Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (434)

Search Parameters:
Keywords = thermal damage resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 8437 KB  
Review
Advances in Wire EDM Technology for Cutting Silicon Carbide Ceramics: A Review
by Mohammad Ghasemian Fard, Jana Petru and Sergej Hloch
Materials 2025, 18(17), 3955; https://doi.org/10.3390/ma18173955 - 23 Aug 2025
Viewed by 60
Abstract
Silicon carbide (SiC) ceramics have gained significant attention in advanced engineering applications because of their superior mechanical properties, resistance to wear and corrosion, and thermal stability. However, the precision machining of these materials is extremely challenging because of their intrinsic hardness and brittleness. [...] Read more.
Silicon carbide (SiC) ceramics have gained significant attention in advanced engineering applications because of their superior mechanical properties, resistance to wear and corrosion, and thermal stability. However, the precision machining of these materials is extremely challenging because of their intrinsic hardness and brittleness. Wire Electrical Discharge Machining (WEDM) has become increasingly popular as a viable technique for processing SiC ceramics because of its ability to produce intricate geometries and high-quality surface finishes. In this review paper, a comprehensive overview of WEDM technology applied to SiC ceramics is presented, emphasizing the influence of process parameters, wire materials, and dielectric fluids on cutting efficiency and quality. This research explores recent experimental findings related to Wire Electrical Discharge Machining (WEDM) and highlights the challenges in reducing material damage. It also presents strategies to improve machining performance. Additionally, potential future directions are discussed, providing a roadmap for further research and the application of WEDM in processing silicon carbide (SiC) and its variants, including solid silicon carbide (SSiC) and silicon-infiltrated silicon carbide (SiSiC). Full article
(This article belongs to the Special Issue Non-conventional Machining: Materials and Processes)
Show Figures

Figure 1

21 pages, 3238 KB  
Article
Development and Characterization of a Novel Erucyl Ultra-Long-Chain Gemini Surfactant
by Guiqiang Fei and Banghua Liu
Polymers 2025, 17(16), 2257; https://doi.org/10.3390/polym17162257 - 21 Aug 2025
Viewed by 263
Abstract
To stimulate the progress of clean fracturing fluid systems, an innovative erucyl ultra-long-chain gemini surfactant (EUCGS) was devised and manufactured during the course of this study. The target product was successfully prepared via a two-step reaction involving erucyl primary amine, 3-bromopropionyl chloride, and [...] Read more.
To stimulate the progress of clean fracturing fluid systems, an innovative erucyl ultra-long-chain gemini surfactant (EUCGS) was devised and manufactured during the course of this study. The target product was successfully prepared via a two-step reaction involving erucyl primary amine, 3-bromopropionyl chloride, and 1,3-bis(dimethylamino)propanediol, with an overall yield of 78.6%. FT-IR and 1H NMR characterization confirmed the presence of C22 ultra-long chains, cis double bonds, amide bonds, and quaternary ammonium headgroups in the product structure. Performance tests showed that EUCGS exhibited an extremely low critical micelle concentration (CMC = 0.018 mmol/L) and excellent ability to reduce surface tension (γCMC = 30.0 mN/m). Rheological property studies indicated that EUCGS solutions gradually exhibited significant non-Newtonian fluid characteristics with increasing concentration, and wormlike micelles with a network structure could self-assemble at a concentration of 1.0 mmol/L. Dynamic rheological tests revealed that the solutions showed typical Maxwell fluid behavior and significant shear-thinning properties, which originated from the orientation and disruption of the wormlike micelle network structure under shear stress. In the presence of 225 mmol/L NaCl, the apparent viscosity of a 20 mmol/L EUCGS solution increased from 86 mPa·s to 256 mPa·s. A temperature resistance evaluation showed that EUCGS solutions had a good temperature resistance at high shear rates and 100 °C. The performance evaluation of fracturing fluids indicates that the proppant settling rate (0.25 cm/min) of the EUCGS-FFS system at 90 °C is significantly superior to that of the conventional system. It features the low dosage and high efficiency of the breaker, with the final core damage rate being only 0.9%. The results demonstrate that the EUCGS achieves a synergistic optimization of high-efficiency interfacial activity, controllable rheological properties, and excellent thermal–salt stability through precise molecular structure design, providing a new material choice for the development of intelligent responsive clean fracturing fluids. Full article
Show Figures

