error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,001)

Search Parameters:
Keywords = thermal interface material

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
52 pages, 12378 KB  
Review
Cryogenic Performance and Modelling of Fibre- and Nano-Reinforced Composites: Failure Mechanisms, Toughening Strategies, and Constituent-Level Behaviour
by Feng Huang, Zhi Han, Mengfan Wei, Zhenpeng Gan, Yusi Wang, Xiaocheng Lu, Ge Yin, Ke Zhuang, Zhenming Zhang, Yuanzhi Gao, Yu Su, Xueli Sun and Ping Cheng
J. Compos. Sci. 2026, 10(1), 36; https://doi.org/10.3390/jcs10010036 - 8 Jan 2026
Abstract
Composite materials are increasingly required to operate in cryogenic environments, including liquid hydrogen and oxygen storage, deep-space structures, and polar infrastructures, where long-term strength, toughness, and reliability are essential. This review provides a unique contribution by systematically integrating recent advances in understanding cryogenic [...] Read more.
Composite materials are increasingly required to operate in cryogenic environments, including liquid hydrogen and oxygen storage, deep-space structures, and polar infrastructures, where long-term strength, toughness, and reliability are essential. This review provides a unique contribution by systematically integrating recent advances in understanding cryogenic behaviour into a unified multi-scale framework. This framework synthesises four critical and interconnected aspects: constituent response, composite performance, enhancement mechanisms, and modelling strategies. At the constituent level, fibres retain stiffness, polymer matrices stiffen but embrittle, and nanoparticles offer tunable thermal and mechanical functions, which collectively define the system-level performance where thermal expansion mismatch, matrix embrittlement, and interfacial degradation dominate failure. The review further details toughening strategies achieved through nano-addition, hybrid fibre architectures, and thin-ply laminates. Modelling strategies, from molecular dynamics to multiscale finite element analysis, are discussed as predictive tools that link these scales, supported by the critical need for in situ experimental validation. The primary objective of this synthesis is to establish a coherent perspective that bridges fundamental material behaviour to structural reliability. Despite these advances, remaining challenges include consistent property characterisation at low temperature, physics-informed interface and damage models, and standardised testing protocols. Future progress will depend on integrated frameworks linking high-fidelity data, cross-scale modelling, and validation to enable safe deployment of next-generation cryogenic composites. Full article
26 pages, 12429 KB  
Article
Unified Parametric Optimization Framework for Microchannel Fin Geometries in High-Power Processor Cooling
by Abtin Ataei
Micromachines 2026, 17(1), 86; https://doi.org/10.3390/mi17010086 - 8 Jan 2026
Abstract
This study presents a unified parametric optimization framework for the thermal design of microchannel spreaders used in high-power processor cooling. The fin geometry is expressed in a shape-agnostic parametric form defined by fin thickness, top and bottom gap widths, and channel height, without [...] Read more.
This study presents a unified parametric optimization framework for the thermal design of microchannel spreaders used in high-power processor cooling. The fin geometry is expressed in a shape-agnostic parametric form defined by fin thickness, top and bottom gap widths, and channel height, without prescribing a fixed cross-section. This approach accommodates practical fin profiles ranging from rectangular to tapered and V-shaped, allowing continuous geometric optimization within manufacturability and hydraulic limits. A coupled analytical–numerical model integrates conduction through the spreader base, interfacial resistance across the thermal interface material (TIM), and convection within the coolant channels while enforcing a pressure-drop constraint. The optimization uses a deterministic continuation method with smooth sigmoid mappings and penalty functions to maintain constraint satisfaction and stable convergence across the design space. The total thermal resistance (Rtot) is minimized over spreader conductivities ks=4002200 W m−1 K−1 (copper to CVD diamond), inlet fluid velocities Uin=0.55.5 m s−1, maximum pressure drops of 10–50 kPa, and fluid pass counts Np{1,2,3}. The resulting maps of optimized fin dimensions as functions of ks provide continuous design charts that clarify how material conductivity, flow rate, and pass configuration collectively determine the geometry, minimizing total thermal resistance, thereby reducing chip temperature rise for a given heat load. Full article
(This article belongs to the Special Issue Thermal Transport and Management of Electronic Devices)
Show Figures

