Comparison of Zirconium Redistribution in BISON EBR-II Models Using FIPD and IMIS Databases with Experimental Post Irradiation Examination
Abstract
:1. Introduction
2. Methods
2.1. BISON Modeling and Input Parameters
2.2. Metallography Sectioning
3. Results
3.1. DP45
3.2. DP61
3.3. DP20
3.4. T653
3.5. A812
3.6. DP21 and DP29
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclosure Statement
Abbreviations
ANL | Argonne National Laboratory |
CDF | Cumulative Damage Fraction |
EBR-II | Experimental Breeder Reactor II |
EDS | Energy Dispersive X-ray Spectroscopy |
EPMA | Electron Probe Microanalyses |
FCCI | Fuel Cladding Chemical Interaction |
FFTF | Fast Flux Test Facility |
FGR | Fission Gas Release |
FIPD | Fuels Irradiation and Physics Database |
GLASS | Germanium-Lithium Argon Scanning System |
GUI | Graphics User Interface |
IMIS | IFR Materials Information System |
INL | Idaho National Laboratory |
LHGR | Linear Heat Generation Rate |
LWR | Light Water Reactor |
MOOSE | Multiphysics Object Orientated Simulation Environment |
PIE | Post Irradiation Examination |
SEM | Secondary Electron Microscopy |
SFR | Sodium-cooled Fast Reactor |
SMR | Small Modular Reactor |
VTR | Versatile Test Reactor |
References
- Paaren, K.M.; Gale, M.; Kerr, M.J.; Medvedev, P.; Porter, D. Initial demonstration of automated fuel performance modeling with 1977 EBR-II metallic fuel pins using BISON code with FIPD and IMIS databases. Nucl. Eng. Des. 2021, 382, 111393. [Google Scholar] [CrossRef]
- Galloway, J.; Unal, C.; Carlson, N.; Porter, D.; Hayes, S. Modeling constituent redistribution in U–Pu–Zr metallic fuel using the advanced fuel performance code BISON. Nucl. Eng. Des. 2015, 286, 1–17. [Google Scholar] [CrossRef]
- Harp, J.M.; Porter, D.L.; Miller, B.D.; Trowbridge, T.L.; Carmack, W.J. Scanning electron microscopy examination of a Fast Flux Test Facility irradiated U-10Zr fuel cross section clad with HT-9. J. Nucl. Mater. 2017, 494, 227–239. [Google Scholar] [CrossRef]
- Porter, D.L.; Lahm, C.E.; Pahl, R.G. Fuel constituent redistribution during the early stages of U-Pu-Zr irradiation. Metall. Trans. A 1990, 21, 1871–1876. [Google Scholar] [CrossRef]
- Ohta, H.; Ogata, T.; Papaioannou, D.; Rondinell, V.V.; Masson, M.; Paul, J.-L. Irradiation of Minor Actinide–Bearing Uranium-Plutonium-Zirconium Alloys up to ~2.5 at.%, ~7 at.%, and ~10 at.% Burnups. Nucl. Technol. 2015, 190, 36–51. [Google Scholar] [CrossRef]
- Hales, J.; Novascone, S.; Spencer, B.; Williamson, R.; Pastore, G.; Perez, D. Verification of the BISON fuel performance code. Ann. Nucl. Energy 2014, 71, 81–90. [Google Scholar] [CrossRef]
- Galloway, J.D.; Unal, C.; Matthews, C. Constituent Redistribution in U-Zr Metallic Fuel Using the Advanced Fuel Performance Code BISON; Los Alamos National Laboratory (LANL): Los Alamos, NM, USA, 2016. [Google Scholar] [CrossRef]
- Matthews, C.; Galloway, J.; Unal, C.; Novascone, S.; Williamson, R. BISON for Metallic Fuels Modelling; International Atomic Energy Agency (IAEA): Vienna, Austria, 2017. [Google Scholar]
- Matthews, C.; Unal, C.; Galloway, J.; Keiser, D.D., Jr.; Hayes, S.L. Fuel-Cladding Chemical Interaction in U-Pu-Zr Metallic Fuels: A Critical Review. Nucl. Technol. 2017, 198, 231–259. [Google Scholar] [CrossRef]
- Galloway, J.D. Fully-Coupled Metallic Fuel Performance Simulations Using BISON; Los Alamos National Laboratory (LANL): Los Alamos, NM, USA, 2015. [Google Scholar]
- Yacout, A.M.; Oaks, A.; Mohamed, W.; Mo, K. FIPD: EBR-II Fuels Irradiation & Physics Database; Argonne National Laboratory (ANL): Argonne, IL, USA, 2017. [Google Scholar] [CrossRef]
