Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,091)

Search Parameters:
Keywords = the urban thermal environment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3591 KB  
Article
Remote Sensing Monitoring of Summer Heat Waves–Urban Vegetation Interaction in Bucharest Metropolis
by Maria Zoran, Dan Savastru and Marina Tautan
Atmosphere 2026, 17(1), 109; https://doi.org/10.3390/atmos17010109 (registering DOI) - 21 Jan 2026
Viewed by 58
Abstract
Through a comprehensive analysis of urban vegetation summer seasonal and interannual patterns in the Bucharest metropolis in Romania, this study explored the response of urban vegetation to heat waves’ (HWs) impact in relation to multi-climatic parameters variability from a spatiotemporal perspective during 2000–2024, [...] Read more.
Through a comprehensive analysis of urban vegetation summer seasonal and interannual patterns in the Bucharest metropolis in Romania, this study explored the response of urban vegetation to heat waves’ (HWs) impact in relation to multi-climatic parameters variability from a spatiotemporal perspective during 2000–2024, with a focus on summer HWs periods (June–August), and particularly on the hottest summer 2024. Statistical correlation, regression, and linear trend analysis were applied to multiple long-term MODIS Terra/Aqua and MERRA-2 Reanalysis satellite and in situ climate data time series. To support the decline in urban vegetation during summer hot periods due to heat stress, this study found strong negative correlations between vegetation biophysical observables and urban thermal environment parameters at both the city center and metropolitan scales. In contrast, during the autumn–winter–spring seasons (September–May), positive correlations have been identified between vegetation biophysical observables and a few climate parameters, indicating their beneficial role for vegetation growth from 2000 to 2024. The recorded decreasing trend in evapotranspiration from 2000 to 2024 during summer HW periods in Bucharest’s metropolis was associated with a reduction in the evaporative cooling capacity of urban vegetation at high air temperatures, diminishing vegetation’s key function in mitigating urban heat stress. The slight decline in land surface albedo in the Bucharest metropolis due to increased urbanization may explain the enhanced air temperatures and the severity of HWs, as evidenced by 41 heat wave events (HWEs) and 222 heat wave days (HWDs) recorded during the summer (June–August) period from 2000 to 2024. During the severe 2024 summer heat wave episodes in the south-eastern part of Romania, a rise of 5.89 °C in the mean annual land surface temperature and a rise of 6.76 °C in the mean annual air temperature in the Bucharest metropolitan region were observed. The findings of this study provide a refined understanding of heat stress’s impact on urban vegetation, essential for developing effective mitigation strategies and prioritizing interventions in vulnerable areas. Full article
Show Figures

Figure 1

25 pages, 55532 KB  
Article
Diurnal–Seasonal Contrast of Spatiotemporal Dynamic and the Key Determinants of Surface Urban Heat Islands Across China’s Humid and Arid Regions
by Chengyu Wang, Zihao Feng and Xuhong Wang
Sustainability 2026, 18(2), 1093; https://doi.org/10.3390/su18021093 - 21 Jan 2026
Viewed by 64
Abstract
Regional management of the urban thermal environment is essential for sustainable development. However, both the surface urban heat island (SUHI) spatiotemporal patterns and driving mechanisms across humid–arid regions remain uncertain. Therefore, 329 cities from various humid–arid regions were selected to investigate the interannual, [...] Read more.
Regional management of the urban thermal environment is essential for sustainable development. However, both the surface urban heat island (SUHI) spatiotemporal patterns and driving mechanisms across humid–arid regions remain uncertain. Therefore, 329 cities from various humid–arid regions were selected to investigate the interannual, seasonal, and diurnal distribution characteristics of SUHIs across regions. By constructing six-dimensional influencing factors and using CatBoost-SHAP and SEM methods, the contributions and action pathways of these factors to SUHIs were analyzed across humid–arid regions. The influence mechanisms, differences in feature importance, and similarities and discrepancies in action pathways were thoroughly examined. The findings are as follows: 1. During the day, higher SUHII values occur in humid and semihumid regions, exceeding those in arid and semiarid regions by 1.521 and 0.921, respectively. At night, arid and semiarid regions exhibit UHI effects (SUHII > 0). The SUHI distribution across humid–arid regions demonstrates seasonal variations. 2. ΔSA and ΔNDVI are stable dominant influencing factors across all regions. The contribution rank varies along the humid–arid region: Pollution factors are more important in arid and semiarid regions, whereas surface features and 2D/3D dominate in humid and semihumid regions at night. 3. SUHI regulation by influencing factors across humid–arid regions follows both similar paths and regional variations. This study reveals the SUHI distribution across humid–arid regions and provides reference data for regional thermal environment management. Full article
Show Figures