Graphical abstract

16 pages, 2789 KB  
Article
A Numerical Study on Lightning Damages and Residual Strength of CFRP Laminates Considering Delamination Induced by Thermal Stress
by Qian-Zhi Yin, Jiapeng Bian and Yin Fan
Polymers 2025, 17(16), 2245; https://doi.org/10.3390/polym17162245 - 19 Aug 2025
Viewed by 301
Abstract
Most numerical studies on carbon fiber-reinforced polymer (CFRP) lightning damages fail to account for delamination, a factor that plays a significant role in the subsequent analysis of residual strength. This study establishes an electro-thermo-mechanical coupled numerical model incorporating delamination effects to predict lightning-induced [...] Read more.
Most numerical studies on carbon fiber-reinforced polymer (CFRP) lightning damages fail to account for delamination, a factor that plays a significant role in the subsequent analysis of residual strength. This study establishes an electro-thermo-mechanical coupled numerical model incorporating delamination effects to predict lightning-induced damage in carbon fiber-reinforced plastic (CFRP) composites. Subsequently, parametric investigations evaluate the influence of varying input loads and stacking sequences on interlaminar pyrolysis and delamination damage, with damage assessment quantitatively conducted based on simulated post-strike uniaxial ultimate compressive loads. Post-strike uniaxial compressive strength reduction with cohesive elements is 28.91%, demonstrating closer alignment with experimental reduction (36.72%) than the 21.12% reduction predicted by the interlaminar-effect-neglecting model. Under combined thermal expansion and shockwave overpressure, the 28.91% compressive strength reduction demonstrates closer alignment with the experimental 36.72% reduction than the 25.13% reduction observed under isolated shockwave overpressure. The results highlight the critical role of thermal delamination in compressive strength reduction, with distinct waveform-dependent mechanisms: under C-waveform lightning currents, arc thermal effects cannot be neglected; D-waveform strikes exhibit predominant contributions from impact loading to delamination damage, with thermally driven delamination likewise pronounced. Increased current amplitude correlates with amplified mechanical damage severity, while premature symmetry in ply stacking sequences exacerbates compressive performance degradation. This work enhances multi-physics modeling fidelity by bridging thermal delamination and mechanical degradation pathways, offering foundational insights for optimizing lightning strike resistance in advanced aerospace composite systems. Full article
(This article belongs to the Special Issue Fibre-Reinforced Polymer Laminates: Structure and Properties)
Show Figures

Figure 1

18 pages, 4144 KB  
Article
Towards Woven Fabrics with Integrated Stainless Steel-Nickel-Carbon Thermopile for Sensing and Cooling Applications
by Magdalena Georgievska, Benny Malengier, Lucas Roelofs, Sufiyan Derbew Tiku and Lieva Van Langenhove
Appl. Sci. 2025, 15(16), 9002; https://doi.org/10.3390/app15169002 - 14 Aug 2025
Viewed by 309
Abstract
Thermocouples can be combined into thermopiles to sense heat differences or achieve localized heating and cooling. However, integrating them into textiles using yarns is not straightforward, and chemical methods face challenges like complex processing, poor scalability, and voltage non-uniformity. This study employs conventional [...] Read more.
Thermocouples can be combined into thermopiles to sense heat differences or achieve localized heating and cooling. However, integrating them into textiles using yarns is not straightforward, and chemical methods face challenges like complex processing, poor scalability, and voltage non-uniformity. This study employs conventional weaving to fabricate textile-based thermocouples and thermopiles for wearable sensing and potential cooling applications, with a focus on protective clothing. Using stainless steel and nickel-coated carbon yarns, we demonstrate a more stable thermocouple than those made with chemical or welded methods, with minimal fabric damage. Four conductive yarns, stainless steel, carbon fiber (CF), and nickel-coated carbon fiber (NiFC), were woven and laser-cut to form thermocouples using three different binding types to connect them. Inox1–NiFC was the most efficient thermocouple, achieving the highest Seebeck coefficient of 21.87 µV/K with Binding 3. Binding 3 also reduced contact resistance by 66% across all configurations. Slightly lower but comparable performance was seen with Inox1–NiFC/Binding 2 (21.83 µV/K) and Inox2–NiFC/Binding 1 (15.79 µV/K). In contrast, FC-based thermocouples showed significantly lower Seebeck values: 5.67 µV/K (Inox2–FC/Binding 2), 5.43 µV/K (Inox1–FC/Binding 3), and 5.06 µV/K (Inox2–FC/Binding 1). A woven thermopile with three junctions made with the optimal binding and thermocouple combination generated an average of 55.54 µV/K and about 500 µV at small temperature differences (4–5 °C), with a linear voltage response suitable for sensing. While thermal sensing proved effective, Peltier cooling needs further optimization. This method offers a stable, low-cost, and scalable platform for textile-integrated thermoelectric systems, with strong potential for use in uniforms and other protective garments. Full article
Show Figures