- Porter, D.; Mariani, R.D. Archiving EBR-II Metallic Fuel Test Data Using NDMAS to Accelerate Fast Reactor Fuel Qualification; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2019. [Google Scholar]
- Paaren, K.M.; Lybeck, N.; Mo, K.; Medvedev, P.G.; Porter, D.L. Cladding Profilometry Analysis of EBR-II metallic fuel pins with HT9, D9, and SS316 cladding. Energies 2021, 14, 515. [Google Scholar] [CrossRef]
- Paaren, K.M.; Black, A.; Lybeck, N.; Mo, K.; Spencer, B.W.; Medvedev, P.; Porter, D. BISON Fuel Performance Modeling Optimization for Experiment X447 and X447A Using Axial Swelling and Cladding Strain Measurements. Nucl. Eng. Des. 2022, 394, 111812. [Google Scholar] [CrossRef]
- Kim, Y.S.; Hayes, S.L.; Hofman, G.L.; Yacout, A.M. Modeling of constituent redistribution in U–Pu–Zr metallic fuel. J. Nucl. Mater. 2006, 359, 17–28. [Google Scholar] [CrossRef]
- Billone, M.C.; Liu, Y.Y.; Gruber, E.E.; Hughes, T.H.; Kramer, J.M. Status of Fuel Element Modeling Codes for Metallic Fuels. In Proceedings of the International Conference on Reliable Fuels for Liquid Metal Reactors, Tuson, AZ, USA, 7–11 September 1968. [Google Scholar]
- Savage, H. The heat content and specific heat of some metallic fast-reactor fuels containing plutonium. J. Nucl. Mater. 1968, 25, 249–259. [Google Scholar] [CrossRef]
- Hofman, G.L.; Billone, M.C.; Koenig, J.F.; Kramer, J.M. Metallic Fuels Handbook; Argonne National Laboratory (ANL): Argonne, IL, USA, 2019. [Google Scholar]
- Banerjee, A.; Raju, S.; Divakar, R.; Mohandas, E. High Temperature Heat Capacity of Alloy D9 Using Drop Calorimetry Based Enthalpy Increment Measurements. Int. J. Thermophys. 2007, 28, 97–108. [Google Scholar] [CrossRef]
- Leibowitz, L.; Blomquist, R.A. Thermal conductivity and thermal expansion of stainless steels D9 and HT9. Int. J. Thermophys. 1988, 9, 873–883. [Google Scholar] [CrossRef]
- Yamanouchi, N.; Tamura, M.; Hayakawa, H.; Kondo, T. Accumulation of engineering data for practical use of reduced activation ferritic steel: 8%Cr-2%W-0.2%V-0.04%Ta-Fe. J. Nucl. Mater. 1992, 191–194, 822–826. [Google Scholar] [CrossRef]
- Mills, K.C. Recommended Values of Thermophysical Properties for Selected Commercial Alloys; Woodhead Publishing: Cambridge, UK, 2002. [Google Scholar]
- Bauer, T. In-Pile Measurement of the Thermal Conductivity of Irradiated Metallic Fuel. Nucl. Technol. 1995, 110, 407–421. [Google Scholar] [CrossRef]
- Olander, D.R. Fundamental Aspects of Nuclear Reactor Fuel Elements; Technical Information Center, Energy Research and Development Administration: Oak Ridge, TN, USA, 1976. [Google Scholar]
- Hales, J.D.; Gamble, K.A.; Spencer, B.W.; Novascone, S.R.; Pastore, G.; Liu, W.; Stafford, D.S.; Williamson, R.L.; Perez, D.M.; Gardner, R.J. BISON Users Manual-BISON Release 1.2; Idaho National Laboratory: Idaho Falls, ID, USA, 2015. [Google Scholar]
- Los Alamos National Laboratory. AFCI Materials Handbook, Materials Data for Particle Accelerator Applications, Chapter 18-Design Properties of HT9 and Russian Ferritic/Martensitic Steels, Rev 6; Los Alamos National Laboratory (LANL): Los Alamos, NM, USA, 2014. [Google Scholar]
- Garner, F.; Porter, D. Irradiation creep and swelling of AISI 316 to exposures of 130 dpa at 385–400 °C. J. Nucl. Mater. 1988, 155–157, 1006–1013. [Google Scholar] [CrossRef]
- GeelHood, K.J.; Porter, I.E. Modeling and Assessment of EBR-II Fuel with the US NRC’s Fast Fuel Performance Code. In Proceedings of Top Fuel 2018, Prague, Czech Republic, 30 September–4 October 2018; p. 12. [Google Scholar]
