Multiscale Fractal Evolution Mechanism of Pore Heterogeneity in Hydrocarbon Source Rocks: A Thermal Simulation Experiment in the Xiamaling Formation
Abstract
1. Introduction
2. Methodology
2.1. Samples
2.2. Experiments
2.2.1. Thermal Simulation
2.2.2. Multiscale Aperture Experiment
2.3. Fractal Theory
2.3.1. Monofractal Model of MIP
2.3.2. Multifractal Model of LP-CO2 GA and LP-N2 GA
3. Results
3.1. Pore Structure and Type
3.2. Multiscale PSD Characteristics
3.3. Monofractal Characterization of Macropores
3.4. Multifractal Characterization of Micro- and Mesopores
4. Discussion
4.1. Analysis of the Porosity Evolution
4.2. Fractal Evolution Analysis of Pore Structure
4.2.1. Monofractal Analysis of the Macropore Scale
4.2.2. Multifractal Analysis of Micro- and Mesopore Scales
4.3. Construction of the Fractal Quality Index and Its Geological Discussion
5. Conclusions
- The pore structure of Xiamaling shale exhibits a four-stage evolution with thermal maturity, primarily driven by organic matter transformation and hydrocarbon generation. The total porosity peaks at T = 600 °C, correlating with the synergistic development of organic and inorganic pores. The larger pore sizes contributed a greater proportion to the pore volume, with macropores contributing the most to the pore volume.
- The macropore surface exhibited high roughness and low sensitivity to temperature and pressure changes. Analysis of monofractal parameters indicated that ultra-overmaturity (Ro > 3.2%) was conducive to the uniform development of larger pore sizes. The singular spectrum and generalized dimension spectrum indicate that the PSD of the original sample and the thermal simulation sample have multifractal behavior. Multifractal analysis revealed that the low-probability-density regions dominated the PSD heterogeneity, and the adsorption pores exhibited a positive development advantage with increasing maturity. The development of organic matter pores and the synergy of liquid hydrocarbons and asphalt cracks reached the peak value at Ro = 2–2.7%, resulting in high homogenization of PSD in the case of high pore volume.
- The FQI is preliminarily proposed as a quantitative tool for evaluating reservoir quality. Classification based on FQI distinguishes high-quality sweet spots (FQI > 8), medium-quality reservoirs (5 < FQI ≤ 8), and low-quality reservoirs (FQI ≤ 5), providing valuable guidance for optimizing resource development strategies. High-quality sweet spot reservoirs (FQI > 8) are identified during the dry gas stage (Ro = 2.0–3.4%), which is characterized by optimal storage capacity and flow performance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chalmers, G.R.; Bustin, R.M.; Power, I.M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bull. 2012, 96, 1099–1119. [Google Scholar]
- Ilgen, A.G.; Heath, J.E.; Akkutlu, I.Y.; Bryndzia, L.T.; Cole, D.R.; Kharaka, Y.K.; Kneafsey, T.J.; Milliken, K.L.; Pyrak-Nolte, L.J.; Suarez-Rivera, R. Shales at all scales: Exploring coupled processes in mudrocks. Earth-Sci. Rev. 2017, 166, 132–152. [Google Scholar] [CrossRef]
- Fu, J.; Wang, L.; Chen, X.; Liu, J.; Hui, X.; Cheng, D. Progress and prospects of shale oil exploration and development in the seventh member of Yanchang Formation in Ordos Basin. China Pet. Explor. 2023, 28, 1. [Google Scholar]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Jarvie, D.M. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. J. Sediment. Res. 2009, 79, 848–861. [Google Scholar] [CrossRef]
