Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (486)

Search Parameters:
Keywords = thermal insulation thickness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6882 KiB  
Article
Development and Evaluation of a Solar Milk Pasteurizer for the Savanna Ecological Zones of West Africa
by Iddrisu Ibrahim, Paul Tengey, Kelci Mikayla Lawrence, Joseph Atia Ayariga, Fortune Akabanda, Grace Yawa Aduve, Junhuan Xu, Robertson K. Boakai, Olufemi S. Ajayi and James Owusu-Kwarteng
Solar 2025, 5(3), 38; https://doi.org/10.3390/solar5030038 - 4 Aug 2025
Abstract
In many developing African countries, milk safety is often managed through traditional methods such as fermentation or boiling over firewood. While these approaches reduce some microbial risks, they present critical limitations. Firewood dependency contributes to deforestation, depletion of agricultural residues, and loss of [...] Read more.
In many developing African countries, milk safety is often managed through traditional methods such as fermentation or boiling over firewood. While these approaches reduce some microbial risks, they present critical limitations. Firewood dependency contributes to deforestation, depletion of agricultural residues, and loss of soil fertility, which, in turn, compromise environmental health and food security. Solar pasteurization provides a reliable and sustainable method for thermally inactivating pathogenic microorganisms in milk and other perishable foods at sub-boiling temperatures, preserving its nutritional quality. This study aimed to evaluate the thermal and microbial performance of a low-cost solar milk pasteurization system, hypothesized to effectively reduce microbial contaminants and retain milk quality under natural sunlight. The system was constructed using locally available materials and tailored to the climatic conditions of the Savanna ecological zone in West Africa. A flat-plate glass solar collector was integrated with a 0.15 cm thick stainless steel cylindrical milk vat, featuring a 2.2 cm hot water jacket and 0.5 cm thick aluminum foil insulation. The system was tested in Navrongo, Ghana, under ambient temperatures ranging from 30 °C to 43 °C. The pasteurizer successfully processed up to 8 L of milk per batch, achieving a maximum milk temperature of 74 °C by 14:00 GMT. Microbial analysis revealed a significant reduction in bacterial load, from 6.6 × 106 CFU/mL to 1.0 × 102 CFU/mL, with complete elimination of coliforms. These results confirmed the device’s effectiveness in achieving safe pasteurization levels. The findings demonstrate that this locally built solar pasteurization system is a viable and cost-effective solution for improving milk safety in arid, electricity-limited regions. Its potential scalability also opens avenues for rural entrepreneurship in solar-powered food and water treatment technologies. Full article
Show Figures

Figure 1

12 pages, 6639 KiB  
Article
Study of Space Micro Solid Thruster Using 3D-Printed Short Glass Fiber Reinforced Polyamide
by Haibo Yang, Zhongcan Chen, Xudong Yang, Chang Xu and Hanyu Deng
Aerospace 2025, 12(8), 663; https://doi.org/10.3390/aerospace12080663 - 26 Jul 2025
Viewed by 226
Abstract
To meet the rapid maneuverability and lightweight demands of micro-nano satellites, a space micro solid thruster using 3D-printed short glass fiber reinforced polyamide 6 (PA6GF) composites was developed. Thruster shells with wall thicknesses of 4, 3, and 2.5 mm were designed, and ground [...] Read more.
To meet the rapid maneuverability and lightweight demands of micro-nano satellites, a space micro solid thruster using 3D-printed short glass fiber reinforced polyamide 6 (PA6GF) composites was developed. Thruster shells with wall thicknesses of 4, 3, and 2.5 mm were designed, and ground ignition tests were conducted to monitor chamber pressure and shell temperature. Compared with conventional metallic thrusters, PA6GF composites have exhibited excellent thermal insulation and sufficient mechanical strength. Under 8 MPa and 2773 K ignition conditions, the shell thickness was reduced to 2.5 mm and could withstand pressures up to 10.37 MPa. These results indicate that PA6GF composites are well-suited for space micro solid thrusters with inner diameters of 15–70 mm, offering new possibilities for lightweight space propulsion system design. Full article
Show Figures

