Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = thermal neutron imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 769 KiB  
Article
A Novel Closo-Ortho-Carborane-Based Glucosamine Derivative as a Promising Agent for Boron Neutron Capture Therapy
by Daniela Imperio, Ian Postuma, Salvatore Villani, Erika Del Grosso, Laura Cansolino, Cinzia Ferrari, Silvia Fallarini, Silva Bortolussi and Luigi Panza
Pharmaceuticals 2025, 18(7), 986; https://doi.org/10.3390/ph18070986 - 30 Jun 2025
Viewed by 357
Abstract
Background: Boron Neutron Capture Therapy (BNCT) is a promising cancer treatment that combines tumor-selective boron delivery agents with thermal neutrons to kill cancer cells while sparing normal tissue. BNCT requires boron-containing compounds that exhibit high tumor selectivity and achieve therapeutic boron concentrations within [...] Read more.
Background: Boron Neutron Capture Therapy (BNCT) is a promising cancer treatment that combines tumor-selective boron delivery agents with thermal neutrons to kill cancer cells while sparing normal tissue. BNCT requires boron-containing compounds that exhibit high tumor selectivity and achieve therapeutic boron concentrations within tumor cells. This work focuses on the early development of a novel boron cluster carbohydrate derivative based on the glucosamine structure. Our results indicate that this derivative may have advantages over the typical boron delivery agent used in clinical applications and may significantly improve boron delivery capacity at the cellular level. Methods: The performance of the compound in terms of boron uptake was tested in the U87-MG glioblastoma cell line employing neutron autoradiography imaging and quantification. Results: The compound was non-toxic for cells, and it showed a remarkable capacity to enrich cells with boron. The ratio between boron concentration provided in the culture medium and boron concentration achieved in cells was compared to that obtained with boronophenylalanine (BPA), the gold standard in BNCT. The result demonstrated a significantly better performance compared with BPA, showing that the novel agent can concentrate boron in cells more than in culture medium. Conclusions: The encouraging preliminary results provide a starting point for its potential application in in vivo tests. Full article
Show Figures

Graphical abstract

33 pages, 26504 KiB  
Review
Evolution of Mars Water-Ice Detection Research from 1990 to 2024
by Aijie Yu, Hubiao Wang, Delong An and Hongling Shi
Remote Sens. 2025, 17(6), 1023; https://doi.org/10.3390/rs17061023 - 14 Mar 2025
Viewed by 2038
Abstract
As the most similar planet to Earth in the solar system, Mars’ surface and subsurface water ice provide important clues for studying extraterrestrial life and planetary evolution. Since the 1960s, the exploration of Martian water ice has gradually become a focus of scientific [...] Read more.
As the most similar planet to Earth in the solar system, Mars’ surface and subsurface water ice provide important clues for studying extraterrestrial life and planetary evolution. Since the 1960s, the exploration of Martian water ice has gradually become a focus of scientific research. This article reviews the evolution of Mars water-ice detection technology from 1990 to 2024 through bibliometric analysis, with a focus on the application of key technologies such as radar detection, image analysis, in situ analysis, thermal infrared imaging, and neutron spectroscopy. The analysis results indicate that research in the field of Mars water-ice exploration has been increasing year by year, with major research institutions including National Aeronautics and Space Administration (NASA) and the California Institute of Technology (CIT), and key researchers such as Professor James W. Head making significant contributions. Keyword analysis shows that current research is focused on the distribution and status of water ice and its relationship with the Martian climate, and the application of modern exploration technology has also become a hot topic. However, despite continuous technological advancements, issues such as detection depth and data analysis accuracy remain challenges. The complex terrain and extreme climate conditions make water-ice detection difficult. This article also points out that future research should focus on integrating multiple high-precision detection techniques for consistent results and the application of new technologies such as time-varying gravity. Moreover, combined with the application of artificial intelligence, this will provide new directions for the precise detection and data-processing of Martian water ice. Full article
Show Figures