- Garum, M.; Glover, P.W.; Lorinczi, P.; Micklethwaite, S.; Hassanpour, A. Integration of multiscale imaging of nanoscale pore microstructures in gas shales. Energy Fuels 2021, 35, 10721–10732. [Google Scholar] [CrossRef]
- Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull. 2007, 91, 475–499. [Google Scholar] [CrossRef]
- Hu, G.; Pang, Q.; Jiao, K.; Hu, C.; Liao, Z. Development of organic pores in the Longmaxi Formation overmature shales: Combined effects of thermal maturity and organic matter composition. Mar. Pet. Geol. 2020, 116, 104314. [Google Scholar] [CrossRef]
- Borjigin, T.; Lu, L.; Yu, L.; Zhang, W.; Pan, A.; Shen, B.; Wang, Y.; Yang, Y.; Gao, Z. Formation, preservation and connectivity control of organic pores in shale. Petro. Explor. Dev. 2021, 48, 798–812. [Google Scholar] [CrossRef]
- Hutchinson, J.E. Fractals and self similarity. J. Math. Mech. 1981, 30, 713–747. [Google Scholar]
- Yang, R.; Liu, W.; Meng, L. Multifractal analysis of the structure of organic and inorganic shale pores using nuclear magnetic resonance (NMR) measurement. J. Mar. Sci. Eng. 2023, 11, 752. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, X.; Wang, S.; Wang, R.; Wu, J.; Li, Z.; Song, Y. Multifractal characteristics on pore structure of Longmaxi shale using nuclear magnetic resonance (NMR). Geoenergy Sci. Eng. 2024, 241, 213176. [Google Scholar] [CrossRef]
- Zhong, B.; Zhu, Y.; Feng, G.; Xiang, J.; Wang, Y. Matrix Compression and Pore Heterogeneity in the Coal-Measure Shale Reservoirs of the Qinshui Basin: A Multifractal Analysis. Fractal Fract. 2024, 8, 580. [Google Scholar] [CrossRef]
- Zhou, N.; Lu, S.; Wang, M.; Liu, W.; Guan, Y.; Tan, H.; Wang, Z. Applicability of fractal capillary pressure models to sandstones. J. Pet. Sci. Eng. 2020, 185, 106626. [Google Scholar] [CrossRef]
- Xie, W.; Yin, Q.; Zeng, J.; Wang, G.; Feng, C.; Zhang, P. Fractal-based approaches to pore structure investigation and water saturation prediction from NMR measurements: A case study of the gas-bearing tight sandstone reservoir in Nanpu Sag. Fractal Fract. 2023, 7, 273. [Google Scholar] [CrossRef]
- Cai, F.; Zhang, Q.; Yang, L. Fractal Characteristics and Microstructure of Coal with Impact of Starch-Polymerized Aluminum Sulfate Fracturing Fluids. Fractal Fract. 2024, 8, 228. [Google Scholar] [CrossRef]
- Chen, S.; Liu, D.; Wang, Y.; Zhang, W.; Zheng, Q.; Yin, X. A comparative analysis of mercury intrusion and nitrogen adsorption methods for multifractal characterization of shale reservoirs in northern Songliao Basin. Sci. Rep. 2025, 15, 7866. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, D.; Xian, X. Fractal dimensions of coals and cokes. J. Colloid Interface Sci. 1997, 190, 357–359. [Google Scholar] [CrossRef]
- Gauden, P.A.; Terzyk, A.P.; Rychlicki, G. The new correlation between microporosity of strictly microporous activated carbons and fractal dimension on the basis of the Polanyi–Dubinin theory of adsorption. Carbon 2001, 39, 267–278. [Google Scholar] [CrossRef]
- Han, W.; Zhou, G.; Gao, D.; Zhang, Z.; Wei, Z.; Wang, H.; Yang, H. Experimental analysis of the pore structure and fractal characteristics of different metamorphic coal based on mercury intrusion-nitrogen adsorption porosimetry. Powder Technol. 2020, 362, 386–398. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, B.; Zhang, Y.; Zhu, Y.; Wang, M. Analysis of Nanostructures and Wettability of Marine Shale in Southern China, Based on Different Fractal Models. Fractal Fract. 2024, 9, 12. [Google Scholar] [CrossRef]