Figure 1

22 pages, 62404 KB  
Article
Enhancement of Microstructure, Tensile and Fatigue Performance of EN AW-1050 by Wire-Based Friction Stir Additive Manufacturing
by Stefan Donaubauer, Raphael Schmid, Stefan Weihe and Martin Werz
J. Manuf. Mater. Process. 2026, 10(1), 25; https://doi.org/10.3390/jmmp10010025 - 8 Jan 2026
Abstract
Additive manufacturing (AM) of aluminium by solid-state routes offers a promising pathway to overcome the limitations of fusion-based processes, such as porosity and hot cracking. This study investigates the potential of wire-based friction stir additive manufacturing (W-FSAM) as an innovative solid-state process. A [...] Read more.
Additive manufacturing (AM) of aluminium by solid-state routes offers a promising pathway to overcome the limitations of fusion-based processes, such as porosity and hot cracking. This study investigates the potential of wire-based friction stir additive manufacturing (W-FSAM) as an innovative solid-state process. A test specimen made of EN AW-1050 was fabricated and characterised using mechanical testing as well as optical and electron microscopy. Microstructural characterisation revealed a fully consolidated, pore-free build with fine equiaxed grains and partial dynamic recrystallisation (DRX). The average grain size decreased from 13.4 µm near the substrate to 9.7 µm at the top, reflecting the variation in cumulative thermal exposure along the build height. A homogeneous hardness distribution (21.2 HV) and smooth interlayer interfaces were observed. Tensile tests in the travel direction yielded an ultimate tensile strength of approximately 85 MPa and an elongation exceeding 60%, while high-cycle fatigue tests demonstrated a fatigue strength of about 30 MPa at 2×106 cycles (R=0.1) with ductile fracture features. The results confirm that W-FSAM enables the production of fine-grained, defect-free CP-Al structures whose mechanical properties, in terms of strength and ductility, exceed those of the reference material. Thus, W-FSAM represents a promising solid-state additive manufacturing route for the production of high-performance CP-Al components. Full article
Show Figures

Figure 1

16 pages, 5764 KB  
Article
Effect of Bonding Pressure and Joint Thickness on the Microstructure and Mechanical Reliability of Sintered Nano-Silver Joints
by Phuoc-Thanh Tran, Quang-Bang Tao, Lahouari Benabou and Ngoc-Anh Nguyen-Thi
J. Manuf. Mater. Process. 2026, 10(1), 22; https://doi.org/10.3390/jmmp10010022 - 8 Jan 2026
Abstract
Sintered nano-silver is widely investigated as a die-attach material for next-generation power electronic modules due to its high thermal conductivity, favorable electrical performance, and stability at elevated temperatures. However, how bonding pressure and joint thickness jointly affect densification, interfacial diffusion, and mechanical reliability [...] Read more.
Sintered nano-silver is widely investigated as a die-attach material for next-generation power electronic modules due to its high thermal conductivity, favorable electrical performance, and stability at elevated temperatures. However, how bonding pressure and joint thickness jointly affect densification, interfacial diffusion, and mechanical reliability has not been systematically clarified, especially under the low-pressure conditions required for large-area SiC and GaN devices. In this work, nano-silver lap-shear joints with three bond-line thicknesses (50, 70, and 100 μm) were fabricated under two applied pressures (1.0 and 1.5 MPa) using a controlled sintering fixture. Shear testing and cross-sectional SEM were employed to evaluate the relationships between microstructural evolution and joint integrity. When the bonding pressure was increased from 1.0 to 1.5 MPa, more effective particle rearrangement and reduced pore connectivity were observed, together with improved metallurgical bonding at the Ag–Au interface, leading to a strength increase from 15.3 to 28.2 MPa. Although thicker joints exhibited slightly higher bulk relative density due to greater heat retention and accelerated local sintering, this densification advantage did not lead to improved mechanical performance. Instead, the lower strength of thicker joints is attributed to a narrower Ag–Au interdiffusion region, which limited the formation of continuous load-bearing paths at the interface. Fractographic analyses confirmed that failure occurred predominantly by interfacial delamination rather than cohesive fracture, indicating that the reliability of the joints under low-pressure sintering is governed by the quality of interfacial bonding rather than by overall densification. The experimental results show that, under low-pressure sintering conditions (1.0–1.5 MPa), variations in bonding pressure and bond-line thickness lead to distinct effects on joint performance, with the extent of Ag–Au interfacial interaction playing a key role in determining the mechanical robustness of the joints. Full article
(This article belongs to the Special Issue Innovative Approaches in Metal Forming and Joining Technologies)
Show Figures