- American Society of Mechanical Engineers. ASME Boiler and Pressure Vessel Code; American Society of Mechanical Engineers: New York, NY, USA, 2016. [Google Scholar]
- Ogata, T.; Takeshi, Y. Development and Validation of ALFUS: An Irradiation Behavior Analysis code for Metallic Fast Reactor Fuels. Nucl. Technol. 1999, 128, 113–124. [Google Scholar] [CrossRef]
- Karahan, A.; Buongiorno, J. Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors. J. Nucl. Mater. 2010, 396, 272–282. [Google Scholar] [CrossRef]
- Hofman, G.L.; Walters, L.C.; Bauer, T.H. Metallic Fast Reactor Fuels. Prog. Nucl. Energy 1997, 31, 83–110. [Google Scholar] [CrossRef]
- Pitner, A.L.; Gneiting, B.C.; Bard, F.E. Irradiation Performance of Fast Flux Test Facility Drivers Using D9 Alloy. Nucl. Technol. 1995, 112, 194–203. [Google Scholar] [CrossRef]
- Briggs, L.; Chang, Y.; Hill, D.; Ahrens, J.; Billone, M.; Crawford, D.; Filewicz, E.; Finck, P.; Fujita, E.; Grimm, K.; et al. Safety Analysis and Technical Basis for Establing an Interim Burnup Limit for Mark-V and Mark-VA Fuel Subassemblies in EBR-II; Argonne National Laboratory (ANL): Argonne, IL, USA, 1995. [Google Scholar] [CrossRef]
- Karahan, A.; Buongiorno, J. A new code for predicting the thermo-mechanical and irradiation behavior of metallic fuels in sodium fast reactors. J. Nucl. Mater. 2010, 396, 283–293. [Google Scholar] [CrossRef]
- Capriotti, L.; Harp, J. Status PIE Report on Legacy EBR-II and FFTF Metallic Fuel Experiments-INL/EXT-19-55847; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2019. [Google Scholar]
- Rahn, T.; Capriotti, L.; Di Lemma, F.; Trowbridge, T.L.; Harp, J.M.; Aitkaliyeva, A. Investigation of constituent redistribution in U-Pu-Zr fuels and its dependence on varying Zr content. J. Nucl. Mater. 2021, 557, 153301. [Google Scholar] [CrossRef]
- Capriotti, L.; Harp, J.M. Characterization of a minor actinides bearing metallic fuel pin irradiated in EBR-II. J. Nucl. Mater. 2020, 539, 152279. [Google Scholar] [CrossRef]
Pin | Experiment | Fuel Type | Cladding Type | Smear Density (%) | Average Burnup (at. %) |
---|---|---|---|---|---|
A812 | X441/441A | U-19Pu-10Zr | D9 | 75 | 10.2 |
DP20 | X441 | U-19Pu-10Zr | HT9 | 75 | 4.84 |
DP21 | X441/441A | U-19Pu-10Zr | HT9 | 75 | 10.1 |
DP29 | X441/441A | U-19Pu-14Zr | HT9 | 75 | 11.1 |
DP45 | X441/441A | U-19Pu-10Zr | HT9 | 85 | 8.87 |
DP61 | X441/441A | U-19Pu-10Zr | HT9 | 70 | 10.7 |
T653 | X430/430A/430B | U-19Pu-10Zr | HT9 | 75 | 9.91 |
Phenomenon | Fuel | Cladding |
---|---|---|
Fuel Phase | PhaseUPuZr [15] | N/A |
Thermal Conductivity | UPuZrThermal [16,17] | ThermalD9 [18,19,20] ThermalHT9 [18,21] Thermal316 [22] |
Porosity Correction | UPuZrSodiumLogging [23] | N/A |
Density (g∙cm−3) | 15.8 | 7.8 |
Burnup | UPuZrBurnup [24] | N/A |
Fission Rate | UPuZrFissionRate [25] | N/A |
Elasticity Tensor | UPuZrElasticityTensor [18] | D9ElasticityTensor [18] HT9ElasticityTensor [26] SS316ElasticityTensor [26] |
Zirconium Redistribution | ZrDiffusivityUPuZr [2,4,15] | N/A |
Creep | UPuZrCreepUpdate [18] | D9CreepUpdate [18] HT9CreepUpdate [18] SS316CreepUpdate [27] |
Thermal Expansion | UPuZrThermalExpansionEigenstrain [28] | D9ThermalExpansionEigenstrain [18] HT9ThermalExpansionEigenstrain [20] SS316ThermalExpansionEigenstrain [29] |
Gaseous Swelling with Hot-Pressing Pore Collapse | UPuZrGaseousEigenstrainwithHotPressingPuswelling [24,30,31] | N/A |
Fission Gas Release | UPuZrFissionGasRelease [32] | N/A |