- Xie, H.; Li, X.; Sui, H.; Cai, J.; Xu, E.; Zhao, J. Acidification-Induced Micronano Mechanical properties and microscopic permeability enhancement mechanism of coal. Langmuir 2024, 40, 4496–4513. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Hou, X.; Chen, L.; Fang, H.; Zheng, C. Multifractal investigation on multi-scale pore structure heterogeneity of high rank coal reservoirs. Nat. Resour. Res. 2022, 31, 1665–1685. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, H.; Hu, Q.; Liu, L.; Jia, L.; Gao, S.; Wang, Y. Pore structure heterogeneity of Wufeng-Longmaxi shale, Sichuan Basin, China: Evidence from gas physisorption and multifractal geometries. J. Pet. Sci. Eng. 2022, 208, 109313. [Google Scholar] [CrossRef]
- Guo, R.; Liang, X.; Zhou, X.; Fan, Z.; Zhao, J.; Bai, Y.; Wu, W.; Cao, L.; Liu, P. Effect of extractable organic matter on nanopore structure and heterogeneity in Triassic Yanchang lacustrine shale of the Ordos basin, China. J. Asian Earth Sci. 2025, 287, 106577. [Google Scholar] [CrossRef]
- Liu, J.; Lu, D.; Li, P. Nano-scale dual-pore-shape structure and fractal characteristics of transitional facies shale matrix. Nat. Gas Sci. Eng. 2019, 68, 102907. [Google Scholar] [CrossRef]
- Lu, C.; Wang, X.; Ma, S.; Li, S.; Xue, T.; Li, Q. The Classification and Evaluation of an Interlayer Shale Oil Reservoir Based on the Fractal Characteristics of Pore Systems: A Case Study in the HSN Area, China. Fractal Fract. 2024, 8, 167. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Y.; Tian, S.; Guo, Y.; Wang, L.; Yasin, Q.; Yang, J. Impact of thermal maturity on the diagenesis and porosity of lacustrine oil-prone shales: Insights from natural shale samples with thermal maturation in the oil generation window. Int. J. Coal Geol. 2022, 261, 104079. [Google Scholar] [CrossRef]
- Wang, F.; Guo, S. Influential factors and model of shale pore evolution: A case study of a continental shale from the Ordos Basin. Mar. Pet. Geol. 2019, 102, 271–282. [Google Scholar] [CrossRef]
- Song, D.; Tuo, J.; Zhang, M.; Wu, C.; Su, L.; Li, J.; Zhang, Y.; Zhang, D. Hydrocarbon generation potential and evolution of pore characteristics of Mesoproterozoic shales in north China: Results from semi-closed pyrolysis experiments. Nat. Gas Sci. Eng. 2019, 62, 171–183. [Google Scholar] [CrossRef]
- Xu, L.; Yang, K.; Wei, H.; Liu, L.; Li, X.; Chen, L.; Xu, T.; Wang, X. Diagenetic evolution sequence and pore evolution model of Mesoproterozoic Xiamaling organic-rich shale in Zhangjiakou, Hebei, based on pyrolysis simulation experiments. Mar. Pet. Geol. 2021, 132, 105233. [Google Scholar] [CrossRef]
- Song, L.; Martin, K.; Carr, T.R.; Ghahfarokhi, P.K. Porosity and storage capacity of Middle Devonian shale: A function of thermal maturity, total organic carbon, and clay content. Fuel 2019, 241, 1036–1044. [Google Scholar] [CrossRef]
- Valentine, B.J.; Hackley, P.C.; Hatcherian, J.J. Hydrous pyrolysis of New Albany Shale: A study examining maturation changes and porosity development. Mar. Pet. Geol. 2021, 134, 105368. [Google Scholar] [CrossRef]
- Zhao, X.; Yao, G.; Chen, X.; Zhang, R.; Lan, Z.; Wang, G. Diagenetic facies classification and characterization of a high-temperature and high-pressure tight gas sandstone reservoir: A case study in the Ledong area, Yinggehai Basin. Mar. Pet. Geol. 2022, 140, 105665. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, M.; Misch, D.; Sachsenhofer, R.F.; Wu, Y.; Li, J. Mineral diagenesis in lacustrine organic-rich shales: Evolution pathways and implications for reservoir characteristics. J. Asian Earth Sci. 2024, 263, 106026. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Hu, Q.; Hao, L.; Wang, X.; Sheng, Y. Nanoscale pore network evolution of Xiamaling marine shale during organic matter maturation by hydrous pyrolysis. Energy Fuels 2020, 34, 1548–1563. [Google Scholar] [CrossRef]