Figure 1

24 pages, 4943 KiB  
Article
Evaluation of Optimum Thermal Insulation for Mass Walls in Severe Solar Climates of Northern Chile
by Konstantin Verichev, Carmen Díaz-López, Gerardo Loncomilla Huenupán and Andrés García-Ruiz
Buildings 2025, 15(14), 2580; https://doi.org/10.3390/buildings15142580 - 21 Jul 2025
Viewed by 215
Abstract
The Life Cycle Cost Assessment (LCCA) methodology is widely used to determine the optimal thickness of thermal insulation for walls and roofs. The results depend on several factors, such as the degree day calculations method, the ambient or sol–air temperature, base temperature variations, [...] Read more.
The Life Cycle Cost Assessment (LCCA) methodology is widely used to determine the optimal thickness of thermal insulation for walls and roofs. The results depend on several factors, such as the degree day calculations method, the ambient or sol–air temperature, base temperature variations, and the heat capacity of the thermal envelope elements. This study aims to analyze the impact of solar radiation on mass walls with different orientations in five cities in northern Chile, which have severe solar climates. The goal is to determine the optimal thickness of expanded polystyrene insulation using the LCCA method, considering solar radiation, a varying base temperature, and validating results by analyzing the energy demand for heating and cooling of a typical house. The findings show that excluding solar radiation in the LCCA methodology can lead to an underestimation of the optimal insulation thickness by 21–39% for walls in northern Chile. It was also found that using variable monthly threshold temperatures for heating and cooling based on the adaptive thermal comfort model results in a slight underestimation (1–3%) of the optimal thickness compared to a constant annual temperature. An energy simulation of a typical house in five cities in northern Chile showed that neglecting the effect of solar radiation when determining the thermal insulation thickness for the studied wall can lead to a minor increase in heating and cooling energy demand, ranging from approximately 1% to 9%. However, this study emphasizes the importance of applying optimal insulation thickness for cities with more continental climates like Santiago and Calama, where the heating demand is higher than cooling. Full article
Show Figures

Figure 1

19 pages, 3482 KiB  
Article
Development and Performance Evaluation of Central Pipe for Middle-Deep Geothermal Heat Pump Systems
by Xiong Zhang, Ziyan Zhao, Zhengrong Guan, Jiaojiao Lv and Lu Cui
Energies 2025, 18(14), 3713; https://doi.org/10.3390/en18143713 - 14 Jul 2025
Viewed by 279
Abstract
In this study, the optimal design of the central pipe in a middle-deep geothermal heat pump (MD-GHP) system is studied using the response surface method to improve the system’s coefficient of performance (COP) and operational reliability. Firstly, a model describing the energy transfer [...] Read more.
In this study, the optimal design of the central pipe in a middle-deep geothermal heat pump (MD-GHP) system is studied using the response surface method to improve the system’s coefficient of performance (COP) and operational reliability. Firstly, a model describing the energy transfer and conversion mechanisms of the MD-GHP system, incorporating unsteady heat transfer in the central pipe, is established and validated using field test data. Secondly, taking the inner diameter, wall thickness, and effective thermal conductivity of the central pipe as design variables, the effects of these parameters on the COP of a 2700 m deep MD-GHP system are analyzed and optimized via the response surface method. The resulting optimal parameters are as follows: an inner diameter of 88 mm, a wall thickness of 14 mm, and an effective thermal conductivity of 0.2 W/(m·K). Based on these results, a composite central pipe composed of high-density polyethylene (HDPE), silica aerogels, and glass fiber tape is designed and fabricated. The developed pipe achieves an effective thermal conductivity of 0.13 W/(m·K) and an axial tensile force of 29,000 N at 105 °C. Compared with conventional PE and vacuum-insulated pipes, the composite central pipe improves the COP by 11% and 7%, respectively. This study proposes an optimization-based design approach for central pipe configuration in MD-GHP systems and presents a new composite pipe with enhanced thermal insulation and mechanical performance. Full article
(This article belongs to the Special Issue Heat Transfer and Fluid Flows for Industry Applications)
Show Figures

