CO2-ECBM from a Full-Chain Perspective: Mechanism Elucidation, Demonstration Practices, and Future Outlook
Abstract
1. Introduction
2. Mechanisms of CO2-Enhanced Coalbed Methane Recovery
3. Current Development of CO2-ECBM Technology
3.1. Experimental Research Progress on CO2-ECBM
3.2. Current Research on CO2-ECBM Storage Capacity Assessment and Suitability Evaluation
3.3. Monitoring Technologies and Regulatory Frameworks for CO2-ECBM
3.4. Advances in Numerical Simulation of CO2-ECBM
4. Global Demonstration Projects of CO2-ECBM
Country | Project Location | Injection Period | CO2 Injected (t) |
---|---|---|---|
USA | Allison Field, San Juan Basin | April 1995–August 2001 | 336,000 |
USA | Pump Canyon, San Juan Basin | July 2008–August 2009 | 16,699.00 |
USA | Tanquary Farm, Illinois Basin | 2008 | 92.3 |
USA | Virginia, Central Appalachian Basin | January 2009–February 2009 | ~900.00 |
USA | Lignite Block, Williston Basin | 2009 | 90 |
USA | Black Warrior Basin | June 2010–August 2010 | 225 |
USA | Marshall, Northern Appalachian Basin | September 2009–December 2013 | 4500.00 |
USA | Buchanan, Central Appalachian Basin | July 2015–August 2015 | 1470.00 |
China | Shizhuang South Block, Qinshui Basin | April 2004–June 2004 | 192.8 |
China | Shizhuang North Block, Qinshui Basin | April 2010–May 2010 | 233.6 |
China | Liulin Block, Eastern Ordos Basin | September 2011–March 2012 | 460 |
China | Shizhuang North Block, Qinshui Basin | 2013–2015 | 4491.00 |
China | Shizhuang South Block, Qinshui Basin | June 2020–June 2021 | 2001.04 |
Canada | Fenn Big Valley, Alberta | 1998 | 201 |
Canada | Alder Flats, Alberta | June 2006 | Unknown |
Poland | Kaniow, Silesian Basin | August 2004–May 2005 | 760 |
Japan | Ishikari Basin, Hokkaido | July 2004–September 2007 | ~800.00 |
5. Influencing Factors of CO2-ECBM
6. Discussion
6.1. Challenges in CO2-ECBM
6.2. Development Trends of CO2-ECBM Technology
7. Conclusions
Funding
Conflicts of Interest
References
- Yang, W.; Min, Z.; Yang, M.X.; Yan, J. Exploration of the implementation of carbon neutralization in the field of natural resources under the background of sustainable Development—An overview. Int. J. Environ. Res. Public Health 2022, 19, 14109. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.S. The view of technological innovation in coal industry under the vision of carbon neutralization. Int. J. Coal Sci. Technol. 2021, 8, 1197–1207. [Google Scholar] [CrossRef]
- Li, Y.L.; Wei, Y.F.; Zhu, F.Q.; Du, J.Y.; Zhao, Z.M.; Ouyang, M. The path enabling storage of renewable energy toward carbon neutralization in China. Etransportation 2023, 16, 100226. [Google Scholar] [CrossRef]
- Liu, X.H. Low-carbon utilization of coal gangue under the carbon neutralization strategy: A short review. J. Mater. Cycles Waste Manag. 2023, 25, 1978–1987. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, H.Y.; Lau, Y.Y.; Wang, T.N.; Wang, W.; Zhang, G.S. Climate change, carbon peaks, and carbon neutralization: A bibliometric study from 2006 to 2023. Sustainability 2023, 15, 5723. [Google Scholar] [CrossRef]
