Microstructure of Neutron-Irradiated Al3Hf-Al Thermal Neutron Absorber Materials
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Dislocation Defect Detection and Quantification
3.2. Particle–Matrix Interface Evolution
4. Conclusions
- An open-source object segmentation method was developed to automate the detection and quantification of dislocation defects. This versatile methodology allows for its use on diverse datasets and materials different from those on which it was trained. The code is user-friendly and does not require extensive programming knowledge. Segmentation masks facilitate the determination of metrics such as line lengths, loop areas, number of lines, number of loops, and dislocation defect density. Since developing a database of manually annotated images is quite time-consuming, the application of transfer learning can facilitate high-throughput analysis of TEM images.The results indicate that neutron irradiation significantly impacts the microstructure of Al3Hf-Al composites, with observable defect formations such as dislocation loops and lines. For low-temperature irradiation with low dpa values, many dislocation loops were observed within the Al3Hf particles. As the dpa increased to 5.96, the majority of the defects became dislocation lines, with fewer dislocation loops. For samples irradiated to 1.38 and 5.38 dpa at higher temperatures, dislocation lines were the primary defect, with only a few dislocation loops.
- Post-irradiation examinations included microstructural characterization using TEM and EDS. We analyzed four irradiated samples and one unirradiated control sample. Oxygen was observed at the particle–matrix interface in all the samples. TEM of the irradiated samples revealed needle-like structures extending from the Al3Hf particles into the Al matrix, which were absent in the unirradiated samples. The high-temperature/high-dpa specimen showed voids within the Al matrix.
- Oxygen segregation at the interface was observed in both the unirradiated and irradiated samples, with irradiation enhancing this segregation. However, due to the limited number of phase boundaries examined, definitive conclusions about the effects of dpa or temperature on oxygen segregation could not be drawn
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Waltar, A.E.; Todd, D.R.; Tsvetkov, P.V. (Eds.) Fast Spectrum Reactors; Springer Science Business Media: Berlin/Heidelberg, Germany, 2011; pp. 3–8. [Google Scholar]
- Avrorin, E.N.; Chebeskov, A.N. Fast reactors and nuclear nonproliferation problem. Nucl. Energy Technol. 2015, 1, 1–7. [Google Scholar] [CrossRef]
- Cochran, T.B.; Feiveson, H.A.; Von Hippel, F. Fast reactor development in the United States. Sci. Glob. Secur. 2009, 17, 109–131. [Google Scholar] [CrossRef]
- Walters, L.C.; Porter, D.L.; Crawford, D.C. Nuclear fuel considerations for the 21st century. Progress. Nucl. Energy 2002, 40, 513–521. [Google Scholar] [CrossRef]
- Skerjanc, W.F.; Longhurst, G.R. Gas Test Loop Facilities Alternatives Assessment Report Rev 1; Report No. INL/EXT-05-00263; Idaho National Laboratory: Idaho Falls, ID, USA, 2005. [Google Scholar]
- Guillen, D.P.; Greenwood, L.R.; Parry, J.R. High conduction neutron absorber to simulate fast reactor environment in an existing test reactor. J. Radioanal. Nucl. Chem. 2014, 302, 413–424. [Google Scholar] [CrossRef]