Figure 1

20 pages, 3781 KiB  
Article
Thermal Impacts of Air Cavities Associated with Insulated Panels Deployed for Exterior Building Envelope Assemblies
by Utsav Dahal and Moncef Krarti
Energies 2025, 18(13), 3573; https://doi.org/10.3390/en18133573 - 7 Jul 2025
Viewed by 256
Abstract
This paper presents a comprehensive investigation to evaluate the impacts of air cavities between existing walls and insulated panels on the overall R-values of the retrofitted building envelope systems, addressing a key challenge in exterior envelope retrofitting. The effects of several factors are [...] Read more.
This paper presents a comprehensive investigation to evaluate the impacts of air cavities between existing walls and insulated panels on the overall R-values of the retrofitted building envelope systems, addressing a key challenge in exterior envelope retrofitting. The effects of several factors are considered including the air cavity thickness (ranging from 0.1 cm to 5 cm), airflow velocity (varying between 0.1 m/s and 1 m/s), and surface emissivity (set between 0.1 and 0.9), in addition to the thickness of the insulated panels (ranging from 1 cm to 7 cm). It is found that any increase in the air cavity thickness increases the overall R-values of the building envelope assemblies when air is trapped within the sealed cavity. However, when air convection is prevalent, the overall R-value of the retrofitted walls decreases with any increase in air velocity and air cavity thickness. For sealed air cavities, the analysis results show a 9% improvement in R-value of the retrofitted walls. However, the R-value of retrofitted walls with unsealed air cavities can degrade by 76% and 81% for natural and forced air flows, respectively. Emissivity adjustment is found to be the most effective in improving the thermal performance of building envelopes with sealed air cavities, increasing the R-value of retrofitted walls by 13.6% when reduced from 0.9 to 0.1. Full article
(This article belongs to the Special Issue Energy Efficiency and Energy Performance in Buildings—2nd Edition)
Show Figures

Figure 1

19 pages, 4862 KiB  
Article
Fire Resistance of Steel Beams with Intumescent Coating Exposed to Fire Using ANSYS and Machine Learning
by Igor Džolev, Sofija Kekez-Baran and Andrija Rašeta
Buildings 2025, 15(13), 2334; https://doi.org/10.3390/buildings15132334 - 3 Jul 2025
Viewed by 414
Abstract
The thermal conductivity of steel is high compared to other materials such as concrete or timber. Therefore, fire protection measures are applied to prolong the duration between the onset of fire exposure and the final loss of load-bearing function of a steel structure. [...] Read more.
The thermal conductivity of steel is high compared to other materials such as concrete or timber. Therefore, fire protection measures are applied to prolong the duration between the onset of fire exposure and the final loss of load-bearing function of a steel structure. The most common passive fire protection measure is the application of intumescent coating (IC), a thin film that expands at elevated temperatures and forms an insulating char layer of lower thermal conductivity. This paper focuses on structural steel beams with IPE open-section profiles protected by a water-based IC and subjected to static and standard fire loading. ANSYS 16.0 is used to simulate heat transfer, with thermal conductivity function described by standard multivariate linear regression analysis, followed by mechanical analysis considering degradation of material mechanical properties at elevated temperatures. Simulations are conducted for all IPE profile sizes, with varying initial degrees of utilisation, beam lengths, and coating thicknesses. Results indicated fire resistance times ranging from 24 to 53.5 min, demonstrating a relatively good level of fire resistance even with the minimal IC thickness. Furthermore, artificial neural networks were developed to predict the fire resistance time of steel members with IC using varying numbers of hidden neurons and subset ratios. The model achieved a predictability level of 99.9% upon evaluation. Full article
(This article belongs to the Special Issue Advanced Analysis and Design for Steel Structure Stability)
Show Figures