Figure 1

15 pages, 5550 KiB  
Article
Microstructure of Neutron-Irradiated Al3Hf-Al Thermal Neutron Absorber Materials
by Donna Post Guillen, Janelle Wharry, Yu Lu, Michael Wu, Jeremy Sharapov and Matthew Anderson
Materials 2025, 18(4), 833; https://doi.org/10.3390/ma18040833 - 14 Feb 2025
Cited by 1 | Viewed by 1100
Abstract
A thermal neutron-absorbing metal matrix composite (MMC) comprised of Al3Hf particles in an aluminum matrix was developed to filter out thermal neutrons and create a fast flux environment for material testing in a mixed-spectrum nuclear reactor. Intermetallic Al3Hf particles [...] Read more.
A thermal neutron-absorbing metal matrix composite (MMC) comprised of Al3Hf particles in an aluminum matrix was developed to filter out thermal neutrons and create a fast flux environment for material testing in a mixed-spectrum nuclear reactor. Intermetallic Al3Hf particles capture thermal neutrons and are embedded in a highly conductive aluminum matrix that provides conductive cooling of the heat generated due to thermal neutron capture by the hafnium. These Al3Hf-Al MMCs were fabricated using powder metallurgy via hot pressing. The specimens were neutron-irradiated to between 1.12 and 5.38 dpa and temperatures ranging from 286 °C to 400 °C. The post-irradiation examination included microstructure characterization using transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy. This study reports the microstructural observations of four irradiated samples and one unirradiated control sample. All the samples showed the presence of oxide at the particle–matrix interface. The irradiated specimens revealed needle-like structures that extended from the surface of the Al3Hf particles into the Al matrix. An automated segmentation tool was implemented based on a YOLO11 computer vision-based approach to identify dislocation lines and loops in TEM images of the irradiated Al-Al3Hf MMCs. This work provides insight into the microstructural stability of Al3Hf-Al MMCs under irradiation, supporting their consideration as a novel neutron absorber that enables advanced spectral tailoring. Full article
(This article belongs to the Special Issue Advanced Characterization Techniques on Nuclear Fuels and Materials)
Show Figures

Figure 1

16 pages, 1099 KiB  
Article
Geophysical Monitoring Technologies for the Entire Life Cycle of CO2 Geological Sequestration
by Chenyang Li and Xiaoli Zhang
Processes 2024, 12(10), 2258; https://doi.org/10.3390/pr12102258 - 16 Oct 2024
Cited by 1 | Viewed by 2189
Abstract
Geophysical monitoring of CO2 geological sequestration represents a critical technology for ensuring the long-term safe storage of CO2 while verifying its characteristics and dynamic changes. Currently, the primary geophysical monitoring methods employed in CO2 geological sequestration include seismic, fiber optic, [...] Read more.
Geophysical monitoring of CO2 geological sequestration represents a critical technology for ensuring the long-term safe storage of CO2 while verifying its characteristics and dynamic changes. Currently, the primary geophysical monitoring methods employed in CO2 geological sequestration include seismic, fiber optic, and logging technologies. Among these methods, seismic monitoring techniques encompass high-resolution P-Cable three-dimensional seismic systems, delayed vertical seismic profiling technology, and four-dimensional distributed acoustic sensing (DAS). These methods are utilized to monitor interlayer strain induced by CO2 injection, thereby indirectly determining the injection volume, distribution range, and potential diffusion pathways of the CO2 plume. In contrast, fiber optic monitoring primarily involves distributed fiber optic sensing (DFOS), which can be further classified into distributed acoustic sensing (DAS) and distributed temperature sensing (DTS). This technology serves to complement seismic monitoring in observing interlayer strain resulting from CO2 injection. The logging techniques utilized for monitoring CO2 geological sequestration include neutron logging methods, such as thermal neutron imaging and pulsed neutron gamma-ray spectroscopy, which are primarily employed to assess the sequestration volume and state of CO2 plumes within a reservoir. Seismic monitoring technology provides a broader monitoring scale (ranging from dozens of meters to kilometers), while logging techniques operate at centimeter to meter scales; however, their results can be significantly affected by the heterogeneity of a reservoir. Full article
Show Figures