Figure 1

11 pages, 3042 KB  
Article
Phase-Conversion Stiffened Dual-Network Hydrogel for Fracture Plugging in Oil-Based Drilling Fluid
by Xinying Cui, Chengwen Wang, Weian Huang, Shifeng Zhang, Haiqun Chen and Bo Wu
Gels 2025, 11(8), 635; https://doi.org/10.3390/gels11080635 - 12 Aug 2025
Viewed by 227
Abstract
During drilling operations, lost circulation frequently occurs, leading to significant loss of drilling fluids which causes environmental damage and increasing drilling costs. To address the problem of fracture plugging, gel materials have emerged as an ideal solution due to stable physicochemical properties and [...] Read more.
During drilling operations, lost circulation frequently occurs, leading to significant loss of drilling fluids which causes environmental damage and increasing drilling costs. To address the problem of fracture plugging, gel materials have emerged as an ideal solution due to stable physicochemical properties and excellent environmental compatibility. However, most existing gels exhibit poor stability and low mechanical strength under high-temperature conditions. To overcome these limitations, high-temperature-resistant phase-conversion stiffened dual-network hydrogel for oil-based drilling fluids was developed. Phase-conversion was realized by immersing synthesized double-network hydrogel in ethylene glycol (EG), polyethylene glycol (PEG), and glycerol (Gly), optimizing and enhancing its mechanical properties, followed by plugging performance evaluations. Experimental results demonstrated that the phase-conversion stiffened gels achieved significantly improved compressive strength and plugging efficiency at elevated temperature. The GC-MS results indicated that dehydration and reagent exchange occurred during immersion, with change in the solid content of the sample. After being treated by white oil at high temperature, the oil phase almost replaced the water phase in the gel. The results of ATR-IR confirmed the formation of hydrogen bonds in the gel. TGA data revealed that PEG enhanced the thermal stability of the gel, EG negatively affected thermal stability, and Gly had negligible influence. The enhancement in gel strength primarily stems from the increase in solid content caused by phase transformation. Dehydration and multiple hydrogen bonds formed between organic reagent molecules and polymer chains in the gel have a synergistic enhancement effect. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

33 pages, 13337 KB  
Article
Machinability of Basalt and Glass Fiber Hybrid Composites in Dry Drilling Using TiN/TiAlN-Coated Drill Bits
by Mehmet İskender Özsoy, Satılmış Ürgün, Sinan Fidan, Eser Yarar, Erman Güleç and Mustafa Özgür Bora
Polymers 2025, 17(16), 2172; https://doi.org/10.3390/polym17162172 - 8 Aug 2025
Viewed by 412
Abstract
Drilling-induced damage in fiber-reinforced polymer composite materials was measured excavating four laminates, basalt (B14), glass (G14) and their two sandwich type hybrids (B4G6B4, G4B6G4), with 6 mm [...] Read more.
Drilling-induced damage in fiber-reinforced polymer composite materials was measured excavating four laminates, basalt (B14), glass (G14) and their two sandwich type hybrids (B4G6B4, G4B6G4), with 6 mm twist drills at 1520 revolutions per minute and 0.10 mm rev−1 under dry running with an uncoated high-speed steel (HSS-R), grind-coated high-speed steel (HSS-G) or physical vapor deposition-coated (high-speed steel coated with Titanium Nitride (TiN) and Titanium Aluminum Nitride (TiAlN)) drill bits. The hybrid sheets were deliberately incorporated to clarify how alternating basalt–glass architectures redistribute interlaminar stresses during drilling, while the hard, low-friction TiN and TiAlN ceramic coatings enhance cutting performance by forming a heat-resistant tribological barrier that lowers tool–workpiece adhesion, reduces interface temperature, and thereby suppresses thrust-induced delamination. Replacement of an uncoated, grind-coated, high-speed-steel drill (HSS-G) with the latter coats lowered the mechanical and thermal loads substantially: mean thrust fell from 79–94 N to 24–30 N, and peak workpiece temperatures from 112 °C to 74 °C. Accordingly, entry/exit oversize fell from 2.5–4.7% to under 0.6% and, from the surface, the SEM image displayed clean fiber severance rather than pull-out and matrix smear. By analysis of variance (ANOVA), 92.7% of the variance of thrust and 86.6% of that of temperature could be accounted for by the drill-bit factor, thus confirming that the coatings overwhelm the laminate structure and hybrid stacking simply redistribute, but cannot overcome, the former influence. Regression models and an artificial neural network optimized via meta-heuristic optimization foretold thrust, temperature and delamination with an R2 value of 0.94 or higher, providing an instant-screening device with which to explore industrial application. The work reveals TiAlN- and TiN-coated drills as financially competitive alternatives with which to achieve ±1% dimensional accuracy and minimum subsurface damage during multi-material composite machining. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