Figure 1

28 pages, 4750 KiB  
Article
A Multi-Objective Optimization Study on a Certain Lecture Hall Based on Thermal and Visual Comfort
by Hui Xi, Shichao Guo, Wanjun Hou and Bo Wang
Buildings 2025, 15(13), 2287; https://doi.org/10.3390/buildings15132287 - 29 Jun 2025
Viewed by 210
Abstract
Lecture halls are characterized by large spatial dimensions, deep floor plans, and high occupant densities. Lectures are typically conducted using multimedia and blackboard-based teaching, placing higher demands on the indoor light and thermal environment compared to standard classrooms. This study aims to simulate [...] Read more.
Lecture halls are characterized by large spatial dimensions, deep floor plans, and high occupant densities. Lectures are typically conducted using multimedia and blackboard-based teaching, placing higher demands on the indoor light and thermal environment compared to standard classrooms. This study aims to simulate the interrelationships between multiple building envelope parameters and building performance, in order to improve visual and thermal comfort while reducing energy consumption in cold-region lecture halls. Based on seven key envelope parameters—including openable window area ratio, west-facing window-to-wall ratio, exterior insulation thickness, shading element spacing, angle and width, and window glass type—a multi-objective optimization framework was established. The optimization process targeted three key performance indicators—useful daylight illuminance (UDI), energy use intensity (EUI), and thermal comfort percentage (TCP)—in the context of a stepped classroom. The results show that increasing the thickness of exterior insulation and reducing the width of shading components contribute positively to photothermal comfort without compromising thermal and visual performance. Compared with the baseline design, optimized schemes that incorporate appropriate west-facing window-to-wall ratios, openable window areas, insulation thicknesses, and external shading designs can reduce annual energy consumption by up to 10.82%, and increase UDI and TCP by 12.79% and 36.41%, respectively. These improvements are also found to be economically viable. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

13 pages, 10170 KiB  
Article
Modeling and Experimental Validation of Gradient Cell Density in PMMA Microcellular Foaming Induced by One-Sided Heating
by Donghwan Lim, Kwanhoon Kim, Jin Hong and Sung Woon Cha
Polymers 2025, 17(13), 1780; https://doi.org/10.3390/polym17131780 - 27 Jun 2025
Viewed by 274
Abstract
Traditionally, the microcellular foaming process has aimed to generate uniform cell structures by applying heat uniformly to all surfaces of a polymer. Homogeneous cell distribution is known to enhance the mechanical properties and durability of the final product. However, the ability to engineer [...] Read more.
Traditionally, the microcellular foaming process has aimed to generate uniform cell structures by applying heat uniformly to all surfaces of a polymer. Homogeneous cell distribution is known to enhance the mechanical properties and durability of the final product. However, the ability to engineer a gradient in cell density offers potential advantages for specific functional applications, such as improved sound absorption and thermal insulation. In this study, a controlled thermal gradient was introduced by heating only one side of a fully CO2-saturated poly(methyl methacrylate) (PMMA) specimen. This approach allowed for the formation of a cell density gradient across the sample thickness. The entire process was conducted using a solid-state batch foaming technique, commonly referred to as the microcellular foaming process. A one-sided heating strategy successfully induced a spatial variation in cell morphology. Furthermore, a coalescence function was developed to account for cell merging behavior, enabling the construction of a predictive model for local cell density. The proposed model accurately captured the evolution of cell density gradients under asymmetric thermal conditions and was validated through experimental observations, demonstrating its potential for precise control over foam structure in saturated PMMA systems. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

29 pages, 5956 KiB  
Article
Energy Sustainability, Resilience, and Climate Adaptability of Modular and Panelized Buildings with a Lightweight Envelope Integrating Active Thermal Protection. Part 1—Parametric Study and Computer Simulation
by Veronika Mučková, Daniel Kalús, Simon Muhič, Zuzana Straková, Martina Mudrá, Anna Predajnianska, Mária Füri and Martin Bolček
Coatings 2025, 15(7), 756; https://doi.org/10.3390/coatings15070756 - 25 Jun 2025
Viewed by 525
Abstract
Modular and prefabricated buildings are advantageous in terms of construction, transport, energy efficiency, fixed costs, and the use of environmentally friendly materials. Our research aims to analyze, evaluate, and optimize a lightweight perimeter structure with an integrated active thermal protection (ATP). We have [...] Read more.
Modular and prefabricated buildings are advantageous in terms of construction, transport, energy efficiency, fixed costs, and the use of environmentally friendly materials. Our research aims to analyze, evaluate, and optimize a lightweight perimeter structure with an integrated active thermal protection (ATP). We have developed a mathematical–physical model of a wall fragment, in which we have analyzed several variants through a parametric study. ATP in the energy function of a thermal barrier (TB) represents a high potential for energy savings. Cold tap water (an average temperature of +6 °C, thermal untreated) in the ATP layer of the investigated building structure increases its thermal resistance by up to 27.24%. The TB’s mean temperature can be thermally adjusted to a level comparable to the heated space (e.g., +20 °C). For the fragment under consideration, optimizing the axial distance between the pipes (in the ATP layer) and the insulation thickness (using computer simulation) reveals that a pipe distance of 150 mm and an insulation thickness of 100 mm are the most suitable. ATP has significant potential in the design of sustainable, resilient, and climate-adaptive buildings, thereby meeting the UN SDGs, in particular the Sustainable Development Goal 7 ‘Affordable and Clean Energy’ and the Goal 13 ‘Climate Action’. Full article
Show Figures