- Guillen, D.P.; Harris, W.H. Measurement and Simulation of Thermal Conductivity of Hafnium-Aluminum Thermal Neutron Absorber Material. Metall. Mater. Trans. E 2016, 3, 123–133. [Google Scholar] [CrossRef]
- Guillen, D.P.; Longhurst, G.R.; Porter, D.L.; Parry, J.R. Methods for Absorbing Neutrons. U.S. Patent 8,229,054, 24 July 2012. [Google Scholar]
- Hallem, H.; Forbord, B.; Marthinsen, K. An investigation of dilute Al–Hf and Al–Hf–Si alloys. Mater. Sci. Eng. A 2004, 387, 940–943. [Google Scholar] [CrossRef]
- Murray, J.L.; McAlister, A.J.; Kahan, D.J. The Al-Hf (aluminum-hafnium) system. J. Phase Equilibria Diffus. 1998, 19, 376. [Google Scholar] [CrossRef]
- Norman, A.F.; Tsakiropoulos, P. The microstructure and properties of rapidly solidified Al Hf alloys. Mater. Sci. Eng. A 1991, 134, 1234–1237. [Google Scholar] [CrossRef]
- Wodniecki, P.; Wodniecka, B.; Kulinska, A.; Uhrmacher, M.; Lieb, K.P. The hafnium aluminides HfAl3 and Hf2Al3 studied by perturbed angular correlations with 181Ta and 111Cd probes. J. Alloys Compd. 2000, 312, 17–24. [Google Scholar] [CrossRef]
- Knipling, K.E.; Dunand, D.C.; Seidman, D.N. Criteria for developing castable, creep-resistant aluminum-based alloys–A review. Int. J. Mater. Res. 2022, 97, 246–265. [Google Scholar] [CrossRef]
- Guillen, D.P.; Fisher, J.E. Thermal hydraulic analysis of a Gas Test Loop system. Am. Nucl. Soc. Trans. 2005, 93, 641–642. [Google Scholar]
- Wodniecki, P.; Wodniecka, B.; Kulinska, A.; Uhrmacher, M.; Lieb, K.P. Hf and Zr aluminides with Bf-type structure studied by PAC with 181Ta and 111Cd probes. J. Alloys Compd. 2003, 351, 1–6. [Google Scholar] [CrossRef]
- Linderoth, S.; Rajainmäki, H.; Nieminen, R.M. Defect recovery in aluminum irradiated with protons at 20 K. Phys. Rev. B 1987, 35, 5524. [Google Scholar] [CrossRef]
- Sturcken, E.F. Irradiation effects in magnesium and aluminum alloys. J. Nucl. Mater. 1979, 82, 39–53. [Google Scholar] [CrossRef]
- Birtcher, R.C.; Donnelly, S.E.; Templier, C. Evolution of helium bubbles in aluminum during heavy-ion irradiation. Phys. Rev. B 1994, 50, 764. [Google Scholar] [CrossRef] [PubMed]
- Sosin, A.; Rachal, L.H. Recovery Study in Pure and Alloyed Aluminum Following Electron Irradiation. Phys. Rev. 1963, 130, 2238. [Google Scholar] [CrossRef]
- Iseler, G.W.; Dawson, H.I.; Mehner, A.S.; Kauffman, J.W. Production rates of electrical resistivity in copper and aluminum induced by electron irradiation. Phys. Rev. 1966, 146, 468. [Google Scholar] [CrossRef]
- Czajkowski, C.J. Response of Structural Materials to Radiation Environments; No. BNL-64952; Brookhaven National Laboratory (BNL): Upton, NY, USA, 1997. [Google Scholar]
- Guillen, D.P.; Porter, D.L.; Swank, W.D.; Erickson, A.W. Neutron Absorbers and Methods of Forming at Least a Portion of a Neutron Absorber. U.S. Patent 8,903,035, 2 December 2014. [Google Scholar]
- Hua, Z.; Guillen, D.P.; Harris, W.; Ban, H. Three-Dimensional FIB/EBSD Characterization of Irradiated HfAl3-Al Composite; No. INL/CON-16-37835; Idaho National Lab (INL): Idaho Falls, ID, USA, 2016. [Google Scholar]
- Guillen, D.P.; Wharry, J.P.; Housley, G.K.; Hale, C.D.; Brookman, J.V.; Gandy, D.W. Experiment design for the neutron irradiation of PM-HIP alloys for nuclear reactors. Nucl. Eng. Des. 2023, 402, 112114. [Google Scholar] [CrossRef]
- Hale, C. BSU-8242 As-Run Thermal Analysis; INL/EXT-21-63578-Rev000; Idaho National Laboratory: Idaho Falls, ID, USA, 2021. [Google Scholar]