Figure 1

24 pages, 3760 KiB  
Article
Ultrathin Boron Growth onto Nanodiamond Surfaces via Electrophilic Boron Precursors
by Krishna Govindaraju, Tyanna Supreme, Daniel N. Labunsky, Nicole Martin, Juan Miguel Del Rosario, Alana Washington, Ezhioghode O. Uwadiale, Solomon Adjei, Sandra Ladjadj, Cynthia V. Melendrez, Sang-Jun Lee, Maria V. Altoe, Avery Green, Sebastian Riano, Sami Sainio, Dennis Nordlund and Abraham Wolcott
Nanomaterials 2024, 14(15), 1274; https://doi.org/10.3390/nano14151274 - 29 Jul 2024
Cited by 1 | Viewed by 3198
Abstract
Diamond as a templating substrate is largely unexplored, and the unique properties of diamond, including its large bandgap, thermal conductance, and lack of cytotoxicity, makes it versatile in emergent technologies in medicine and quantum sensing. Surface termination of an inert diamond substrate and [...] Read more.
Diamond as a templating substrate is largely unexplored, and the unique properties of diamond, including its large bandgap, thermal conductance, and lack of cytotoxicity, makes it versatile in emergent technologies in medicine and quantum sensing. Surface termination of an inert diamond substrate and its chemical reactivity are key in generating new bonds for nucleation and growth of an overlayer material. Oxidized high-pressure high temperature (HPHT) nanodiamonds (NDs) are largely terminated by alcohols that act as nucleophiles to initiate covalent bond formation when an electrophilic reactant is available. In this work, we demonstrate a templated synthesis of ultrathin boron on ND surfaces using trigonal boron compounds. Boron trichloride (BCl3), boron tribromide (BBr3), and borane (BH3) were found to react with ND substrates at room temperature in inert conditions. BBr3 and BCl3 were highly reactive with the diamond surface, and sheet-like structures were produced and verified with electron microscopy. Surface-sensitive spectroscopies were used to probe the molecular and atomic structure of the ND constructs’ surface, and quantification showed the boron shell was less than 1 nm thick after 1–24 h reactions. Observation of the reaction supports a self-terminating mechanism, similar to atomic layer deposition growth, and is likely due to the quenching of alcohols on the diamond surface. X-ray absorption spectroscopy revealed that boron-termination generated midgap electronic states that were originally predicted by density functional theory (DFT) several years ago. DFT also predicted a negative electron surface, which has yet to be confirmed experimentally here. The boron-diamond nanostructures were found to aggregate in dichloromethane and were dispersed in various solvents and characterized with dynamic light scattering for future cell imaging or cancer therapy applications using boron neutron capture therapy (BNCT). The unique templating mechanism based on nucleophilic alcohols and electrophilic trigonal precursors allows for covalent bond formation and will be of interest to researchers using diamond for quantum sensing, additive manufacturing, BNCT, and potentially as an electron emitter. Full article
(This article belongs to the Special Issue Nanodiamond Applications: From Biomedicine to Quantum Optics)
Show Figures

Graphical abstract

30 pages, 3072 KiB  
Review
Residual Stresses in Wire Arc Additive Manufacturing Products and Their Measurement Techniques: A Systematic Review
by Fakada Dabalo Gurmesa, Hirpa Gelgele Lemu, Yosef Wakjira Adugna and Mesfin Demise Harsibo
Appl. Mech. 2024, 5(3), 420-449; https://doi.org/10.3390/applmech5030025 - 10 Jul 2024
Cited by 11 | Viewed by 4426
Abstract
This literature review provides an in-depth exploration of the research conducted on residual stresses (RS) in Wire Arc Additive Manufacturing (WAAM) products, particularly focusing on how process parameters influence the phenomenon. The motivation of the study is the growing focus on WAAM technology [...] Read more.
This literature review provides an in-depth exploration of the research conducted on residual stresses (RS) in Wire Arc Additive Manufacturing (WAAM) products, particularly focusing on how process parameters influence the phenomenon. The motivation of the study is the growing focus on WAAM technology and the observation that RS plays a crucial role in determining the mechanical behavior and structural integrity of WAAM components. Thus, the review is intended to provide a better understanding of the relationship between process parameters and RS to optimize the WAAM process and ensure the durability of the final products. It also summarizes key findings, measurement techniques, challenges, and future directions in this evolving field. The review also analyzes measurement techniques used to characterize RS in products fabricated by WAAM as a function of process parameters. Experimental measuring techniques and numerical analysis of RS to determine the impacts of RS in mechanical responses in products of WAAM were discussed. Experimental measuring techniques, such as X-ray diffraction, neutron diffraction (ND), contour and ND, digital image correlation, thermomechanical coupling and contour, and hole-drilling methods, along with numerical simulations like finite element analysis, are discussed to determine the impacts of RS on the mechanical responses of WAAM products. Additionally, it addresses the influence of thermal cycles, cooling rates, and deposition strategies on RS formation. The role of material properties, such as thermal conductivity and expansion coefficients, in RS development is also considered. By offering a comprehensive overview of current research trends and insights, this review serves as a valuable resource to guide future investigations, fostering the advancement of WAAM as a robust and efficient manufacturing technology. The review also underscores the importance of interdisciplinary approaches combining experimental and numerical methods to tackle the complex issues of RS in WAAM, aiming to enhance the performance and reliability of additively manufactured components. Full article
Show Figures