- Xu, G.W.; Bai, D.R.; Xu, C.M.; He, M.Y. Challenges and opportunities for engineering thermochemistry in carbon-neutralization technologies. Natl. Sci. Rev. 2023, 10, nwac217. [Google Scholar] [CrossRef]
- Wang, X.P.; Zhang, Z.M.; Guo, Z.H.; Su, C.; Sun, L.H. Energy structure transformation in the context of carbon neutralization: Evolutionary game analysis based on inclusive development of coal and clean energy. J. Clean Prod. 2023, 398, 136626. [Google Scholar] [CrossRef]
- Liu, X.Y.; Liu, X.M.; Zhang, Z.Q. Application of red mud in carbon capture, utilization and storage (CCUS) technology. Renew. Sust. Energ. Rev. 2024, 202, 114683. [Google Scholar] [CrossRef]
- Storrs, K.D.P.; Lyhne, I.; Drustrup, R. A comprehensive framework for feasibility of CCUS deployment: A meta–review of literature on factors impacting CCUS deployment. Int. J. Greenh. Gas Control 2023, 125, 103878. [Google Scholar] [CrossRef]
- Huang, S.P.; Liu, D.M.; Gomez-Rivas, E.; Griera, A.; Gan, Q.; Wang, M.Y.; Xing, Y.; Zhao, Y. Experimental insights into the nucleation and propagation of hydraulic fractures in anthracite coalbed methane reservoirs. Earth Energy Sci. 2025. [Google Scholar] [CrossRef]
- Li, M.X.; He, N.P.; Xu, L.; Peng, C.H.; Chen, H.; Yu, G.R. Eco-CCUS: A cost-effective pathway towards carbon neutrality in China. Renew. Sust. Energ. Rev. 2023, 183, 113512. [Google Scholar] [CrossRef]
- Mon, M.T.; Tansuchat, R.; Yamaka, W. CCUS technology and carbon emissions: Evidence from the United States. Energies 2024, 17, 1748. [Google Scholar] [CrossRef]
- Busch, A.; Gensterblum, Y. CBM and CO2-ECBM related sorption processes in coal: A review. Int. J. Coal Geol. 2011, 87, 49–71. [Google Scholar] [CrossRef]
- Li, Z.W.; Yu, H.J.; Bai, Y.S.; Wang, Y.J.; Hu, H.Q. Numerical study on the influence of temperature on CO2-ECBM. Fuel 2023, 348, 128613. [Google Scholar] [CrossRef]
- Fujioka, M.; Yamaguchi, S.; Nako, M. CO2-ECBM field tests in the Ishikari Coal Basin of Japan. Int. J. Coal Geol. 2010, 82, 287–298. [Google Scholar] [CrossRef]
- Sun, Y.F.; Zhao, Y.X.; Yuan, L. CO2-ECBM in coal nanostructure: Modelling and simulation. J. Nat. Gas Sci. Eng. 2018, 54, 202–215. [Google Scholar] [CrossRef]
- Mukherjee, M.; Misra, S. A review of experimental research on Enhanced Coal Bed Methane (ECBM) recovery via CO2 sequestration. Earth-Sci. Rev. 2018, 179, 392–410. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.H.; Xue, J.H.; Zhang, C.; Fang, X.Q. Experimental studies on the changing characteristics of the gas flow capacity on bituminous coal in CO2-ECBM and N2-ECBM. Fuel 2021, 291, 120115. [Google Scholar] [CrossRef]
- Asif, M.; Wang, L.; Naveen, P.; Longinos, S.N.; Hazlett, R.; Ojha, K.; Panigrahi, D.C. Influence of competitive adsorption, diffusion, and dispersion of CH4 and CO2 gases during the CO2-ECBM process. Fuel 2024, 358, 130065. [Google Scholar] [CrossRef]