12 pages, 2722 KB  
Article
Uniform Cu-Based Metal–Organic Framework Micrometer Cubes with Synergistically Enhanced Photodynamic/Photothermal Properties for Rapid Eradication of Multidrug-Resistant Bacteria
by Xiaomei Wang, Ting Zou, Weiqi Wang, Keqiang Xu and Handong Zhang
Pharmaceutics 2025, 17(8), 1018; https://doi.org/10.3390/pharmaceutics17081018 - 6 Aug 2025
Viewed by 331
Abstract
Background/Objectives: The rapid emergence of multidrug-resistant bacterial infections demands innovative non-antibiotic therapeutic strategies. Dual-modal photoresponse therapy integrating photodynamic (PDT) and photothermal (PTT) effects offers a promising rapid antibacterial approach, yet designing single-material systems with synergistic enhancement remains challenging. This study aims to [...] Read more.
Background/Objectives: The rapid emergence of multidrug-resistant bacterial infections demands innovative non-antibiotic therapeutic strategies. Dual-modal photoresponse therapy integrating photodynamic (PDT) and photothermal (PTT) effects offers a promising rapid antibacterial approach, yet designing single-material systems with synergistic enhancement remains challenging. This study aims to develop uniform Cu-based metal–organic framework micrometer cubes (Cu-BN) for efficient PDT/PTT synergy. Methods: Cu-BN cubes were synthesized via a one-step hydrothermal method using Cu(NO3)2 and 2-amino-p-benzoic acid. The material’s dual-mode responsiveness to visible light (420 nm) and near-infrared light (808 nm) was characterized through UV–Vis spectroscopy, photothermal profiling, and reactive oxygen species (ROS) generation assays. Antibacterial efficacy against multidrug-resistant Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was quantified via colony counting under dual-light irradiation. Results: Under synergistic 420 + 808 nm irradiation for 15 min, Cu-BN (200 μg/mL) achieved rapid eradication of multidrug-resistant E. coli (99.94%) and S. aureus (99.83%). The material reached 58.6 °C under dual-light exposure, significantly exceeding single-light performance. Photodynamic analysis confirmed a 78.7% singlet oxygen (1O2) conversion rate. This enhancement stems from PTT-induced membrane permeabilization accelerating ROS diffusion, while PDT-generated ROS sensitized bacteria to thermal damage. Conclusions: This integrated design enables spatiotemporal PDT/PTT synergy within a single Cu-BN system, establishing a new paradigm for rapid-acting, broad-spectrum non-antibiotic antimicrobials. The work provides critical insights for developing light-responsive biomaterials against drug-resistant infections. Full article
Show Figures