Figure 1

12 pages, 1998 KiB  
Communication
New Mini Neutron Tubes with Multiple Applications
by Ka-Ngo Leung
J. Nucl. Eng. 2024, 5(3), 197-208; https://doi.org/10.3390/jne5030014 - 26 Jun 2024
Cited by 3 | Viewed by 2664
Abstract
Recent experimental investigations have demonstrated that a substantial amount of H/D ions can be formed by thermal desorption processes. Based on these new findings, new mini axial and coaxial-type neutron tubes have been developed for the production of high or [...] Read more.
Recent experimental investigations have demonstrated that a substantial amount of H/D ions can be formed by thermal desorption processes. Based on these new findings, new mini axial and coaxial-type neutron tubes have been developed for the production of high or low-energy neutrons via the d-d, d-10B, d-7Li or p-7Li nuclear reactions. By operating these mini neutron tubes with a high frequency AC high-voltage supply, short pulses of high intensity neutron beams can be generated. Multiple applications, such as carbon and well logging, neutron imaging, cancer therapy, medical isotope production, fission reactor start-up, fusion reactor material evaluation, homeland security and space exploration can be performed with the subcompact neutron generator system. It is shown that the performance of these new mini neutron tubes can exceed those of the conventional plasma-based neutron sources. Full article
Show Figures

Figure 1

18 pages, 3439 KiB  
Article
Heterogeneity of Lithium Distribution in the Graphite Anode of 21700-Type Cylindrical Li-Ion Cells during Degradation
by Dominik Petz, Volodymyr Baran, Juyeon Park, Alexander Schökel, Armin Kriele, Joana Rebelo Kornmeier, Carsten Paulmann, Max Koch, Tom Nilges, Peter Müller-Buschbaum and Anatoliy Senyshyn
Batteries 2024, 10(3), 68; https://doi.org/10.3390/batteries10030068 - 20 Feb 2024
Cited by 8 | Viewed by 4488
Abstract
Structural and spatial aspects of cell degradation are studied using a combination of diffraction-and imaging-based tools applying laboratory X-rays, neutron scattering and synchrotron radiation with electrochemical and thermal characterization. Experimental characterization is carried out on cylindrical cells of 21700-type, where four regimes of [...] Read more.
Structural and spatial aspects of cell degradation are studied using a combination of diffraction-and imaging-based tools applying laboratory X-rays, neutron scattering and synchrotron radiation with electrochemical and thermal characterization. Experimental characterization is carried out on cylindrical cells of 21700-type, where four regimes of cell degradation are identified, which are supplemented by an increased cell resistance and surface temperature during cell operation. The amount of intercalated lithium in the fully charged anodes in the fresh and aged states is determined by ex situ X-ray diffraction radiography and in situ X-ray diffraction computed tomography. The qualitatively similar character of the results revealed a loss of active lithium along with the development of a complex heterogeneous distribution over the electrode stripe. Full article
Show Figures