Figure 1

18 pages, 4519 KB  
Article
A Unified Complex-Fresnel Model for Physically Based Long-Wave Infrared Imaging and Simulation
by Peter ter Heerdt, William Keustermans, Ivan De Boi and Steve Vanlanduit
J. Imaging 2026, 12(1), 33; https://doi.org/10.3390/jimaging12010033 - 7 Jan 2026
Abstract
Accurate modelling of reflection, transmission, absorption, and emission at material interfaces is essential for infrared imaging, rendering, and the simulation of optical and sensing systems. This need is particularly pronounced across the short-wave to long-wave infrared (SWIR–LWIR) spectrum, where many materials exhibit dispersion- [...] Read more.
Accurate modelling of reflection, transmission, absorption, and emission at material interfaces is essential for infrared imaging, rendering, and the simulation of optical and sensing systems. This need is particularly pronounced across the short-wave to long-wave infrared (SWIR–LWIR) spectrum, where many materials exhibit dispersion- and wavelength-dependent attenuation described by complex refractive indices. In this work, we introduce a unified formulation of the full Fresnel equations that directly incorporates wavelength-dependent complex refractive-index data and provides physically consistent interface behaviour for both dielectrics and conductors. The approach reformulates the classical Fresnel expressions to eliminate sign ambiguities and numerical instabilities, resulting in a stable evaluation across incidence angles and for strongly absorbing materials. We demonstrate the model through spectral-rendering simulations that illustrate realistic reflectance and transmittance behaviour for materials with different infrared optical properties. To assess its suitability for thermal-infrared applications, we also compare the simulated long-wave emission of a heated glass sphere with measurements from a LWIR camera. The agreement between measured and simulated radiometric trends indicates that the proposed formulation offers a practical and physically grounded tool for wavelength-parametric interface modelling in infrared imaging, supporting applications in spectral rendering, synthetic data generation, and infrared system analysis. Full article
(This article belongs to the Section Visualization and Computer Graphics)
Show Figures

Figure 1

12 pages, 4196 KB  
Article
Aging-Dependent Repair Performance and Interfacial Durability of New–Aged Waterproof Membrane Systems
by Chao Zhang, Xian Li, Xiaopeng Li, Longjiang Yang, Guojun Sun and Xingpeng Ma
Polymers 2026, 18(2), 163; https://doi.org/10.3390/polym18020163 - 7 Jan 2026
Abstract
Waterproofing systems frequently experience performance degradation during long-term service due to material aging and structural deformation, thereby necessitating localized repair interventions. The bonding interface between newly applied and existing membrane materials is a critical determinant of repair effectiveness. In this study, the aging-dependent [...] Read more.
Waterproofing systems frequently experience performance degradation during long-term service due to material aging and structural deformation, thereby necessitating localized repair interventions. The bonding interface between newly applied and existing membrane materials is a critical determinant of repair effectiveness. In this study, the aging-dependent repair performance of three representative waterproof membrane systems was systematically investigated using peel strength testing, low-temperature flexibility assessment, and interfacial morphology analysis under thermal–oxidative aging for 2, 5, 14, and 28 days. The results demonstrate that the homogeneous repair system based on ultra-thin reinforced self-adhesive polymer-modified bituminous membranes exhibits superior overall performance, maintaining the highest peel strength with only minor degradation even after 28 days of accelerated aging. In contrast, the polymeric butyl self-adhesive membrane subjected to homogeneous repair exhibited rapid adhesion degradation after 14 days, whereas the heterogeneous repair system showed improved stability during intermediate aging stages. Low-temperature flexibility testing further revealed that root-resistant bituminous membranes exhibited a slower aging rate, with a cracking temperature increase of 7 °C after 28 days, compared to a 10 °C increase observed for ultra-thin self-adhesive membranes. These quantitative findings provide clear guidance for the selection of appropriate repair membrane systems under varying aging conditions in waterproofing engineering, particularly for maintenance and rehabilitation applications. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