Graphical abstract

14 pages, 2448 KB  
Article
Study on the Semi-Interpenetrating Polymer Network Self-Degradable Gel Plugging Agent for Deep Coalbed Methane
by Bo Wang, Zhanqi He, Jin Lin, Kang Ren, Zhengyang Zhao, Kaihe Lv, Yiting Liu and Jiafeng Jin
Processes 2025, 13(8), 2453; https://doi.org/10.3390/pr13082453 - 3 Aug 2025
Viewed by 348
Abstract
Deep coalbed methane (CBM) reservoirs are characterized by high hydrocarbon content and are considered an important strategic resource. Due to their inherently low permeability and porosity, horizontal well drilling is commonly employed to enhance production, with the length of the horizontal section playing [...] Read more.
Deep coalbed methane (CBM) reservoirs are characterized by high hydrocarbon content and are considered an important strategic resource. Due to their inherently low permeability and porosity, horizontal well drilling is commonly employed to enhance production, with the length of the horizontal section playing a critical role in determining CBM output. However, during extended horizontal drilling, wellbore instability frequently occurs as a result of drilling fluid invasion into the coal formation, posing significant safety challenges. This instability is primarily caused by the physical intrusion of drilling fluids and their interactions with the coal seam, which alter the mechanical integrity of the formation. To address these challenges, interpenetrating and semi-interpenetrating network (IPN/s-IPN) hydrogels have gained attention due to their superior physicochemical properties. This material offers enhanced sealing and support performance across fracture widths ranging from micrometers to millimeters, making it especially suited for plugging applications in deep CBM reservoirs. A self-degradable interpenetrating double-network hydrogel particle plugging agent (SSG) was developed in this study, using polyacrylamide (PAM) as the primary network and an ionic polymer as the secondary network. The SSG demonstrated excellent thermal stability, remaining intact for at least 40 h in simulated formation water at 120 °C with a degradation rate as high as 90.8%, thereby minimizing potential damage to the reservoir. After thermal aging at 120 °C, the SSG maintained strong plugging performance and favorable viscoelastic properties. A drilling fluid containing 2% SSG achieved an invasion depth of only 2.85 cm in an 80–100 mesh sand bed. The linear viscoelastic region (LVR) ranged from 0.1% to 0.98%, and the elastic modulus reached 2100 Pa, indicating robust mechanical support and deformation resistance. Full article
Show Figures

Figure 1

20 pages, 11318 KB  
Article
Addressing Challenges in Rds,on Measurement for Cloud-Connected Condition Monitoring in WBG Power Converter Applications
by Farzad Hosseinabadi, Sachin Kumar Bhoi, Hakan Polat, Sajib Chakraborty and Omar Hegazy
Electronics 2025, 14(15), 3093; https://doi.org/10.3390/electronics14153093 - 2 Aug 2025
Cited by 1 | Viewed by 287
Abstract
This paper presents the design, implementation, and experimental validation of a Condition Monitoring (CM) circuit for SiC-based Power Electronics Converters (PECs). The paper leverages in situ drain–source resistance (Rds,on) measurements, interfaced with cloud connectivity for data processing and lifetime assessment, [...] Read more.
This paper presents the design, implementation, and experimental validation of a Condition Monitoring (CM) circuit for SiC-based Power Electronics Converters (PECs). The paper leverages in situ drain–source resistance (Rds,on) measurements, interfaced with cloud connectivity for data processing and lifetime assessment, addressing key limitations in current state-of-the-art (SOTA) methods. Traditional approaches rely on expensive data acquisition systems under controlled laboratory conditions, making them unsuitable for real-world applications due to component variability, time delay, and noise sensitivity. Furthermore, these methods lack cloud interfacing for real-time data analysis and fail to provide comprehensive reliability metrics such as Remaining Useful Life (RUL). Additionally, the proposed CM method benefits from noise mitigation during switching transitions by utilizing delay circuits to ensure stable and accurate data capture. Moreover, collected data are transmitted to the cloud for long-term health assessment and damage evaluation. In this paper, experimental validation follows a structured design involving signal acquisition, filtering, cloud transmission, and temperature and thermal degradation tracking. Experimental testing has been conducted at different temperatures and operating conditions, considering coolant temperature variations (40 °C to 80 °C), and an output power of 7 kW. Results have demonstrated a clear correlation between temperature rise and Rds,on variations, validating the ability of the proposed method to predict device degradation. Finally, by leveraging cloud computing, this work provides a practical solution for real-world Wide Band Gap (WBG)-based PEC reliability and lifetime assessment. Full article
(This article belongs to the Section Industrial Electronics)
Show Figures