Figure 1

20 pages, 2372 KiB  
Article
Research on Thermal Performance of Polypropylene Fiber-Reinforced Concrete Wall Panels
by Zhe Zhang, Yiru Hou and Yi Wang
Buildings 2025, 15(13), 2199; https://doi.org/10.3390/buildings15132199 - 23 Jun 2025
Viewed by 249
Abstract
The global construction industry faces pressing challenges in enhancing building energy efficiency standards. To address this critical issue, facilitate worldwide green and low-carbon transformation in construction practices and improve the thermal performance of building wall panels to achieve optimal levels, a novel polypropylene [...] Read more.
The global construction industry faces pressing challenges in enhancing building energy efficiency standards. To address this critical issue, facilitate worldwide green and low-carbon transformation in construction practices and improve the thermal performance of building wall panels to achieve optimal levels, a novel polypropylene fiber-reinforced concrete wall panel has been developed and investigated. A three-dimensional steady-state heat transfer finite element model of the wall panel was established to simulate its thermal performance. Key parameters, including the thickness of the inner and outer concrete layers, insulation layer thickness, connector spacing, and connector arrangement patterns, were analyzed to evaluate the thermal performance of the fiber-reinforced concrete composite sandwich wall panel. The results indicate that the heat transfer coefficients of the G-FCSP and FCSP wall panels were 0.768 W/m2 · K and 0.767 W/m2 · K, respectively, suggesting that the glass fiber grid had a negligible impact on the thermal performance of the panels. The embedded insulation layer was crucial for enhancing the thermal insulation performance of the wall panel, effectively preventing heat exchange between the two sides. Increasing the thickness of the concrete layers had a very limited effect on reducing the heat transfer coefficient. Reducing the spacing of the connectors improved the load-bearing capacity of the composite wall panel to some extent but had minimal influence on the heat transfer coefficient; to achieve optimal performance by balancing structural load distribution and thermal damage resistance, a connector spacing ranging from 200 mm to 500 mm is recommended. The variation in heat transfer coefficients among the four different connector arrangement patterns demonstrated that reducing the thermal conduction media within the wall panel should be prioritized while ensuring mechanical performance. It is also recommended that the connectors are arranged in a continuous layout. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

14 pages, 1812 KiB  
Article
Influence of Rigid Polyurethane Foam Production Technology on Cryogenic Water Uptake
by Vladimir Yakushin, Vanesa Dhalivala, Laima Vevere and Ugis Cabulis
Polymers 2025, 17(12), 1669; https://doi.org/10.3390/polym17121669 - 16 Jun 2025
Viewed by 472
Abstract
This study explores how production technology influences spray-applied rigid polyurethane (PUR) foam insulation’s cryogenic performance. In cryogenic applications such as liquid gas storage, insulation must minimise heat transfer and resist moisture ingress under severe thermal gradients. Experimental aluminium vessels were insulated with PUR [...] Read more.
This study explores how production technology influences spray-applied rigid polyurethane (PUR) foam insulation’s cryogenic performance. In cryogenic applications such as liquid gas storage, insulation must minimise heat transfer and resist moisture ingress under severe thermal gradients. Experimental aluminium vessels were insulated with PUR foam of varying thicknesses and surface conditions—rough, machined smooth, and with a urea-based protective coating—and then tested using dynamic boil-off of liquid nitrogen (LN2). Foam properties, including adhesion, mechanical strength, thermal expansion, thermal conductivity, and closed-cell content, were evaluated. The results revealed that thicker insulation reduced both effective thermal conductivity and moisture uptake. Although the urea-coated vessel showed minimal water absorption, the coating increased overall thermal conductivity due to its heat conduction and condensation behaviour. Moisture was primarily absorbed near the foam surface, and no cumulative effects were observed during repeated tests. The effective thermal conductivity was determined by interpolating boil-off data, confirming that insulation performance strongly depends on thickness, surface condition, and environmental humidity. These findings provide valuable guidance for the design and application of PUR foam insulation in cryogenic environments. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