15 pages, 4922 KB  
Article
Interface, Mechanical and Thermal Properties of In Situ Generated V(C,N) Solid Solution Reinforced SiC–AlN–VC Multiphase Ceramics
by Liulin Li, Maoyuan Gong, Hai Zhang and Wanxiu Hai
J. Compos. Sci. 2026, 10(1), 29; https://doi.org/10.3390/jcs10010029 - 7 Jan 2026
Abstract
Silicon carbide (SiC) ceramics are regarded as high-performance structural materials due to their excellent high-temperature strength, wear resistance, and thermal stability. However, their inherent high brittleness, low fracture toughness, and difficulty in densification have limited their wider application. To overcome these challenges, introducing [...] Read more.
Silicon carbide (SiC) ceramics are regarded as high-performance structural materials due to their excellent high-temperature strength, wear resistance, and thermal stability. However, their inherent high brittleness, low fracture toughness, and difficulty in densification have limited their wider application. To overcome these challenges, introducing a second phase and/or sintering aids is necessary. In this paper, SiC–AlN–VC multiphase ceramics were fabricated via spark plasma sintering at 1800 °C to 2100 °C. The interface, mechanical, and thermal properties were examined. It was found that the VC particles effectively pin the grain boundaries and suppress the abnormal growth of SiC grains. At temperatures exceeding 1800 °C, the N atoms released from the decomposition of AlN diffuse into the VC lattice, forming a V(C,N) solid solution that enhances both the toughness and strength of the ceramics. With increasing sintering temperature, the mechanical properties of the SiC multiphase ceramics first improve and then deteriorate. Ultimately, a nearly fully dense SiC multiphase ceramic is obtained. The maximum hardness, flexural strength, and fracture toughness of SAV20 are 28.7 GPa, 508 MPa, and 5.25 MPa·m1/2, respectively. Furthermore, the room-temperature friction coefficient and wear rate are 0.41 and 3.41 × 10−5 mm3/(N·m), respectively, and the thermal conductivity is 58 W/(m·K). Full article
(This article belongs to the Special Issue High-Performance Composite Materials in Construction)
Show Figures

Figure 1

20 pages, 4646 KB  
Article
A Life Cycle AI-Assisted Model for Optimizing Sustainable Material Selection
by Walaa S. E. Ismaeel, Joyce Sherif, Reem Adel and Aya Said
Sustainability 2026, 18(2), 566; https://doi.org/10.3390/su18020566 - 6 Jan 2026
Abstract
This research has successfully addressed the challenges attributed with SMS, including the fragmented data, heavy reliance on experience, and lack of life cycle integration. This study presents the development and validation of a novel sustainable material selection (SMS) model using Artificial Intelligence (AI). [...] Read more.
This research has successfully addressed the challenges attributed with SMS, including the fragmented data, heavy reliance on experience, and lack of life cycle integration. This study presents the development and validation of a novel sustainable material selection (SMS) model using Artificial Intelligence (AI). The proposed model structures the process around four core life cycle phases—design, construction, operation and maintenance, and end of life—and incorporates a dual-interface system. This includes a main credits interface for high-level tracking of 100 total credits to trace the dynamics of SMS in relation to energy efficiency, indoor air quality, site selection, and efficient use of water. Further, it includes a detailed credit interface for granular assessment of specific material properties. A key innovation is the formalization of closed-loop feedback mechanisms between phases, ensuring that practical insights from construction and operation inform earlier design choices. The model’s functionality is demonstrated through a proof of concept for SMS considering thermal properties, showcasing its ability to contextualize benchmarks by climate, map properties to building components via a weighted networking system, and rank materials using a comprehensive database sourced from the academic literature. Automated scoring aligns with green building certification tiers, with an integrated alert system flagging suboptimal performance. The proposed model was validated through a structured practitioner survey, and the collected responses were analysed using descriptive and inferential statistical analysis. The result presents a scalable quantitative AI-assisted decision-making support model for optimizing material selection across different project phases. This work paves the way for further research with additional assessment criteria and better integration of AI and Machine Learning for SMS. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