- Mwakipunda, G.C.; Wang, Y.T.; Mgimba, M.M.; Ngata, M.R.; Alhassan, J.; Mkono, C.N.; Yu, L. Recent advances in carbon dioxide sequestration in deep unmineable coal seams using CO2-ECBM technology: Experimental studies, simulation, and field applications. Energy Fuels 2023, 37, 17161–17186. [Google Scholar] [CrossRef]
- Zheng, S.J.; Yao, Y.B.; Liu, D.M.; Cai, Y.D.; Liu, Y. Nuclear magnetic resonance surface relaxivity of coals. Int. J. Coal Geol. 2019, 205, 1–13. [Google Scholar] [CrossRef]
- Vishal, V.; Singh, T.N.; Ranjith, P.G. Influence of sorption time in CO2-ECBM process in Indian coals using coupled numerical simulation. Fuel 2015, 139, 51–58. [Google Scholar] [CrossRef]
- Liu, X.D.; Sang, S.X.; Zhou, X.Z.; Wang, Z.L.; Niu, Q.H.; Mondal, D. Modelling of geomechanical response for coal and ground induced by CO2-ECBM recovery. Gas Sci. Eng. 2023, 113, 204953. [Google Scholar] [CrossRef]
- Zheng, S.J.; Yao, Y.B.; Liu, D.M.; Cai, Y.D.; Liu, Y.; Li, X.W. Nuclear magnetic resonance T2 cutoffs of coals: A novel method by multifractal analysis theory. Fuel 2019, 241, 715–724. [Google Scholar] [CrossRef]
- Liu, S.Y.; Wang, J.L.; Li, H.Y.; Liu, J.R.; Xu, J.C.; Sun, W.Y.; Wang, X.P.; Chen, Z.H. A generalized adsorption model of CO2-CH4 in shale based on the improved Langmuir model. Fuel 2025, 379, 132971. [Google Scholar] [CrossRef]
- Liu, Z.D.; Lin, X.S.; Zhu, W.C.; Hu, Z.; Hao, C.M.; Su, W.W.; Bai, G. Effects of coal permeability rebound and recovery phenomenon on CO2 storage capacity under different coalbed temperature conditions during CO2-ECBM process. Energy 2023, 284, 129196. [Google Scholar] [CrossRef]
- Gong, S.L.; Zhang, L.; Zhang, T.Y.; He, W.; Hu, W.Q.; Yin, H.C.; Ma, L.S.; Hong, X.; Zhang, W.; Zhang, B. Numerical simulation of CO2-ECBM for deep coal reservoir with strong stress sensitivity. Heliyon 2024, 10, e34818. [Google Scholar] [CrossRef]
- Yu, H.G.; Yuan, J.; Guo, W.J.; Cheng, J.L.; Hu, Q.T. A preliminary laboratory experiment on coalbed methane displacement with carbon dioxide injection. Int. J. Coal Geol. 2008, 73, 156–166. [Google Scholar] [CrossRef]
- Zheng, S.J.; Yao, Y.B.; Liu, D.M.; Cai, Y.D.; Liu, Y. Characterizations of full-scale pore size distribution, porosity and permeability of coals: A novel methodology by nuclear magnetic resonance and fractal analysis theory. Int. J. Coal Geol. 2018, 196, 148–158. [Google Scholar] [CrossRef]
- Zhang, C.L.; Wang, E.Y.; Li, B.B.; Kong, X.G.; Xu, J.; Peng, S.J.; Chen, Y.X. Laboratory experiments of CO2-enhanced coalbed methane recovery considering CO2 sequestration in a coal seam. Energy 2023, 262, 125473. [Google Scholar] [CrossRef]
- Lu, Y.J.; Han, J.X.; Yang, M.P.; Chen, X.Y.; Zhu, H.J.; Yang, Z.Z. Molecular simulation of supercritical CO2 extracting organic matter from coal based on the technology of CO2-ECBM. Energy 2023, 266, 126393. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, Z.C.; Xu, Y.; Fu, X.X.; Li, W.; Zhang, D.F. Impacts of long-term exposure to supercritical carbon dioxide on physicochemical properties and adsorption and desorption capabilities of moisture-equilibrated coals. Energy Fuels. 2021, 35, 12270–12287. [Google Scholar] [CrossRef]