Figure 1

19 pages, 15581 KiB  
Article
Comparison of Zirconium Redistribution in BISON EBR-II Models Using FIPD and IMIS Databases with Experimental Post Irradiation Examination
by Kyle M. Paaren, Spencer Christian, Luca Capriotti, Assel Aitkaliyeva and Douglas Porter
Energies 2023, 16(19), 6817; https://doi.org/10.3390/en16196817 - 26 Sep 2023
Cited by 2 | Viewed by 1528
Abstract
Metallic fuels have seen increased interest for future sodium fast reactors due to their material properties: high thermal conductivities and advantageous neutronic properties allow for greater fission densities. One drawback to typical metallic fuels is zirconium redistribution, which impacts this advantageous material and [...] Read more.
Metallic fuels have seen increased interest for future sodium fast reactors due to their material properties: high thermal conductivities and advantageous neutronic properties allow for greater fission densities. One drawback to typical metallic fuels is zirconium redistribution, which impacts this advantageous material and its neutronic properties. Unfortunately, the processes behind zirconium migration behavior are understood using first principles, so before these fuels are implemented in future fast reactors, characterization and fuel qualification regimes must be completed. These activities can be supported through the use of robust modeling using the most accurate empirical models currently available to fuel researchers around the world. The tool that allows researchers to model this complex coupled thermo-mechanical behavior and nuclear properties is BISON. Additionally, BISON model parameters need to be compared against PIE measurements. The current work utilizes two fuel pins from EBR-II experiment X441 to optimize various model parameters, including porosity correction factor, thermal conductivity, phase transition temperature, and diffusion coefficient multipliers, before implementing the final model for seven fuel pins with differing characteristics. To properly evaluate the BISON simulations, the results are compared to PIE metallography data for each fuel pin, to ensure the zirconium redistribution is properly reflected in the simulation results. Six out of seven analyzed fuel pins demonstrate good agreement between the metallography images and BISON results, showing alignment of the Zr-rich, Zr-depleted, and moderately Zr-enriched zones at various axial heights along the fuel pins. Further work is needed to refine the model parameters for general pin use. Full article
Show Figures

Figure 1

15 pages, 7009 KiB  
Article
A CMOS-MEMS Pixel Sensor for Thermal Neutron Imaging
by Roberto Mendicino and Gian-Franco Dalla Betta
Micromachines 2023, 14(5), 952; https://doi.org/10.3390/mi14050952 - 27 Apr 2023
Cited by 1 | Viewed by 2725
Abstract
A monolithic pixel sensor with high spatial granularity (35 × 40 μm2) is presented, aiming at thermal neutron detection and imaging. The device is made using the CMOS SOIPIX technology, with Deep Reactive-Ion Etching post-processing on the backside to obtain high [...] Read more.
A monolithic pixel sensor with high spatial granularity (35 × 40 μm2) is presented, aiming at thermal neutron detection and imaging. The device is made using the CMOS SOIPIX technology, with Deep Reactive-Ion Etching post-processing on the backside to obtain high aspect-ratio cavities that will be filled with neutron converters. This is the first monolithic 3D sensor ever reported. Owing to the microstructured backside, a neutron detection efficiency up to 30% can be achieved with a 10B converter, as estimated by the Geant4 simulations. Each pixel includes circuitry that allows a large dynamic range and energy discrimination and charge-sharing information between neighboring pixels, with a power dissipation of 10 µW per pixel at 1.8 V power supply. The initial results from the experimental characterization of a first test-chip prototype (array of 25 × 25 pixels) in the laboratory are also reported, dealing with functional tests using alpha particles with energy compatible with the reaction products of neutrons with the converter materials, which validate the device design. Full article
(This article belongs to the Special Issue CMOS-MEMS Fabrication Technologies and Devices)
Show Figures

