configuration of the proposed system meets the plant cooling needs over a period of 50 years and can provide a cooling power of approximately 2.3 MW. The simulations also demonstrated the importance of understanding the hydrological and hydrogeological systems impacting the performance of the geothermal operations expected in a flooded open-pit mine. Full article
(This article belongs to the Section H2: Geothermal)
Show Figures

Figure 1

Back to TopTop