- Guillen, D.P.; Abboud, A.W. As-Run Thermal Analysis for the Utah State University Experiment in the Advanced Test Reactor, Idaho National Laboratory, Engineering Calculations and Analysis Report; ECAR-3210, Rev. 0; Idaho National Laboratory: Idaho Falls, ID, USA, 2016. [Google Scholar]
- Brown, F.; Kiedrowski, B.; Bull, J. MCNP5-1.60 Release Notes; LA-UR-10-06235; Los Alamos National Laboratory: Los Alamos, NM, USA, 2010. [Google Scholar]
- Read, E.A.; de Oliveira, C.R.E. A Functional Method for Estimating DPA Tallies in Monte Carlo Calculations of Light Water Reactors. In Proceedings of the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2011), Rio de Janeiro, Brazil, 8–20 May 2011. [Google Scholar]
- Brookman, J. As-Run Physics Analysis for the Nuclear Science User Facilities BSU-8242 Experiment; INL/EXT-21-61600; Idaho National Laboratory: Idaho Falls, ID, USA, 2020. [Google Scholar]
- Parish, C.M.; Field, K.G.; Certain, A.G.; Wharry, J.P. Application of STEM characterization for investigating radiation effects in BCC Fe-based alloys. J. Mater. Res. 2015, 30, 1275–1289. [Google Scholar] [CrossRef]
- Jegham, N.; Koh, C.Y.; Abdelatti, M.; Hendawi, A. Evaluating the Evolution of YOLO (You Only Look Once) Models: A Comprehensive Benchmark Study of YOLO11 and Its Predecessors. arXiv 2024, arXiv:2411.00201. [Google Scholar]
- Wu, M.; Sharapov, J.; Anderson, M. Quantifying Dislocation-Type Defects in Post Irradiation Examination via Transfer Learning; Idaho National Laboratory Report: JOU-24-82837; Idaho National Laboratory: Idaho Falls, ID, USA, 2024. [Google Scholar]
- Ultralytics YOLOv11 Docs. Available online: https://docs.ultralytics.com/models/yolo11/ (accessed on 16 December 2024).
- Ultralytics Datasets Overview, NEW Ultralytics Explorer. Available online: https://docs.ultralytics.com/datasets/#new-ultralytics-explorer (accessed on 10 April 2024).
- Jocher, G.; Qiu, J. Ultralytics YOLO11. 2024. Available online: https://docs.ultralytics.com/usage/cfg/ (accessed on 28 January 2025).
- Lin, T.-Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L.; Dollár, P. Microsoft COCO: Common objects in context. arXiv 2015, arXiv:1405.0312. [Google Scholar]
- Crops Dataset. 2024. Available online: https://universe.roboflow.com/new-workspace-bvcqf/crops-i6vu1 (accessed on 1 September 2024).
- ECE, T. Synthetic Cavity Segmentation v1 Dataset. 2024. Available online: https://universe.roboflow.com/tamu-ece-iewg0/synthetic-cavity-segmentation_v1 (accessed on 1 September 2024).
- Li, W.; Field, K.G.; Morgan, D. Automated defect analysis in electron microscopic images. npj Comput. Mater. 2018, 4, 36. [Google Scholar] [CrossRef]
- Jiang, W.; Zhao, Y.; Lu, Y.; Wu, Y.; Frazer, D.; Guillen, D.P.; Gandy, D.W.; Wharry, J.P. Comparison of PM-HIP to forged SA508 pressure vessel steel under high-dose neutron irradiation. J. Nucl. Mater. 2024, 594, 155018. [Google Scholar] [CrossRef]
- Wharry, J.P.; Guillen, D.P.; Clement, C.D.; Bin Habib, S.; Jiang, W.; Zhao, Y.; Lu, Y.; Wu, Y.; Shiau, C.H.; Frazer, D.; et al. Materials qualification through the Nuclear Science User Facilities (NSUF): A case study on irradiated PM-HIP structural alloys. Front. Nucl. Eng. 2023, 2, 1306529. [Google Scholar] [CrossRef]
- Clement, C.; Panuganti, S.; Warren, P.H.; Zhao, Y.; Lu, Y.; Wheeler, K.; Frazer, D.; Guillen, D.P.; Gandy, D.W.; Wharry, J.P. Comparing structure-property evolution for PM-HIP and forged alloy 625 irradiated with neutrons to 1 dpa. Mater. Sci. Eng. A 2022, 857, 144058. [Google Scholar] [CrossRef]