Solid Swelling | BurnupDependentEigenstrain [30] | N/A |
Cladding Void Swelling | N/A | D9VolumetricSwellingEigenstrain [33] HT9VolumetricSwellingEigenstrain [18] SS316VolumetricSwellingEigenstrain [34] |
FCCI | N/A | MetallicFuelWastage [25] MetallicFuelWastageDamage [25] |
CDF | N/A | FailureCladHT9 [35] FailureCladD9 [34] |
Phase Transition Temperatures | α-β Transition Temperature | β-γ Transition Temperature | ||||
Default | 868.15 K | 923.15 K | ||||
Galloway | 965.15 K | 995.15 K | ||||
D0_scale | Alpha | Beta | Delta | Gamma | ||
Default | 1 | 1 | 1 | 1 | ||
Galloway | 45 × 10−6 | 2.28 × 10−5 | 3 × 10−6 | 3.85 × 10−4 | ||
Kim | 15.0 | 20.0 | 15.0 | 20.0 |
X/L = 0.78 | X/L = 0.78 | X/L = 0.78 | X/L = 0.78 | X/L = 0.78 | X/L = 0.78 |
X/L = 0.50 | X/L = 0.50 | X/L = 0.50 | X/L = 0.50 | X/L = 0.50 | X/L = 0.50 |
Metallography | TC Model: LANL D0_scale coefficient: Default Phase Transition Temperatures: Default | TC Model: LANL D0_scale coefficient: Galloway Phase Transition Temperatures: Default | TC Model: LANL D0_scale coefficient: Galloway Phase Transition Temperatures: Galloway | TC Model: LANL D0_scale coefficient: Default Phase Transition Temperatures: Galloway | TC Model: LANL D0_scale coefficient: Kim Phase Transition Temperatures: Default |
(a) | (b) | (c) | (d) | (e) | |
X/L = 0.78 | X/L = 0.78 | X/L = 0.78 | X/L = 0.78 | X/L = 0.78 | X/L = 0.78 |
X/L = 0.50 | X/L = 0.50 | X/L = 0.50 | X/L = 0.50 | X/L = 0.50 | X/L = 0.50 |
Metallography | TC Model: Galloway D0_scale coefficient: Default Phase Transition Temperatures: Default | TC Model: LANL D0_scale coefficient: Galloway Phase Transition Temperatures: Default | TC Model: LANL D0_scale coefficient: Galloway Phase Transition Temperatures: Galloway | TC Model: LANL D0_scale coefficient: Default Phase Transition Temperatures: Galloway | TC Model: LANL D0_scale coefficient: Kim Phase Transition Temperatures: Default |
(f) | (g) | (h) | (i) | (j) |
Pin | Location (x/L) | Type of Cut |
---|---|---|
A812 | 0.3 | Radial |
0.5 | Radial | |
0.65 | Radial | |
0.8 | Radial | |
0.95 | Radial | |
DP20 | 0.5 | Radial |
DP21 | 0.5 | Radial |
0.78 | Radial | |
DP29 | 0.5 | Radial |
0.78 | Radial | |
DP45 | 0.5 | Radial |
0.78 | Radial | |
DP61 | 0.5 | Radial |
0.78 | Radial | |
0.89 | Radial | |
T653 | 0.25 | Radial |
0.5 | Radial | |
0.5 | Axial | |
0.78 | Radial | |
0.97 | Axial |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paaren, K.M.; Christian, S.; Capriotti, L.; Aitkaliyeva, A.; Porter, D. Comparison of Zirconium Redistribution in BISON EBR-II Models Using FIPD and IMIS Databases with Experimental Post Irradiation Examination. Energies 2023, 16, 6817. https://doi.org/10.3390/en16196817
Paaren KM, Christian S, Capriotti L, Aitkaliyeva A, Porter D. Comparison of Zirconium Redistribution in BISON EBR-II Models Using FIPD and IMIS Databases with Experimental Post Irradiation Examination. Energies. 2023; 16(19):6817. https://doi.org/10.3390/en16196817
Chicago/Turabian StylePaaren, Kyle M., Spencer Christian, Luca Capriotti, Assel Aitkaliyeva, and Douglas Porter. 2023. "Comparison of Zirconium Redistribution in BISON EBR-II Models Using FIPD and IMIS Databases with Experimental Post Irradiation Examination" Energies 16, no. 19: 6817. https://doi.org/10.3390/en16196817
APA StylePaaren, K. M., Christian, S., Capriotti, L., Aitkaliyeva, A., & Porter, D. (2023). Comparison of Zirconium Redistribution in BISON EBR-II Models Using FIPD and IMIS Databases with Experimental Post Irradiation Examination. Energies, 16(19), 6817. https://doi.org/10.3390/en16196817