Figure 1

20 pages, 15239 KiB  
Article
Dynamic Thermal Neutron Radiography for Filling Process Analysis and CFD Model Validation of Visco-Dampers
by Márk Venczel, Árpád Veress, László Szentmiklósi and Zoltán Kis
Machines 2023, 11(4), 485; https://doi.org/10.3390/machines11040485 - 18 Apr 2023
Cited by 2 | Viewed by 1972
Abstract
The visco-damper is a crucial engine accessory from an operation- as well as vehicle-safety point of view. The service life of this damping product is determined by the degradation of the silicone oil applied to it. The thermal and mechanical degradation of the [...] Read more.
The visco-damper is a crucial engine accessory from an operation- as well as vehicle-safety point of view. The service life of this damping product is determined by the degradation of the silicone oil applied to it. The thermal and mechanical degradation of the oil starts not at the first operation of the damper, but at the manufacturing stage when the oil is filled into the damper’s gap at high pressure. Finite volume method-based computational fluid dynamic calculations provide an opportunity to optimize the filling process by minimizing the oil degradation. A three-dimensional, transient, non-Newtonian, multiphase, coupled fluid dynamic and heat transfer simulation model was developed to analyse the filling process and to investigate the effect of the slide bearing’s cut-off position on the filling process. Dynamic thermal neutron radiography was employed to visualize the filling of a test damper for model validation from viscous and fluid dynamic aspects. Distinct properties of neutrons compared to the more commonly applied X-rays were proven to be an effective tool for real-time monitoring of the silicone oil’s front propagation in the damper’s gap and for quantifying the characteristics of the filling process. Visual matching and comparison of propagation times and oil front velocity profiles were used to validate the simulation results. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

10 pages, 287 KiB  
Perspective
Kilonova Emission and Heavy Element Nucleosynthesis
by Elena Pian
Universe 2023, 9(2), 105; https://doi.org/10.3390/universe9020105 - 17 Feb 2023
Cited by 5 | Viewed by 2425
Abstract
The binary neutron star merger observed and localized on 17 August 2017 by the LIGO and Virgo gravitational interferometers and by numerous telescopes on the ground and in orbit linked in an unambiguous way the coalescence of double neutron stars with the formation [...] Read more.
The binary neutron star merger observed and localized on 17 August 2017 by the LIGO and Virgo gravitational interferometers and by numerous telescopes on the ground and in orbit linked in an unambiguous way the coalescence of double neutron stars with the formation of a relativistic outflow (short gamma-ray burst GRB170817A) and of a thermal radioactive source (kilonova). The vicinity of the event (40 Mpc) made it possible to monitor the electromagnetic counterpart in detail at all wavelengths and to map its close environment in the outskirts of the lenticular galaxy NGC 4993. Radio VLBI images of GRB170817A allowed the first direct detection of superluminal motion in a GRB afterglow, pointing to a collimated ultra-relativistic jet rather than to a quasi-isotropically, mildly relativistically expanding source. The accurate spectroscopy of the kilonova at ultraviolet-to-infrared wavelengths with the X-Shooter spectrograph of the ESO Very Large Telescope showed the long-sought-after signature of rapid neutron capture process (in short: r-process) nucleosynthesis. Kilonova detection makes gravitational wave sources optimal tracers of heavy element formation sites. Full article
(This article belongs to the Special Issue GRBs Phenomenology, Models and Applications: A Beginner Guide)
12 pages, 4473 KiB  
Article
Structural Evolution from Neutron Powder Diffraction of Nanostructured SnTe Obtained by Arc Melting
by Javier Gainza, Federico Serrano-Sánchez, João E. F. S. Rodrigues, Oscar J. Dura, Brenda Fragoso, Mateus M. Ferrer, Norbert M. Nemes, José L. Martínez, María T. Fernández-Díaz and José A. Alonso
Crystals 2023, 13(1), 49; https://doi.org/10.3390/cryst13010049 - 27 Dec 2022
Viewed by 2045
Abstract
Among chalcogenide thermoelectric materials, SnTe is an excellent candidate for intermediate temperature applications, in replacement of toxic PbTe. We have prepared pure polycrystalline SnTe by arc melting, and investigated the structural evolution by temperature-dependent neutron powder diffraction (NPD) from room temperature up to [...] Read more.
Among chalcogenide thermoelectric materials, SnTe is an excellent candidate for intermediate temperature applications, in replacement of toxic PbTe. We have prepared pure polycrystalline SnTe by arc melting, and investigated the structural evolution by temperature-dependent neutron powder diffraction (NPD) from room temperature up to 973 K. In this temperature range, the sample is cubic (space group Fm-3m) and shows considerably larger displacement parameters for Te than for Sn. The structural analysis allowed the determination of the Debye model parameters and provided information on the Sn–Te chemical bonds. SEM images show a conspicuous nanostructuration in layers below 30 nm thick, which contributes to the reduction of the thermal conductivity down to 2.5 W/m·K at 800 K. The SPS treatment seems to reduce the number of Sn vacancies, thus diminishing the carrier density and increasing the Seebeck coefficient, which reaches 60 μV K−1 at 700 K, as well as the weighted mobility, almost doubled compared with that of the as-grown sample. Full article
(This article belongs to the Special Issue Nanostructured Thermoelectric Materials)
Show Figures