- Wu, W.; Liang, Z.; Xu, L.; Liu, Y.; Li, Y.; Tang, X.; Yin, Y.; Chen, Y. The Effect of Thermal Maturity on the Pore Structure Heterogeneity of Xiamaling Shale by Multifractal Analysis Theory: A Case from Pyrolysis Simulation Experiments. Minerals 2023, 13, 1340. [Google Scholar] [CrossRef]
- Leon, C.A.L.Y. New perspectives in mercury porosimetry. Adv. Colloid Interface Sci. 1998, 76, 341–372. [Google Scholar] [CrossRef]
- Yuan, Y.; Rezaee, R. Fractal analysis of the pore structure for clay bound water and potential gas storage in shales based on NMR and N2 gas adsorption. J. Pet. Sci. Eng. 2019, 177, 756–765. [Google Scholar] [CrossRef]
- Liu, K.; Ostadhassan, M.; Cai, J. Characterizing pore size distributions of shale. In Petrophysical Characterization and Fluids Transport in Unconventional Reservoirs; Elsevier: Amsterdam, The Netherlands, 2019; pp. 3–20. [Google Scholar]
- Li, Y.; Zhang, Y.; Zhang, L.; Hou, J. Characterization on pore structure of tectonic coals based on the method of mercury intrusion, carbon dioxide adsorption and nitrogen adsorption. China Coal Soc. 2019, 44, 1188–1196. [Google Scholar]
- Mazumder, M.; Tripathy, A.; Singh, T.N. Quantitative Evaluation of Sub-Bituminous Coal from Jharia Basin, India: Investigation Using Low Pressure N2 and CO2 Adsorption; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar]
- Xiang, J.; Zhu, Y.; Wang, Y.; Chen, S.; Jiang, Z. Structural deformation and its pore-fracture system response of the Wufeng-Longmaxi shale in the Northeast Chongqing area, using FE-SEM, gas adsorption, and SAXS. J. Pet. Sci. Eng. 2022, 209, 109877. [Google Scholar] [CrossRef]
- Crownover, R.M. Introduction to Fractals and Chaos; Jones & Bartlett Pub.: Burlington, MA, USA, 1995. [Google Scholar]
- Chhabra, A.; Jensen, R.V. Direct determination of the f (α) singularity spectrum. Phys. Rev. Lett. 1989, 62, 1327. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Zhang, B.; Wang, X.; Wu, S.; Zhang, S.; Liu, W.; Wang, K.; Zhao, X. Differences in source kitchens for lacustrine in-source and out-of-source hydrocarbon accumulations. Petro. Explor. Dev. 2021, 48, 541–554. [Google Scholar] [CrossRef]
- Cao, T.; Liu, H.; Pan, A.; Fu, Y.; Deng, M.; Cao, Q.; Huang, Y.; Yu, Y. Pore evolution in siliceous shales and its influence on shale gas-bearing capacity in eastern Sichuan-western Hubei, China. J. Pet. Sci. Eng. 2022, 208, 109597. [Google Scholar] [CrossRef]
- Mastalerz, M.; Drobniak, A.; Stankiewicz, A.B. Origin, properties, and implications of solid bitumen in source-rock reservoirs: A review. Int. J. Coal Geol 2018, 195, 14–36. [Google Scholar] [CrossRef]
- Guan, M.; Liu, X.; Jin, Z.; Lai, J.; Sun, B.; Zhang, P.; Chen, K. The evolution of pore structure heterogeneity during thermal maturation in lacustrine shale pyrolysis. Anal. Appl. Pyrolysis 2022, 163, 105501. [Google Scholar] [CrossRef]
- Zhao, Y.; Jin, Z. Hydrocarbon mixture phase behavior in multi-scale systems in relation to shale oil recovery: The effect of pore size distributions. Fuel 2021, 291, 120141. [Google Scholar] [CrossRef]
- Song, Y.; Song, Z.; Meng, Y.; Chen, Z.; Han, X.; Feng, D. Multi-phase behavior and pore-scale flow in medium-high maturity continental shale reservoirs with Oil, CO2, and water. Chem. Eng. J. 2024, 484, 149679. [Google Scholar] [CrossRef]
- Li, W.; Liu, H.; Song, X. Multifractal analysis of Hg pore size distributions of tectonically deformed coals. Int. J. Coal Geol. 2015, 144, 138–152. [Google Scholar] [CrossRef]