25 pages, 2735 KB  
Review
Advanced Electronic Materials for Liquid Thermal Management of Lithium-Ion Batteries: Mechanisms, Materials and Future Development Directions
by Wen Jiang, Chengcong Tan, Enqian Su, Jinye Lu, Honglei Shi, Yue Wang, Jilong Song and Kai Wang
Coatings 2026, 16(1), 59; https://doi.org/10.3390/coatings16010059 - 5 Jan 2026
Viewed by 122
Abstract
The rapid expansion of lithium-ion battery applications calls for efficient and reliable thermal management to ensure safety and performance. Liquid thermal management systems (LTMS) offer high cooling efficiency and uniform temperature control, effectively preventing thermal runaway. This review focuses on composite LTMS that [...] Read more.
The rapid expansion of lithium-ion battery applications calls for efficient and reliable thermal management to ensure safety and performance. Liquid thermal management systems (LTMS) offer high cooling efficiency and uniform temperature control, effectively preventing thermal runaway. This review focuses on composite LTMS that integrate phase change materials and nanofluids and discusses how thermal modeling optimizes key material parameters. Despite notable progress, challenges remain in compatibility, stability, and sustainability. Emerging smart, self-healing, and AI-assisted materials are expected to drive the next generation of intelligent battery cooling systems. Compared with air-cooling systems (maximum temperature ≈ 55 °C, temperature difference ΔT ≈ 10 °C), liquid-based systems can reduce the peak temperature to below 42 °C and improve temperature uniformity (ΔT ≤ 5 °C). Particularly, nanofluid-enhanced LTMS achieve up to 15%~20% higher heat transfer efficiency and 3~5 °C lower surface temperature compared with conventional water-glycol cooling. Direct immersion cooling using dielectric fluids such as HFE-7000 further decreases the maximum temperature to ≈37 °C with ΔT ≈ 3.5 °C, achieving a cooling efficiency above 88%. Thermal modeling results show that accurate representation of material parameters (e.g., interfacial thermal resistance R(int) and thermal conductivity k) can reduce simulation error by more than 30%. This work uniquely bridges materials science with thermal system engineering through AI-driven innovation, providing a data-guided route for next-generation adaptive LTMS design. Full article
Show Figures

Figure 1

42 pages, 6169 KB  
Review
SnSe: A Versatile Material for Thermoelectric and Optoelectronic Applications
by Chi Zhang, Zhengjie Guo, Fuyueyang Tan, Jinhui Zhou, Xuezhi Li, Xi Cao, Yikun Yang, Yixian Xie, Yuying Feng, Chenyao Huang, Zaijin Li, Yi Qu and Lin Li
Coatings 2026, 16(1), 56; https://doi.org/10.3390/coatings16010056 - 3 Jan 2026
Viewed by 353
Abstract
Tin selenide (SnSe) is a sustainable, lead-free IV–VI semiconductor whose layered orthorhombic crystal structure induces pronounced electronic and phononic anisotropy, enabling diverse energy-related functionalities. This review systematically summarizes recent progress in understanding the structure–property–processing relationships that govern SnSe performance in thermoelectric and optoelectronic [...] Read more.
Tin selenide (SnSe) is a sustainable, lead-free IV–VI semiconductor whose layered orthorhombic crystal structure induces pronounced electronic and phononic anisotropy, enabling diverse energy-related functionalities. This review systematically summarizes recent progress in understanding the structure–property–processing relationships that govern SnSe performance in thermoelectric and optoelectronic applications. Key crystallographic characteristics are first discussed, including the temperature-driven Pnma–Cmcm phase transition, anisotropic band and valley structures, and phonon transport mechanisms that lead to intrinsically low lattice thermal conductivity below 0.5 W m−1 K−1 and tunable carrier transport. Subsequently, major synthesis strategies are critically compared, spanning Bridgman and vertical-gradient single-crystal growth, spark plasma sintering and hot pressing of polycrystals, as well as vapor- and solution-based thin-film fabrication, with emphasis on process windows, stoichiometry control, defect chemistry, and microstructure engineering. For thermoelectric applications, directional and temperature-dependent transport behaviors are analyzed, highlighting record thermoelectric performance in single-crystal SnSe at hi. We analyze directional and temperature-dependent transport, highlighting record thermoelectric figure of merit values exceeding 2.6 along the b-axis in single-crystal SnSe at ~900 K, as well as recent progress in polycrystalline and thin-film systems through alkali/coinage-metal doping (Ag, Na, Cu), isovalent and heterovalent substitution (Zn, S), and hierarchical microstructural design. For optoelectronic applications, optical properties, carrier dynamics, and photoresponse characteristics are summarized, underscoring high absorption coefficients exceeding 104 cm−1 and bandgap tunability across the visible to near-infrared range, together with interface engineering strategies for thin-film photovoltaics and broadband photodetectors. Emerging applications beyond energy conversion, including phase-change memory and electrochemical energy storage, are also reviewed. Finally, key challenges related to selenium volatility, performance reproducibility, long-term stability, and scalable manufacturing are identified. Overall, this review provides a process-oriented and application-driven framework to guide the rational design, synthesis optimization, and device integration of SnSe-based materials. Full article
(This article belongs to the Special Issue Advancements in Lasers: Applications and Future Trends)
Show Figures