Figure 1

12 pages, 1515 KB  
Article
Expression of Heat Shock Protein 90 Genes Induced by High Temperature Mediated Sensitivity of Aphis glycines Matsumura (Hemiptera: Aphididae) to Insecticides
by Xue Han, Yulong Jia, Changchun Dai, Xiaoyun Wang, Jian Liu and Zhenqi Tian
Insects 2025, 16(8), 772; https://doi.org/10.3390/insects16080772 - 28 Jul 2025
Viewed by 431
Abstract
Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a major pest of soybean fields. While high-temperature stress induced by global warming can initially suppress aphid populations, these pests may eventually adapt, leading to more severe infestations and crop damage. Heat shock proteins (HSPs), [...] Read more.
Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a major pest of soybean fields. While high-temperature stress induced by global warming can initially suppress aphid populations, these pests may eventually adapt, leading to more severe infestations and crop damage. Heat shock proteins (HSPs), which are upregulated in response to heat stress to protect aphid development, also confer tolerance to other abiotic stressors, including insecticides. To investigate the role of HSPs in insecticide resistance in A. glycines, we analyzed the expression profiles of three AgHsp90 genes (AgHsp75, AgHsp83, and AgGrp94) following exposure to high temperatures and insecticides. Functional validation was performed using RNA interference (RNAi) to silence AgHsp90 genes. Our results demonstrated that AgHsp90 genes were significantly upregulated under both heat and insecticide stress conditions. Furthermore, after feeding on dsRNA of AgHsp90 genes, mortality rates of A. glycines significantly increased when exposed to imidacloprid and lambda-cyhalothrin. This study provides evidence that AgHsp90 genes play a crucial role in mediating thermal tolerance and insecticide resistance in A. glycines. Full article
(This article belongs to the Special Issue RNAi in Insect Physiology)
Show Figures

Figure 1

18 pages, 4456 KB  
Article
Study on the Filling and Plugging Mechanism of Oil-Soluble Resin Particles on Channeling Cracks Based on Rapid Filtration Mechanism
by Bangyan Xiao, Jianxin Liu, Feng Xu, Liqin Fu, Xuehao Li, Xianhao Yi, Chunyu Gao and Kefan Qian
Processes 2025, 13(8), 2383; https://doi.org/10.3390/pr13082383 - 27 Jul 2025
Viewed by 474
Abstract
Channeling in cementing causes interlayer interference, severely restricting oilfield recovery. Existing channeling plugging agents, such as cement and gels, often lead to reservoir damage or insufficient strength. Oil-soluble resin (OSR) particles show great potential in selective plugging of channeling fractures due to their [...] Read more.
Channeling in cementing causes interlayer interference, severely restricting oilfield recovery. Existing channeling plugging agents, such as cement and gels, often lead to reservoir damage or insufficient strength. Oil-soluble resin (OSR) particles show great potential in selective plugging of channeling fractures due to their excellent oil solubility, temperature/salt resistance, and high strength. However, their application is limited by the efficient filling and retention in deep fractures. This study innovatively combines the OSR particle plugging system with the mature rapid filtration loss plugging mechanism in drilling, systematically exploring the influence of particle size and sorting on their filtration, packing behavior, and plugging performance in channeling fractures. Through API filtration tests, visual fracture models, and high-temperature/high-pressure (100 °C, salinity 3.0 × 105 mg/L) core flow experiments, it was found that well-sorted large particles preferentially bridge in fractures to form a high-porosity filter cake, enabling rapid water filtration from the resin plugging agent. This promotes efficient accumulation of OSR particles to form a long filter cake slug with a water content <20% while minimizing the invasion of fine particles into matrix pores. The slug thermally coalesces and solidifies into an integral body at reservoir temperature, achieving a plugging strength of 5–6 MPa for fractures. In contrast, poorly sorted particles or undersized particles form filter cakes with low porosity, resulting in slow water filtration, high water content (>50%) in the filter cake, insufficient fracture filling, and significantly reduced plugging strength (<1 MPa). Finally, a double-slug strategy is adopted: small-sized OSR for temporary plugging of the oil layer injection face combined with well-sorted large-sized OSR for main plugging of channeling fractures. This strategy achieves fluid diversion under low injection pressure (0.9 MPa), effectively protects reservoir permeability (recovery rate > 95% after backflow), and establishes high-strength selective plugging. This study clarifies the core role of particle size and sorting in regulating the OSR plugging effect based on rapid filtration loss, providing key insights for developing low-damage, high-performance channeling plugging agents and scientific gradation of particle-based plugging agents. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