Figure 1

19 pages, 2543 KB  
Article
Multisensory Interactions in Greenway Plazas of Differing Openness and Effects on User Behaviors
by Zhaohui Peng, Wenping Liu, Mingjun Teng, Yangyang Zhang, Abdul Baess Keyhani and Pengcheng Wang
Urban Sci. 2026, 10(1), 60; https://doi.org/10.3390/urbansci10010060 - 18 Jan 2026
Viewed by 85
Abstract
Spatial openness affects the subjective evaluation of soundscape, landscape, and thermal perceptions, leading to various restoration effects and recreational behaviors. However, the literature lacks studies investigating the effects of multisensory interactions under different levels of spatial openness in plazas on users’ behaviors in [...] Read more.
Spatial openness affects the subjective evaluation of soundscape, landscape, and thermal perceptions, leading to various restoration effects and recreational behaviors. However, the literature lacks studies investigating the effects of multisensory interactions under different levels of spatial openness in plazas on users’ behaviors in urban greenways. Thus, this study contributes to the enhancement of recreational experiences and the environmental design of urban greenways by examining the interaction between multisensory evaluations and recreational behaviors in greenway plazas with different levels of spatial openness. Three types of plazas (enclosed, semi-enclosed, open) were selected along an urban greenway to analyze interactions through in situ measurements, questionnaires, and behavior observation. The results showed that people rated the environment as the quietest and coolest in enclosed plazas, although the sound pressure level of these plazas was the highest. Furthermore, the visual evaluation (VE) was mostly correlated with acoustic evaluation (AE) in plazas with high openness, while the correlation effect between AE and thermal evaluation (TE) was only significant in enclosed plazas. In other words, AE was the key factor targeting the improvement in comfort in greenway plazas. Secondly, improving AE was more effective for stimulating the frequency of interactive activities in enclosed plazas, compared to improving TE. However, AE had a negative effect on the time that people were willing to spend on interactive activities in semi-enclosed plazas. Finally, these findings provide corresponding strategies for creating comfortable audio, visual, and thermal environments in greenway plazas with different levels of openness, as well as strategies for enhancing the recreational experiences of visitors. Full article
(This article belongs to the Section Urban Governance for Health and Well-Being)
Show Figures

Figure 1

32 pages, 7384 KB  
Article
Unlocking Rooftop Cooling Potential: An Experimental Investigation of the Thermal Behavior of Cool Roof and Green Roof as Retrofitting Strategies in Hot–Humid Climate
by Tengfei Zhao, Kwong Fai Fong and Tin Tai Chow
Buildings 2026, 16(2), 365; https://doi.org/10.3390/buildings16020365 - 15 Jan 2026
Viewed by 193
Abstract
Cool roof and green roof have been acknowledged as effective heat mitigation strategies for fighting against the urban heat island (UHI). However, empirical data in hot–humid climate are still insufficient. Experimental conventional, cool and green roofs (three types) were established to comprehensively investigate [...] Read more.
Cool roof and green roof have been acknowledged as effective heat mitigation strategies for fighting against the urban heat island (UHI). However, empirical data in hot–humid climate are still insufficient. Experimental conventional, cool and green roofs (three types) were established to comprehensively investigate the thermal performances in Hong Kong under typical summer conditions, as retrofitting strategies for an office building. The holistic vertical thermal behavior was investigated. The comparative cooling potentials were assessed. The results reveal a “vertical thermal sequence” in peak temperatures of each substrate layer for the conventional, cool and green roofs on a sunny day. However, local reversion in the thermal sequence may occur on a rainy day. Green roof-plot C (GR_C) demonstrates the highest thermal damping effect, followed by plot B (GR_B), A (GR_A) and the cool roof (CR) in summer. On a sunny day, the thermal dampening effectiveness of the substrates in the three green roofs is consistent: drainage > soil > water reservoir > root barrier. The holistic vertical thermal profiling was constructed in a high-rise office context in Hong Kong. The diurnal temperature profiles indicate all roof systems could effectively attenuate the temperature fluctuations. The daily maximum surface temperature reduction (SDMR) was introduced for cooling potential characterization of the cool roof and green roofs with multiple vegetation types. On a sunny day, the cool roof and green roofs all showed significant cooling potential. SDMR on the concrete tile of the best performing system was GR_C (26 °C), followed by GR_B (22.4 °C), GR_A (20.7 °C) and CR (13.3 °C), respectively. The SDMR on the ceiling ranked as GR_C, GR_B, GR_A and CR, with 2.9 °C, 2.4 °C, 2.1 °C and 2.1 °C, separately. On a rainy day, the cooling effect was still present but greatly diminished. A critical insight of a “warming effect at the ceiling” of the green roof was revealed. This research offers critical insights for unlocking rooftop cooling potential, endorsing cool roof and green roof as pivotal solutions for sustainable urban environments. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