16 pages, 4026 KiB  
Article
Analyzing the Effects of Sewing Compression on Thermal Efficiency in Baffled Jackets with an Advanced Walking Thermal Manikin
by Hassan Saeed, Adnan Ahmed Mazari and Md Tanzir Hasan
Textiles 2025, 5(2), 23; https://doi.org/10.3390/textiles5020023 - 16 Jun 2025
Viewed by 337
Abstract
Sewing is the major contributor to the manufacturing of protection wear for the survival of early human civilization against extreme weather conditions. Mechanized sewing witnessed developments during the middle of the 19th century, and tedious handwork was replaced by sewing machines. Despite the [...] Read more.
Sewing is the major contributor to the manufacturing of protection wear for the survival of early human civilization against extreme weather conditions. Mechanized sewing witnessed developments during the middle of the 19th century, and tedious handwork was replaced by sewing machines. Despite the modernization of sewing machine technologies, speed, material thicknesses, automation, and the introduction of AI in sewing, there is a longstanding problem of heat loss along stitch lines. The sewing material is compressed by the sewing thread, and this compression results in a bridge between the human body and the external cold environment. Garment technologists identify this problem and due to the lack of any technological solution, the problem is solved through complex material handling methods. A new sewing technological solution has been developed to solve this problem, called spacer stitching, which addresses the problem of compression along stitch lines. Two baffled jackets with sewn-through methods are prepared, one with the spacer stitching technology and the other with conventional sewing. Thermal resistance and insulation efficiency are evaluated using the Thermetrics thermal manikin “Sonny” under dynamic (walking) conditions to analyze the thermal resistance difference between the two types of sewing methods as well as the effects of motion on insulation. The results reveal that the jacket made with spacer stitching demonstrates significantly higher thermal resistance and enhanced wearer comfort compared to that produced using conventional methods. Additionally, variations in thermal resistance are observed across different zones of the thermal manikin. These findings highlight the potential of spacer stitching to improve thermal insulation and revolutionize high-performance outerwear design. Full article
Show Figures

Figure 1

25 pages, 1874 KiB  
Article
Performance Optimization of Building Envelope Through BIM and Multi-Criteria Analysis
by Stefano Cascone, Valeria Anastasi and Rosa Caponetto
Sustainability 2025, 17(12), 5294; https://doi.org/10.3390/su17125294 - 8 Jun 2025
Viewed by 626
Abstract
In response to the growing demand for sustainable and performance-driven building design, this study proposes an integrated digital methodology that combines Building Information Modeling (BIM), parametric scripting, and multi-criteria decision-making (MCDM) to optimize external wall assemblies. The approach leverages Autodesk Revit and Dynamo [...] Read more.
In response to the growing demand for sustainable and performance-driven building design, this study proposes an integrated digital methodology that combines Building Information Modeling (BIM), parametric scripting, and multi-criteria decision-making (MCDM) to optimize external wall assemblies. The approach leverages Autodesk Revit and Dynamo to automate the parametrization of insulation thickness while ensuring compliance with regulatory thresholds for thermal transmittance and surface mass. Acoustic performance is estimated using ECHO software, and a Weighted Sum Model (WSM) is applied to evaluate and rank configurations based on four criteria: economic cost, Global Warming Potential (GWP), embodied energy, and acoustic insulation. A case study involving 24 wall assemblies—generated from eight base stratigraphies and three insulation materials—demonstrates the method’s ability to balance environmental impact, occupant comfort, and construction feasibility. The results indicate that natural and bio-based materials, such as rammed earth and cork, offer the best overall performance, while conventional systems remain competitive in terms of cost. The proposed workflow reduces design time, increases transparency, and supports informed decision-making during early design stages. This research contributes to the digitalization of sustainability assessment in architecture by promoting integrative, replicable, and regulation-aligned practices for low-impact building envelopes. Full article
Show Figures