16 pages, 2673 KB  
Article
Thermal and Volumetric Signatures of the Mullins Effect in Carbon Black Reinforced Styrene-Butadiene Rubber Composites
by Nicolas Candau, Guillaume Corvec, Noel León-Albiter and Miguel Mudarra Lopez
J. Compos. Sci. 2025, 9(8), 393; https://doi.org/10.3390/jcs9080393 - 24 Jul 2025
Viewed by 411
Abstract
This paper investigates the interplay between rubber network damage, carbon black (CB) network damage, heat exchange, and voiding mechanisms in filled Styrene-butadiene rubber (SBR) under cyclic loading. To do so, three carbon black filled SBR composites, SBR5, SBR30 and SBR60 are studied. The [...] Read more.
This paper investigates the interplay between rubber network damage, carbon black (CB) network damage, heat exchange, and voiding mechanisms in filled Styrene-butadiene rubber (SBR) under cyclic loading. To do so, three carbon black filled SBR composites, SBR5, SBR30 and SBR60 are studied. The study aims to quantify molecular damage and its role in inducing reversible or irreversible heat flow and voiding behavior to inform the design of more resilient rubber composites with improved fatigue life and thermal management capabilities. The study effectively demonstrated how increasing carbon black content, particularly in SBR60, leads to a shift from mostly reversible to irreversible and cumulative damage mechanisms during cyclic loading, as evidenced by thermal, volumetric, and electrical resistivity changes. In particular, we identify a critical mechanical energy of 7 MJ.m−3 associated with such transition. These irreversible changes are strongly linked to the damage and re-arrangement of the carbon black filler network, as well as the rubber chains network and the formation/growth of voids, while reversible mechanisms are likely related to rubber chains alignment associated with entropic elasticity. Full article
(This article belongs to the Special Issue Composites: A Sustainable Material Solution, 2nd Edition)
Show Figures

Figure 1

35 pages, 6030 KB  
Review
Common Ragweed—Ambrosia artemisiifolia L.: A Review with Special Regards to the Latest Results in Protection Methods, Herbicide Resistance, New Tools and Methods
by Bence Knolmajer, Ildikó Jócsák, János Taller, Sándor Keszthelyi and Gabriella Kazinczi
Agronomy 2025, 15(8), 1765; https://doi.org/10.3390/agronomy15081765 - 23 Jul 2025
Viewed by 727
Abstract
Common ragweed (Ambrosia artemisiifolia L.) has been identified as one of the most harmful invasive weed species in Europe due to its allergenic pollen and competitive growth in diverse habitats. In the first part of this review [Common Ragweed—Ambrosia artemisiifolia L.: [...] Read more.
Common ragweed (Ambrosia artemisiifolia L.) has been identified as one of the most harmful invasive weed species in Europe due to its allergenic pollen and competitive growth in diverse habitats. In the first part of this review [Common Ragweed—Ambrosia artemisiifolia L.: A Review with Special Regards to the Latest Results in Biology and Ecology], its biological characteristics and ecological behavior were described in detail. In the current paper, control strategies are summarized, focusing on integrated weed management adapted to the specific habitat where the species causes damage—arable land, semi-natural vegetation, urban areas, or along linear infrastructures. A range of management methods is reviewed, including agrotechnical, mechanical, physical, thermal, biological, and chemical approaches. Particular attention is given to the spread of herbicide resistance and the need for diversified, habitat-specific interventions. Among biological control options, the potential of Ophraella communa LeSage, a leaf beetle native to North America, is highlighted. Furthermore, innovative technologies such as UAV-assisted weed mapping, site-specific herbicide application, and autonomous weeding robots are discussed as environmentally sustainable tools. The role of legal regulations and pollen monitoring networks—particularly those implemented in Hungary—is also emphasized. By combining traditional and advanced methods within a coordinated framework, effective and ecologically sound ragweed control can be achieved. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