Figure 1

16 pages, 4258 KB  
Article
Thermal Aging-Induced Alterations in Surface and Interface Topography of Bio-Interactive Dental Restorative Materials Assessed by 3D Non-Contact Profilometry
by Zehra Güner, Gökçe Keçeci, Sadık Olguner, Hakan Çandar, Ayşenur Güngör Borsöken and Lezize Sebnem Turkun
Coatings 2026, 16(1), 53; https://doi.org/10.3390/coatings16010053 - 3 Jan 2026
Viewed by 127
Abstract
This study aimed to evaluate the effects of thermal cycling and restorative material type on surface roughness of material surfaces and dental interfaces using a non-contact profilometer. Ninety Class V cavities (2 mm × 4 mm × 2 mm in height, width, and [...] Read more.
This study aimed to evaluate the effects of thermal cycling and restorative material type on surface roughness of material surfaces and dental interfaces using a non-contact profilometer. Ninety Class V cavities (2 mm × 4 mm × 2 mm in height, width, and depth) were prepared on extracted third molars and restored with four bio-interactive materials (Equia Forte, Cention-N, Activa BioActive Restorative, Fuji II LC) and one composite resin (Solare-X) (n = 18/group). After polishing (Optidisc), initial surface roughness (Sa, µm) was measured following 24 h immersion in distilled water. Measurements were performed at cement/material (400 × 1600 μm2), enamel/material (1600 × 400 μm2), and material surfaces (800 × 800 μm2). Samples underwent 10,000 thermal cycles (5–55 °C) to simulate aging, and roughness was re-measured. Data were analyzed with two-way repeated measures ANOVA and Tukey’s post hoc test (p < 0.05). Solare-X showed the lowest roughness, while Fuji II LC and Activa BioActive Restorative were smoother than Cention-N and Equia Forte (p < 0.01). All materials exhibited significant roughness increases after thermal cycling (p < 0.01). Cement/material and enamel/material interfaces consistently showed higher roughness than material surfaces (p < 0.01). Thermal cycling significantly increased surface roughness of all tested materials. Interfaces demonstrated greater roughness than material surfaces, indicating higher susceptibility to plaque retention and potential risk for long-term restoration success. Full article
(This article belongs to the Special Issue Surface Properties of Dental Materials and Instruments, 3rd Edition)
Show Figures