- Zhang, L.S.; Shan, Y.F. Quantitative Analysis of Fracture Roughness and Multi-Field Effects for CO2-ECBM Projects. Energies 2024, 17, 2851. [Google Scholar] [CrossRef]
- Asif, M.; Junussov, M.; Longinos, S.; Hazlett, R.; Satibekova, S. CO2 storage capacity of coal seams: A screening and geological review of carboniferous coal formations of Kazakhstan. Int. J. Coal Sci. Technol. 2025, 12, 18. [Google Scholar] [CrossRef]
- Scafidi, J.; Wilkinson, M.; Gilfillan, S.M.; Heinemann, N.; Haszeldine, R.S. A quantitative assessment of the hydrogen storage capacity of the UK continental shelf. Int. J. Hydrogen Energy 2021, 46, 8629–8639. [Google Scholar] [CrossRef]
- Zhang, K.Q.; Liu, L.R.; Huang, G.H. Nanoconfined water effect on CO2 utilization and geological storage. Geophys. Res. Lett. 2020, 47, e2020GL087999. [Google Scholar] [CrossRef]
- Thanh, H.V.; Sugai, Y.H.; Sasaki, K. Application of artificial neural network for predicting the performance of CO2 enhanced oil recovery and storage in residual oil zones. Sci. Rep. 2020, 10, 18204. [Google Scholar] [CrossRef]
- Bonto, M.; Welch, M.J.; Lüthje, M.; Andersen, S.I.; Veshareh, M.J.; Amour, F.; Afrough, A.; Mokhtari, R.; Hajiabadi, M.R.; Alizadeh, M.R.; et al. Challenges and enablers for large-scale CO2 storage in chalk formations. Earth-Sci. Rev. 2021, 222, 103826. [Google Scholar] [CrossRef]
- Fang, H.H.; Wang, Y.J.; Sang, S.X.; Yu, S.; Liu, H.H.; Guo, J.R.; Wang, Z.F. Potential assessment of CO2 source/sink and its matching research during CCS process of deep unworkable seam. Sci. Rep. 2024, 14, 17206. [Google Scholar] [CrossRef]
- Mi, Z.X.; Wang, F.G.; Yang, Y.Z.; Wang, F.; Hu, T.; Tian, H.L. Evaluation of the potentiality and suitability for CO2 geological storage in the Junggar Basin, northwestern China. Int. J. Greenh. Gas Control 2018, 78, 62–72. [Google Scholar] [CrossRef]
- Ye, J.; Afifi, A.; Rowaihy, F.; Baby, G.; De Santiago, A.; Tasianas, A.; Hamieh, A.; Khodayeva, A.; Al-Juaied, M.; Meckel, T.; et al. Evaluation of geological CO2 storage potential in Saudi Arabian sedimentary basins. Earth-Sci. Rev. 2023, 244, 104539. [Google Scholar] [CrossRef]
- Wang, J.Q.; Yuan, Y.; Chen, J.W.; Zhang, W.; Zhang, J.; Liang, J.; Zhang, Y.G. Geological conditions and suitability evaluation for CO2 geological storage in deep saline aquifers of the Beibu Gulf Basin (South China). Energies 2023, 16, 2360. [Google Scholar] [CrossRef]
- Zhan, J.; Su, Z.Z.; Fan, C.; Li, X.N.; Ma, X.L. Suitability evaluation of CO2 geological sequestration based on unascertained measurement. Arab. J. Sci. Eng. 2022, 47, 11453–11467. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, W.; Chen, J.; Jiang, D.Y.; Fan, J.Y.; Daemen, J.J.K.; Qiao, W.B. Large-scale CO2 disposal/storage in bedded rock salt caverns of China: An evaluation of safety and suitability. Energy 2022, 249, 123727. [Google Scholar] [CrossRef]