Figure 1

9 pages, 3584 KiB  
Article
Parameter Study of 500 nm Thick Slot-Type Photonic Crystal Cavities for Cavity Optomechanical Sensing
by Zhe Li, Jun Liu, Yi Zhang, Chenguwei Xian, Yifan Wang, Kai Chen, Gen Qiu, Guangwei Deng, Yongjun Huang and Boyu Fan
Photonics 2025, 12(6), 584; https://doi.org/10.3390/photonics12060584 - 8 Jun 2025
Viewed by 2747
Abstract
In recent years, research on light-matter interactions in silicon-based micro/nano cavity optomechanical systems demonstrates high-resolution sensing capabilities (e.g., sub-fm-level displacement sensitivity). Conventional 2D photonic crystal (PhC) cavity optomechanical sensors face inherent limitations: thin silicon layers (200–300 nm) restrict both the mass block (critical [...] Read more.
In recent years, research on light-matter interactions in silicon-based micro/nano cavity optomechanical systems demonstrates high-resolution sensing capabilities (e.g., sub-fm-level displacement sensitivity). Conventional 2D photonic crystal (PhC) cavity optomechanical sensors face inherent limitations: thin silicon layers (200–300 nm) restrict both the mass block (critical for thermal noise suppression) and optical Q-factor. Enlarging the detection mass in such thin layers exacerbates in-plane height nonuniformity, severely limiting high-precision sensing. This study proposes a 500 nm thick silicon-based 2D slot-type PhC cavity design for advanced sensing applications, fabricated on a silicon-on-insulator (SOI) substrate with optimized air slot structures. Systematic parameter optimization via finite element simulations defines structural parameters for the 1550 nm band, followed by 6 × 6 × 6 combinatorial experiments on lattice constant, air hole radius, and line-defect waveguide width. Experimental results demonstrate a loaded Q-factor of 57,000 at 510 nm lattice constant, 175 nm air hole radius, and 883 nm line-defect waveguide width (measured sidewall angle: 88.4°). The thickened silicon layer delivers dual advantages: enhanced mass block for thermal noise reduction and high Q-factor for optomechanical coupling efficiency, alongside improved ridge waveguide compatibility. This work advances the practical development of CMOS-compatible micro-opto-electromechanical systems (MOEMS). Full article
Show Figures

Figure 1

21 pages, 3347 KiB  
Article
Sustainable Building Materials: Optimization and Performance Analysis of Plaster/Wood Shavings Composites for Thermal Insulation
by Rachidi Mohammed Badr, Ennawaoui Amine, Bouyahia Fatima, Remaidi Mohammed, Derraz Meryiem, Mastouri Hicham, El Khoudri Mouad, Chhiti Younes and Ennawaoui Chouaib
J. Compos. Sci. 2025, 9(6), 289; https://doi.org/10.3390/jcs9060289 - 5 Jun 2025
Viewed by 559
Abstract
The development of sustainable insulation materials plays a crucial role in creating energy-efficient and environmentally responsible buildings. This study investigates eco-friendly composite materials based on plaster and wood shavings for insulation purposes. Incorporating wood shavings into plaster improves thermal insulation and mechanical behavior [...] Read more.
The development of sustainable insulation materials plays a crucial role in creating energy-efficient and environmentally responsible buildings. This study investigates eco-friendly composite materials based on plaster and wood shavings for insulation purposes. Incorporating wood shavings into plaster improves thermal insulation and mechanical behavior by enhancing porosity, reducing density, and improving bonding. As the wood shaving content increases from 5% to 15%, the thermal conductivity decreases from 0.252 W/mK to 0.099 W/mK, reflecting superior insulating performance. Concurrently, thermal resistance rises, showcasing enhanced insulation. The material also demonstrates increased flexibility, with the Young’s modulus decreasing at higher wood shaving proportions. Numerical simulations confirm these observations, indicating a 12 K temperature drop for composites with 15% wood shavings compared to a 6 K drop for pure plaster. This study suggests that an insulation thickness of 6–7 cm for the 15% composite strikes the optimal balance between performance and cost-efficiency. The findings underscore the potential of wood shavings to significantly enhance the thermal efficiency and mechanical adaptability of plaster composites, promoting sustainable and effective building insulation solutions. Full article
(This article belongs to the Special Issue Novel Cement and Concrete Materials)
Show Figures

Figure 1

Back to TopTop