Figure 1

17 pages, 2958 KB  
Article
Thermally Stable and Energy Efficient Newly Synthesized Bipolar Emitters for Yellow and Green OLED Devices
by Anil Kumar, Sushanta Lenka, Kapil Patidar, Chih-An Tung, Ming Yu Luo, Raminta Beresneviciute, Gintare Krucaite, Daiva Tavgeniene, Dovydas Blazevicius, Bernadeta Blazeviciute, Jwo-Huei Jou and Saulius Grigalevicius
Molecules 2026, 31(1), 158; https://doi.org/10.3390/molecules31010158 - 1 Jan 2026
Viewed by 165
Abstract
Organic light-emitting diodes (OLEDs) have emerged as a leading high-resolution display and lighting technology, as well as for photo-therapeutic applications, due to their light weight, flexibility, and excellent color rendering. However, achieving long-term thermal stability and high energy efficiency remains a principal issue [...] Read more.
Organic light-emitting diodes (OLEDs) have emerged as a leading high-resolution display and lighting technology, as well as for photo-therapeutic applications, due to their light weight, flexibility, and excellent color rendering. However, achieving long-term thermal stability and high energy efficiency remains a principal issue for their widespread adoption. Strong thermal robustness in OLED emitter materials is a critical parameter for achieving long device lifetimes, stable film morphology, reliable high-temperature processing, and sustained interface integrity in high-performance hosts. Bipolar emitters RB14 (N-(9-ethylcarbazole-3-yl)-4-(diphenylamino)phenyl-9H-carbazole-9-yl-1,8-naphthalimide), RB18 (N-phenyl-4-(diphenylamino)phenyl-9H-carbazole-9-yl-1,8-naphthalimide), and RB22 (N-phenyl-3-(2-methoxypyridin-3-yl)-9H-carbazole-9-yl-1,8-naphthalimide) were newly synthesized. RB18 is a yellow bipolar OLED emitter that has a glass transition temperature (Tg) of 162 °C and thermal durability (Td) of 431 °C, which is the highest reported value for naphthalimide-based bipolar emitter derivatives for yellow OLEDs. Meanwhile, RB14 and RB22 are green OLED emitters that have glass transition temperatures (Tg) of 133 °C and 167 °C, and thermal durabilities (Td) of 336 °C and 400 °C, respectively. We have fabricated OLED devices using these bipolar emitters dispersed in CBP host matrix, and we have found that the maximum EQEs (%) for RB14, RB18, and RB22 emitter-based devices are 7.93%, 3.40%, and 4.02%, respectively. For confirmation of thermal stability, we also used UV-visible spectroscopy measurements at variable temperatures on annealed spin-coated glass films of these emitter materials and found that RB22 is the most thermally stable emitter among these materials. Full article
Show Figures

Figure 1

22 pages, 4723 KB  
Article
Effect of Paraffin Microcapsule and Carbon Nanotube Content on the Thermal Behavior of Thermoplastic Polyurethane Nanocomposites with Thermal Energy Storage Capability
by Daniele Rigotti, Andrea Dorigato and Alessandro Pegoretti
J. Compos. Sci. 2026, 10(1), 10; https://doi.org/10.3390/jcs10010010 - 1 Jan 2026
Viewed by 149
Abstract
The development of multifunctional polymer composites capable of both heat conduction and latent heat storage is of great interest for advanced thermal management applications. In this work, thermoplastic polyurethane (TPU) nanocomposites containing microencapsulated paraffin-based phase change materials (PCMs) and multi-walled carbon nanotubes (MWCNTs) [...] Read more.
The development of multifunctional polymer composites capable of both heat conduction and latent heat storage is of great interest for advanced thermal management applications. In this work, thermoplastic polyurethane (TPU) nanocomposites containing microencapsulated paraffin-based phase change materials (PCMs) and multi-walled carbon nanotubes (MWCNTs) were systematically investigated. The microstructure, thermal stability, specific heat capacity, thermal diffusivity and conductivity of these composites were analyzed as a function of the PCM and MWCNTs content. SEM observations revealed the homogeneous dispersion of PCM microcapsules and the presence of localized MWCNT aggregates in PCM-rich domains. Thermal diffusivity measurements indicated a monotonic decrease with increasing temperature for all compositions, from 0.097 mm2·s−1 at 5 °C to 0.091 mm2·s−1 at 25 °C for neat TPU, and from 0.186 mm2·s−1 to 0.173 mm2·s−1 for TPU with 5 vol.% MWCNTs. Distinct non-linear behavior was observed around 25 °C, i.e., in correspondence to the paraffin melting, where the apparent diffusivity temporarily decreased due to latent heat absorption. The trend of the thermal conductivity (λ) was determined by the competing effects of PCM and MWCNTs: PCM addition reduced λ at 25 °C from 0.162 W·m−1·K−1 (neat TPU) to 0.128 W·m−1·K−1 at 30 vol.% PCM, whereas the incorporation of 5 vol.% of MWCNTs increased λ up to 0.309 W·m−1·K−1. In PCM-containing nanocomposites, MWCNT networks efficiently bridged the polymer–microcapsule interfaces, creating continuous conductive pathways that mitigated the insulating effect of the encapsulated paraffin and ensured stable heat transfer even across the solid–liquid transition. A one-dimensional transient heat-transfer model confirmed that increasing the matrix thermal conductivity accelerates the melting of the PCM, improving the dynamic thermal buffering capacity of these materials. Therefore, these results underlined the potential of TPU/MWCNT/PCM composites as versatile materials for applications requiring both rapid heat dissipation and effective thermal management. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