- Carlotto, V.; Dueñas, A.; Ingol-Blanco, E.; Santa-Cruz, S. A multi-criteria approach to the selection of geological storage of CO2 sites in Peru. Int. J. Greenh. Gas Control 2022, 114, 103600. [Google Scholar] [CrossRef]
- Fawad, M.; Mondol, N.H. Monitoring geological storage of CO2: A new approach. Sci. Rep. 2021, 11, 5942. [Google Scholar] [CrossRef] [PubMed]
- Fibbi, G.; Del Soldato, M.; Fanti, R. Review of the monitoring applications involved in the underground storage of natural gas and CO2. Energies 2022, 16, 12. [Google Scholar] [CrossRef]
- Cao, C.; Liu, H.J.; Hou, Z.M.; Mehmood, F.; Liao, J.X.; Feng, W.T. A review of CO2 storage in view of safety and cost-effectiveness. Energies 2020, 13, 600. [Google Scholar] [CrossRef]
- Gholami, R.; Raza, A.; Iglauer, S. Leakage risk assessment of a CO2 storage site: A review. Earth-Sci. Rev. 2021, 223, 103849. [Google Scholar] [CrossRef]
- Smith, E.; Morris, J.; Kheshgi, H.; Teletzke, G.; Herzog, H.; Paltsev, S. The cost of CO2 transport and storage in global integrated assessment modeling. Int. J. Greenh. Gas Control 2021, 109, 103367. [Google Scholar] [CrossRef]
- Raza, A.; Glatz, G.; Gholami, R.; Mahmoud, M.; Alafnan, S. Carbon mineralization and geological storage of CO2 in basalt: Mechanisms and technical challenges. Earth-Sci. Rev. 2022, 229, 104036. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, W.C.; Yang, R.Z.; Liu, Y.M.; Jafari, M. CO2 capture and storage monitoring based on remote sensing techniques: A review. J. Clean Prod. 2021, 281, 124409. [Google Scholar] [CrossRef]
- Zhang, S.R.; Sang, S.X.; Wu, J.; Zhou, X.Z.; Zhang, B.; Yang, R.Z.; Guo, J.C.; Liu, X.D.; Zhang, W.Q.; Li, Y. Progress and application of key technologies for CO2 enhancing coalbed methane. J. China Coal Soc. 2022, 47, 3952–3964. [Google Scholar]
- Li, Z.W.; Yu, H.J.; Bai, Y.S. Numerical simulation of CO2-ECBM based on multi-physical field coupling model. Sustainability 2022, 14, 11789. [Google Scholar] [CrossRef]
- Fang, H.H.; Xu, H.J.; Sang, S.X.; Liu, S.Q.; Song, S.L.; Liu, H.H. 3D reconstruction of coal pore network and its application in CO2-ECBM process simulation at laboratory scale. Front. Earth Sci. 2022, 16, 523–539. [Google Scholar] [CrossRef]
- Ma, Q.Q.; Li, H.; Ji, K.; Huang, F.J. Thermal-hydraulic-mechanical coupling simulation of CO2 enhanced coalbed methane recovery with regards to Low-Rank but relatively shallow coal seams. Appl. Sci. 2023, 13, 2592. [Google Scholar] [CrossRef]
- Cheng, X.Y.; Gong, X.P.; Cheng, C.; Li, Q.G.; Li, Z.Q. Molecular Dynamics Simulation of CO2-ECBM Under Different Moisture Contents. Energies 2025, 18, 239. [Google Scholar] [CrossRef]
- Liu, M.Y.; Wen, H.; Fan, S.X.; Wang, Z.P.; Fei, J.B.; Wei, G.M.; Chen, X.J.; Wang, H. Experimental study of CO2-ECBM by injection liquid CO2. Minerals 2022, 12, 297. [Google Scholar] [CrossRef]