- Wei, Z.; Sheng, J.J. Study of thermally-induced enhancement in nanopores, microcracks, porosity and permeability of rocks from different ultra-low permeability reservoirs. J. Pet. Sci. Eng. 2022, 209, 109896. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, D. Adsorbed and free gas occurrence characteristics and controlling factors of deep shales in the southern Sichuan Basin, China. Pet. Sci. 2023, 20, 1301–1311. [Google Scholar] [CrossRef]
Sample ID | T (°C) | P (MPa) | Ro (%) | Porosity (%) | Pore Volume (×10−3 mL/g) | Specific Surface Area (m2/g) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Total Pore | Micropores | Mesopores | Macropores | Micropores | Mesopores | Macropores | |||||
TS-Ori | / | / | 0.62 | 1.57 | 12.194 | 2.03 | 5.155 | 5.009 | 6.112 | 3.058 | 0.017 |
TS-350 | 350 | 15 | 1.04 | 1.7 | 18.214 | 3.113 | 5.225 | 9.876 | 9.302 | 3.657 | 0.023 |
TS-400 | 400 | 18 | 1.83 | 2.62 | 14.654 | 3.344 | 5.587 | 5.723 | 10.17 | 3.445 | 0.042 |
TS-450 | 450 | 22 | 2.04 | 4.3 | 26.937 | 3.393 | 5.774 | 17.77 | 10.444 | 2.78 | 0.047 |
TS-500 | 500 | 26 | 2.46 | 4.4 | 21.982 | 3.541 | 7.849 | 10.592 | 10.485 | 4.903 | 0.101 |
TS-550 | 550 | 32 | 2.84 | 4.85 | 32.429 | 3.997 | 10.915 | 17.517 | 12.413 | 7.121 | 0.27 |
TS-600 | 600 | 34 | 3.12 | 5.01 | 18.174 | 3.605 | 9.036 | 5.533 | 11.786 | 4.268 | 0.066 |
TS-680 | 680 | 41 | 3.62 | 4.42 | 27.135 | 1.88 | 13.139 | 12.116 | 5.953 | 5.342 | 0.089 |
Sample ID | DT | DM | DHg | α0 | αw | H | D1 | D2 | DL | DR | FQI |
---|---|---|---|---|---|---|---|---|---|---|---|
TS-Opri | 2.962 | 2.872 | 2.917 | 1.05 | 0.89 | 0.94 | 0.75 | 0.89 | 0.54 | 0.16 | 4.87 |
TS-350 | 2.958 | 2.971 | 2.965 | 1.08 | 1.47 | 0.95 | 0.76 | 0.90 | 1.09 | 0.14 | 3.25 |
TS-400 | 2.964 | 2.989 | 2.977 | 1.05 | 1.08 | 0.95 | 0.76 | 0.90 | 0.76 | 0.11 | 6.85 |
TS-450 | 2.855 | 2.814 | 2.835 | 1.10 | 1.24 | 0.92 | 0.73 | 0.85 | 0.91 | 0.21 | 9.08 |
TS-500 | 2.925 | 2.938 | 2.932 | 1.07 | 1.22 | 0.95 | 0.76 | 0.90 | 0.92 | 0.10 | 10.09 |
TS-550 | 2.692 | 2.926 | 2.809 | 1.04 | 0.90 | 0.96 | 0.76 | 0.91 | 0.63 | 0.10 | 14.57 |
TS-600 | 2.974 | 2.993 | 2.984 | 1.10 | 1.30 | 0.90 | 0.71 | 0.79 | 0.75 | 0.33 | 10.28 |
TS-680 | 2.781 | 2.948 | 2.864 | 1.28 | 2.02 | 0.83 | 0.60 | 0.66 | 1.31 | 0.45 | 5.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhong, B.; Yang, L.; Zhu, Y.; Xiang, J.; Zhang, T.; Zhang, H. Multiscale Fractal Evolution Mechanism of Pore Heterogeneity in Hydrocarbon Source Rocks: A Thermal Simulation Experiment in the Xiamaling Formation. Fractal Fract. 2025, 9, 351. https://doi.org/10.3390/fractalfract9060351
Wang Y, Zhong B, Yang L, Zhu Y, Xiang J, Zhang T, Zhang H. Multiscale Fractal Evolution Mechanism of Pore Heterogeneity in Hydrocarbon Source Rocks: A Thermal Simulation Experiment in the Xiamaling Formation. Fractal and Fractional. 2025; 9(6):351. https://doi.org/10.3390/fractalfract9060351
Chicago/Turabian StyleWang, Yang, Baoyuan Zhong, Liu Yang, Yanming Zhu, Jie Xiang, Tong Zhang, and Hanyu Zhang. 2025. "Multiscale Fractal Evolution Mechanism of Pore Heterogeneity in Hydrocarbon Source Rocks: A Thermal Simulation Experiment in the Xiamaling Formation" Fractal and Fractional 9, no. 6: 351. https://doi.org/10.3390/fractalfract9060351
APA StyleWang, Y., Zhong, B., Yang, L., Zhu, Y., Xiang, J., Zhang, T., & Zhang, H. (2025). Multiscale Fractal Evolution Mechanism of Pore Heterogeneity in Hydrocarbon Source Rocks: A Thermal Simulation Experiment in the Xiamaling Formation. Fractal and Fractional, 9(6), 351. https://doi.org/10.3390/fractalfract9060351