18 pages, 5530 KB  
Article
A Hybrid Fractal-NURBS Model for Characterizing Material-Specific Mechanical Surface Contact
by Leilei Zhang, Yingkun Mu, Kui Luo, Guang Ren and Zisheng Wang
Machines 2026, 14(1), 49; https://doi.org/10.3390/machines14010049 - 30 Dec 2025
Viewed by 178
Abstract
The reliability of mechanical systems hinges on analyzing the actual surface-to-surface contact area, which critically influences dynamic behavior, friction, material performance, and thermal dissipation. Uneven surfaces lead to incomplete contact, where only a fraction of asperities touch, creating a nominal contact area. This [...] Read more.
The reliability of mechanical systems hinges on analyzing the actual surface-to-surface contact area, which critically influences dynamic behavior, friction, material performance, and thermal dissipation. Uneven surfaces lead to incomplete contact, where only a fraction of asperities touch, creating a nominal contact area. This study proposes a novel fractal contact model for various mechanical behaviors between mechanical contact surfaces, integrating the Weierstrass–Mandelbrot fractal function and nonuniform rational B-spline interpolation (NURBS) to model material-dependent actual contact conditions. Furthermore, this research delved into the changes in thermal conductivity across the surfaces of metal materials within a simulated setting. It maintained a contact ratio ranging from 0.038% to 15.2%, a factor that remained unaffected by contact pressure. Both experimental and simulated findings unveiled an actual contact rate spanning from 0.44% to 1.06%, thereby underscoring the distinctive interface behaviors specific to different materials. The proposed approach provides fresh perspectives for investigating material–contact interactions and tackling associated engineering hurdles. Full article
Show Figures

Figure 1

15 pages, 16047 KB  
Article
Deformation Behavior of Sintered Cu-10wt%Mo Composite in the Hot Extrusion Process
by Qing Li, Zengde Li, Zhanning Zhang and Songxiao Hui
Metals 2026, 16(1), 44; https://doi.org/10.3390/met16010044 - 29 Dec 2025
Viewed by 143
Abstract
A hot extrusion deformation test of sintered Cu-10wt%Mo composite was carried out under deformation conditions, with deformation temperatures ranging from 800 °C to 950 °C, and extrusion ratios ranging from 2.9 to 10.5. The hot extrusion process eliminated the original interfaces between copper [...] Read more.
A hot extrusion deformation test of sintered Cu-10wt%Mo composite was carried out under deformation conditions, with deformation temperatures ranging from 800 °C to 950 °C, and extrusion ratios ranging from 2.9 to 10.5. The hot extrusion process eliminated the original interfaces between copper powder particles in sintered Cu-10wt%Mo composite. While the copper phase experienced dynamic recrystallization, the molybdenum particles effectively pinned the boundaries and inhibited subsequent grain growth. As the extrusion ratio increased, the composite material’s tensile strength, elongation, and thermal conductivity first increased and then decreased. With the rise in hot extrusion deformation temperature, the composite material’s tensile strength, elongation, and thermal conductivity gradually increased, but stabilized after reaching 900 °C. Deformation during hot extrusion is confined to the copper phase, which undergoes dynamic recrystallization (DRX), with no significant deformation occurring in the molybdenum phase. The molybdenum phase promotes an increased local strain rate in the copper phase, resulting in the formation of a certain number of twin grains. Full article
Show Figures

Figure 1

Back to TopTop