- Wang, Z.L.; Sang, S.X.; Zhou, X.Z.; Liu, X.D. Numerical study on CO2 sequestration in low-permeability coal reservoirs to enhance CH4 recovery: Gas driving water and staged inhibition on CH4 output. J. Pet. Sci. Eng. 2022, 214, 110478. [Google Scholar] [CrossRef]
- Liu, X.D.; Sang, S.X.; Zhou, X.Z.; Wang, Z.L. Coupled adsorption-hydro-thermo-mechanical-chemical modeling for CO2 sequestration and well production during CO2-ECBM. Energy 2023, 262, 125306. [Google Scholar] [CrossRef]
- Damen, K.; Faaij, A.; Bergen, F.V.; Gale, J.; Lysen, E. Identification of early opportunities for CO2 sequestration—Worldwide screening for CO2-EOR and CO2-ECBM projects. Energy 2005, 30, 1931–1952. [Google Scholar] [CrossRef]
- Godec, M.; Koperna, G.; Gale, J. CO2-ECBM: A review of its status and global potential. Energy Proc. 2014, 63, 5858–5869. [Google Scholar] [CrossRef]
- Gale, J.; Freund, P. Coal-bed methane enhancement with CO2 sequestration worldwide potential. Environ. Geosci. 2001, 8, 210–217. [Google Scholar] [CrossRef]
- Su, X.B.; Lin, X.Y.; Liu, S.B.; Zhao, M.J.; Song, Y. Geology of coalbed methane reservoirs in the Southeast Qinshui Basin of China. Int. J. Coal Geol. 2005, 62, 197–210. [Google Scholar] [CrossRef]
- Liu, D.M.; Jia, Q.F.; Cai, Y.D.; Gao, C.J.; Qiu, F.; Zhao, Z.; Chen, S.Y. A new insight into coalbed methane occurrence and accumulation in the Qinshui Basin, China. Gondwana Res. 2022, 111, 280–297. [Google Scholar] [CrossRef]
- Su, X.B.; Lin, X.Y.; Zhao, M.J.; Song, Y.; Liu, S.B. The upper Paleozoic coalbed methane system in the Qinshui basin, China. AAPG Bull. 2005, 89, 81–100. [Google Scholar] [CrossRef]
- Jiang, L.; Song, Y.; Zhao, W.; Bo, D.M.; Liu, S.B.; Hao, J.Q. Main controlling factor of coalbed methane enrichment area in southern Qinshui Basin, China. J. Pet. Explor. Prod. Technol. 2024, 14, 165–173. [Google Scholar] [CrossRef]
- Clarkson, C. The Allison Unit CO2-ECBM Pilot: A Reservoir Modeling Study. Retrieved April 2003, 7, 1–56. [Google Scholar]
- Shi, J.Q.; Durucan, S. A numerical simulation study of the Allison unit CO2-ECBM pilot: The impact of matrix shrinkage and swelling on ECBM production and CO2 injectivity. Greenh. Gas Control Technol. 7 2005, I, 431–439. [Google Scholar]
- Weber, M.; Wilson, T.H.; Akwari, B.; Wells, A.W.; Koperna, G. Impact of geological complexity of the Fruitland Formation on combined CO2 enhanced recovery/sequestration at San Juan Basin pilot site. Int. J. Coal Geol. 2012, 104, 46–58. [Google Scholar] [CrossRef]
- Liu, S.Q.; Huang, F.S.; Du, R.B.; Chen, S.H.; Guan, Y.T.; Liu, Y.H.; Wang, T. Progress and typical case analysis of demonstration projects of the geologic al sequestration and utilization of CO2. Coal Geol. Explor. 2023, 51, 158–174. [Google Scholar]
- Massarotto, P.; Golding, S.D.; Bae, J.S.; Iyer, R.; Rudolph, V. Changes in reservoir properties from injection of supercritical CO2 into coal seams—A laboratory study. Int. J. Coal Geol. 2010, 82, 269–279. [Google Scholar] [CrossRef]