13 pages, 2390 KB  
Article
Enhancing Laser Damage Resistance in TiO2 Films: Dual-Additive Strategy Using High Thermal Conductivity Agents and Long-Chain Organic Compounds
by Yan Zhang, Ming Ma, Zirun Peng, Na Liu, Hanzhuo Zhang, Peizhong Feng and Cheng Xu
Photonics 2025, 12(8), 742; https://doi.org/10.3390/photonics12080742 - 22 Jul 2025
Viewed by 255
Abstract
The laser damage resistance of optical films holds significant practical importance, as it largely determines both the maximum power output of laser systems and the overall stability of the entire optical assembly. A comprehensive investigation was conducted to examine the influence of both [...] Read more.
The laser damage resistance of optical films holds significant practical importance, as it largely determines both the maximum power output of laser systems and the overall stability of the entire optical assembly. A comprehensive investigation was conducted to examine the influence of both single additives—acetylacetone (ACAC) and diethanolamine (DEA)—and dual-additive systems, specifically ACAC combined with polyethylene glycol 200 (PEG 200) and DEA combined with PEG 200, on TiO2 film properties and their laser-induced damage behavior under 1064 nm irradiation. It demonstrated that the films fabricated using ACAC exhibited smoother surfaces. Nevertheless, the sol prepared with DEA was more stable, resulting in films with superior optical properties and an enhanced laser-induced damage threshold (LIDT). The incorporation of dual additives further improved the films’ LIDT. Specifically, the film with DEA and PEG 200 achieved the highest LIDT, reaching 21.5 J/cm2. Moreover, all films exhibited defect-induced damage, yet distinct damage morphologies were observed across different samples. The single-additive films predominantly displayed stress-type damage patterns, whereas the dual-additive films manifested melting-type damage characteristics. Furthermore, through a combination of experiments and calculations, it was revealed that the reasons why the film with DEA and PEG 200 achieved the highest LIDT were twofold: first, the high thermal conductivity of DEA reduced the maximum temperature at the defect center within the film; second, the long molecular chains of PEG 200 created a looser film structure that better mitigated damage caused by stress and expansion during laser irradiation. This study presents a promising approach to enhancing the LIDT through the strategic selection of additives with high thermal conductivity while simultaneously incorporating organic compounds with long molecular chains to develop effective dual-additive films. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

15 pages, 3416 KB  
Article
The Study of Tribological Characteristics of YSZ/NiCrAlY Coatings and Their Resistance to CMAS at High Temperatures
by Dastan Buitkenov, Zhuldyz Sagdoldina, Aiym Nabioldina and Cezary Drenda
Appl. Sci. 2025, 15(14), 8109; https://doi.org/10.3390/app15148109 - 21 Jul 2025
Viewed by 358
Abstract
This paper presents the results of a comprehensive study of the structure, phase composition, thermal corrosion, and tribological properties of multilayer gradient coatings based on YSZ/NiCrAlY obtained using detonation spraying. X-ray phase analysis showed that the coatings consist entirely of metastable tetragonal zirconium [...] Read more.
This paper presents the results of a comprehensive study of the structure, phase composition, thermal corrosion, and tribological properties of multilayer gradient coatings based on YSZ/NiCrAlY obtained using detonation spraying. X-ray phase analysis showed that the coatings consist entirely of metastable tetragonal zirconium dioxide (t’-ZrO2) phase stabilized by high temperature and rapid cooling during spraying. SEM analysis confirmed the multilayer gradient phase distribution and high density of the structure. Wear resistance, optical profilometry, wear quantification, and coefficient of friction measurements were used to evaluate the operational stability. The results confirm that the structural parameters of the coating, such as porosity and phase gradient, play a key role in improving its resistance to thermal corrosion and CMAS melt, which makes such coatings promising for use in high-temperature applications. It is shown that a dense and thick coating effectively prevents the penetration of aggressive media, providing a high barrier effect and minimal structural damage. Tribological tests in the temperature range from 21 °C to 650 °C revealed that the best characteristics are observed at 550 °C: minimum coefficient of friction (0.63) and high stability in the stage of stable wear. At room temperature and at 650 °C, there is an increase in wear due to the absence or destabilization of the protective layer. Full article
Show Figures

Figure 1

Back to TopTop