- Clement, C.; Zhao, Y.; Warren, P.; Liu, X.; Xue, S.; Gandy, D.W.; Wharry, J.P. Comparison of ion irradiation effects in PM-HIP and forged alloy 625. J. Nucl. Mater. 2022, 558, 153390. [Google Scholar] [CrossRef]
- Gorbatyuk, S.M.; Pashkov, A.N.; Zarapin, A.Y.; Bardovskii, A.D. Development of hot-pressing technology for production of aluminum-based metal-matrix composite materials. Metallurgist 2019, 62, 1261–1266. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, Y.; Huang, Y.; Allen, T.; Alexandreanu, B.; Natesan, K. Void Swelling and Microstructure of Austenitic Stainless Steels Irradiated in the BOR-60 Reactor; No. NUREG/CR-7128; Argonne National Lab. (ANL): Argonne, IL, USA, 2012. [Google Scholar]
- Faulkner, D.; Woo, C.H. Void swelling in zirconium. J. Nucl. Mater. 1980, 90, 307–316. [Google Scholar] [CrossRef]
- Chen, T.; Aydogan, E.; Gigax, J.G.; Chen, D.; Wang, J.; Wang, X.; Ukai, S.; Garner, F.A.; Shao, L. Microstructural changes and void swelling of a 12Cr ODS ferritic-martensitic alloy after high-dpa self-ion irradiation. J. Nucl. Mater. 2015, 467, 42–49. [Google Scholar] [CrossRef]
- Snead, L.L.; Katoh, Y.; Connery, S. Swelling of SiC at intermediate and high irradiation temperatures. J. Nucl. Mater. 2007, 367, 677–684. [Google Scholar] [CrossRef]
- Kolluri, M. Neutron Irradiation Effects in 5xxx and 6xxx Series Aluminum Alloys: A Literature Review. In Radiation Effects in Materials; Intech Open: London, UK, 2016. [Google Scholar]
- King, R.T.; Jostsons, A.; Farrell, K. Neutron Irradiation Damage in a Precipitation-Hardened Aluminum Alloy; American Society for Testing and Materials: West Conshohocken, PA, USA, 1973; pp. 165–180. [Google Scholar]
Phase | Structure | Lattice Parameters [Å] | Mismatch with Al | Absolute Mismatch |
---|---|---|---|---|
Al | FCC | 4.0496 | a: −3.87% c: +10.20% | 5.98% |
Al3Hf | D022 | a = 3.893 c = 8.925 |
Dpa | Temperature (°C) | Zone Axis | Lamellae Thickness (nm) | Dislocation Lines (Number) | Dislocation Loops (Number) | Line Number Density (m−3) | Loop Number Density (m−3) |
---|---|---|---|---|---|---|---|
1.12 | 290 | [001] | 68.35 | 666 | 194 | 6.72 × 1021 | 1.96 × 1021 |
1.38 | 397 | [041] | 125.88 | 526 | 35 | 2.86 × 1021 | 1.91 × 1020 |
5.96 | 286 | [221] | 88.82 | 315 | 24 | 2.43 × 1021 | 1.85 × 1020 |
5.38 | 400 | [221] | 106.34 | 149 | 46 | 9.87 × 1020 | 3.05 × 1020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guillen, D.P.; Wharry, J.; Lu, Y.; Wu, M.; Sharapov, J.; Anderson, M. Microstructure of Neutron-Irradiated Al3Hf-Al Thermal Neutron Absorber Materials. Materials 2025, 18, 833. https://doi.org/10.3390/ma18040833
Guillen DP, Wharry J, Lu Y, Wu M, Sharapov J, Anderson M. Microstructure of Neutron-Irradiated Al3Hf-Al Thermal Neutron Absorber Materials. Materials. 2025; 18(4):833. https://doi.org/10.3390/ma18040833
Chicago/Turabian StyleGuillen, Donna Post, Janelle Wharry, Yu Lu, Michael Wu, Jeremy Sharapov, and Matthew Anderson. 2025. "Microstructure of Neutron-Irradiated Al3Hf-Al Thermal Neutron Absorber Materials" Materials 18, no. 4: 833. https://doi.org/10.3390/ma18040833
APA StyleGuillen, D. P., Wharry, J., Lu, Y., Wu, M., Sharapov, J., & Anderson, M. (2025). Microstructure of Neutron-Irradiated Al3Hf-Al Thermal Neutron Absorber Materials. Materials, 18(4), 833. https://doi.org/10.3390/ma18040833