- Ranathunga, A.S.; Perera, M.S.A.; Ranjith, P.G.; Rathnaweera, T.D.; Zhang, X.G. Effect of coal rank on CO2 adsorption induced coal matrix swelling with different CO2 properties and reservoir depths. Energy Fuels 2017, 31, 5297–5305. [Google Scholar] [CrossRef]
- Reisabadi, M.Z.; Sayyafzadeh, M.; Haghighi, M. Stress and permeability modelling in depleted coal seams during CO2 storage. Fuel 2022, 325, 124958. [Google Scholar] [CrossRef]
- Cao, B.; Fu, X.H.; Kang, J.Q.; Lu, J.L.; Tang, P.; Xu, H.; Huang, M. Mini-Review on Influence of CO2-Enhanced Coalbed Methane Recovery and CO2 Geological Storage on Physical Properties of Coal Reservoir. Energy Fuels 2024, 38, 23268–23280. [Google Scholar] [CrossRef]
- Shang, Z.; Wang, H.F.; Li, B.; Cheng, Y.P.; Zhang, X.H.; Wang, Z.Y.; Geng, S.K.; Wang, Z.Y.; Chen, P.; Lv, P.F.; et al. The effect of leakage characteristics of liquid CO2 phase transition on fracturing coal seam: Applications for enhancing coalbed methane recovery. Fuel 2022, 308, 122044. [Google Scholar] [CrossRef]
- Gordon, D.; Reuland, F.; Jacob, D.J.; Worden, J.R.; Shindell, D.; Dyson, M. Evaluating net life-cycle greenhouse gas emissions intensities from gas and coal at varying methane leakage rates. Environ. Res. Lett. 2023, 18, 084008. [Google Scholar] [CrossRef]
- Zhang, M.J.; Gao, L.; Wang, Q.D.; Xie, D.L.; Gao, J.; Wang, S.X.; Lu, X. Methane leakage measurement of natural gas heating boilers and greenhouse gas emissions accounting of “coal-to-gas” transition for residential heating in rural Beijing. Environ. Sci. Technol. Lett. 2022, 10, 93–97. [Google Scholar] [CrossRef]
- Rutqvist, J.; Birkholzer, J.T.; Tsang, C.F. Coupled reservoir-geomechanical analysis of the potential for tensile and shear failure associated with CO2 injection in multilayered reservoir-caprock systems. Int. J. Rock Mech. Min. Sci. 2008, 45, 132–143. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Li, C.; Tian, Y.; Miao, B.; Liu, Y.; Yue, Z.; Dai, X.; Zhao, J.; Gao, H.; Li, H.; et al. CO2-ECBM from a Full-Chain Perspective: Mechanism Elucidation, Demonstration Practices, and Future Outlook. Energies 2025, 18, 2841. https://doi.org/10.3390/en18112841
Cui Y, Li C, Tian Y, Miao B, Liu Y, Yue Z, Dai X, Zhao J, Gao H, Li H, et al. CO2-ECBM from a Full-Chain Perspective: Mechanism Elucidation, Demonstration Practices, and Future Outlook. Energies. 2025; 18(11):2841. https://doi.org/10.3390/en18112841
Chicago/Turabian StyleCui, Yinan, Chao Li, Yuchen Tian, Bin Miao, Yanzhi Liu, Zekun Yue, Xuguang Dai, Jinghui Zhao, Hequn Gao, Hui Li, and et al. 2025. "CO2-ECBM from a Full-Chain Perspective: Mechanism Elucidation, Demonstration Practices, and Future Outlook" Energies 18, no. 11: 2841. https://doi.org/10.3390/en18112841
APA StyleCui, Y., Li, C., Tian, Y., Miao, B., Liu, Y., Yue, Z., Dai, X., Zhao, J., Gao, H., Li, H., Zhang, Y., Zhang, G., Zhang, B., Liu, S., & Zheng, S. (2025). CO2-ECBM from a Full-Chain Perspective: Mechanism Elucidation, Demonstration Practices, and Future Outlook. Energies, 18(11), 2841. https://doi.org/10.3390/en18112841