Figure 1

15 pages, 3906 KiB  
Article
A Design for the High Yield Photoneutron Source Target Station
by Yuxuan Lai and Yigang Yang
Materials 2022, 15(21), 7674; https://doi.org/10.3390/ma15217674 - 1 Nov 2022
Cited by 4 | Viewed by 2241
Abstract
Low energy accelerator driven neutron sources are promising candidates to obtain a neutron yield as high as 1014 n/s, which is required for a variety of applications, such as boron neutron capture therapy, neutron imaging, and neutron scattering. The methods to generate [...] Read more.
Low energy accelerator driven neutron sources are promising candidates to obtain a neutron yield as high as 1014 n/s, which is required for a variety of applications, such as boron neutron capture therapy, neutron imaging, and neutron scattering. The methods to generate neutrons can be divided into two categories: hadron-based and photon-based methods. In order to better understand which kind of source would be the better choice for delivering a brilliant neutron beam robustly, in this paper, the underlying principles of neutron production, as well as the simulation results of neutron yield, target heat dissipation, thermal stress, and reaction byproducts concentration of these two types of neutron sources, will be elaborated on. A preliminary photoneutron target station design based on a 50 MeV/50 kW electron linear accelerator, including the optimized neutron yield, thermal hydraulic analysis, and shielding calculation, is presented as well to demonstrate the method to deliver brilliant thermal neutron beam of 1.03 × 1010 cm−2 s−1 sr−1. Full article
Show Figures

Figure 1

27 pages, 12444 KiB  
Article
Fabrication of Black Body Grids by Thick Film Printing for Quantitative Neutron Imaging
by Martin Wissink, Kirk Goldenberger, Luke Ferguson, Yuxuan Zhang, Hassina Bilheux, Jacob LaManna, David Jacobson, Michael Kass, Charles Finney and Jonathan Willocks
J. Imaging 2022, 8(6), 164; https://doi.org/10.3390/jimaging8060164 - 8 Jun 2022
Cited by 1 | Viewed by 3012
Abstract
Neutron imaging offers deep penetration through many high-Z materials while also having high sensitivity to certain low-Z isotopes such as 1H, 6Li, and 10B. This unique combination of properties has made neutron imaging an attractive tool for a wide range [...] Read more.
Neutron imaging offers deep penetration through many high-Z materials while also having high sensitivity to certain low-Z isotopes such as 1H, 6Li, and 10B. This unique combination of properties has made neutron imaging an attractive tool for a wide range of material science and engineering applications. However, measurements made by neutron imaging or tomography are generally qualitative in nature due to the inability of detectors to discriminate between neutrons which have been transmitted through the sample and neutrons which are scattered by the sample or within the detector. Recent works have demonstrated that deploying a grid of small black bodies (BBs) in front of the sample can allow for the scattered neutrons to be measured at the BB locations and subsequently subtracted from the total measured intensity to yield a quantitative transmission measurement. While this method can be very effective, factors such as the scale and composition of the sample, the beam divergence, and the resolution and construction of the detector may require optimization of the grid design to remove all measurement biases within a given experimental setup. Therefore, it is desirable to have a method by which BB grids may be rapidly and inexpensively produced such that they can easily be tailored to specific applications. In this work, we present a method for fabricating BB patterns by thick film printing of Gd2O3 and evaluate the performance with variation in feature size and number of print layers with cold and thermal neutrons. Full article
(This article belongs to the Special Issue Computational Methods for Neutron Imaging)
Show Figures

Figure 1

Back to TopTop