21 pages, 15591 KB  
Article
Assessing the Impact of Building Surface Materials on Local Thermal Environment Using Infrared Thermal Imagery and Microclimate Simulations
by Ryan Jonathan, Tao Lin, Isaac Lun, Samuel D. Widijatmoko and Yu-Ting Tang
Buildings 2026, 16(2), 334; https://doi.org/10.3390/buildings16020334 - 13 Jan 2026
Viewed by 207
Abstract
The built environment is responsible for 40% of global energy demand, and, in line with urbanisation and population growth, this demand is expected to increase steadily. Urban areas are mostly composed of materials that can absorb energy from solar radiation and dissipate the [...] Read more.
The built environment is responsible for 40% of global energy demand, and, in line with urbanisation and population growth, this demand is expected to increase steadily. Urban areas are mostly composed of materials that can absorb energy from solar radiation and dissipate the accumulated energy in the form of heat. This study integrates a UAV-based Zenmuse XT S IR camera and handheld FLIR C5 thermal camera with ENVI-met microclimate simulation, providing quantitative insights for sustainable urban planning. From the 24 h experiment results, the characteristics of building surface materials are profiled for lowering energy use for internal thermal control during the operation stage of buildings. This study shows that building surface materials with the lowest solar reflectance and highest specific heat capacity reached a peak surface temperature of 73.5 °C in Jakarta (tropical hot climate) and 44.3 °C in Xiamen (subtropical late winter climate). In contrast, materials with the highest solar reflectance and lowest specific heat only reach a peak surface temperature of 58.1 °C in Jakarta and 27.9 °C in Xiamen. The peak surface temperature occurs at 2 PM in the afternoon. Moreover, we demonstrate the capability of an infrared drone to identify the peak surface temperatures of 55.8 °C at 2 PM in the study area in Xiamen. In addition, the ENVI-met validated model shows satisfactory correlation values of R > 0.9 and R2 > 0.8. This result demonstrates UAV-IR and ENVI-met simulation integration as a scalable method for city-level UHI diagnostics and monitoring. Full article
(This article belongs to the Special Issue Advances in Urban Heat Island and Outdoor Thermal Comfort)
Show Figures

Figure 1

25 pages, 3934 KB  
Article
Urban Heat Islands: Their Influence on Building Heating and Cooling Energy Demand Throughout Local Climate Zones
by Marta Lucas Bonilla, Cristina Nuevo-Gallardo, Jose Manuel Lorenzo Gallardo and Beatriz Montalbán Pozas
Urban Sci. 2026, 10(1), 43; https://doi.org/10.3390/urbansci10010043 - 11 Jan 2026
Viewed by 200
Abstract
The thermal influence of Urban Heat Islands (UHIs) is not limited to periods of high temperature but persists throughout the year. The present study utilizes hourly data collected over a period of one year from a network of hygrothermal monitoring stations with a [...] Read more.
The thermal influence of Urban Heat Islands (UHIs) is not limited to periods of high temperature but persists throughout the year. The present study utilizes hourly data collected over a period of one year from a network of hygrothermal monitoring stations with a high density, which were deployed across the city of Cáceres (Spain). The network was designed in accordance with the World Meteorological Organization’s guidelines for urban measurements (employing radiation footprints and surface roughness) and ensures representation of each Local Climate Zone (LCZ), characterized by those factors (such as building typology and density, urban fabric, vegetation, and anthropogenic activity, among others) that influence potential solar radiation absorption. The magnitude of the heat island effect in this city has been determined to be approximately 7 °C in summer and winter at the first hours of the morning. In order to assess the energy impact of UHIs, Cooling and Heating Degree Days (CDD and HDD) were calculated for both summer and winter periods across the different LCZs. Following the implementation of rigorous quality control procedures and the utilization of gap-filling techniques, the analysis yielded discrepancies in energy demand of up to 10% between LCZs within the city. The significance of incorporating UHIs into the design of building envelopes and climate control systems is underscored by these findings, with the potential to enhance both energy efficiency and occupant thermal comfort. This methodology is particularly relevant for extrapolation to larger and denser urban environments, where the intensification of UHI effects exerts a direct impact on energy consumption and costs. The following essay will provide a comprehensive overview of the relevant literature on the subject. Full article
(This article belongs to the Special Issue Urban Building Energy Analysis)
Show Figures

Figure 1

24 pages, 4689 KB  
Article
Intelligent Detection and Energy-Driven Repair of Building Envelope Defects for Improved Thermal and Energy Performance
by Daiwei Luo, Tianchen Zhang, Wuxing Zheng and Qian Nie
Energies 2026, 19(2), 351; https://doi.org/10.3390/en19020351 - 11 Jan 2026
Viewed by 150
Abstract
This study addresses the challenge of rapid identification and assessment of localized damage to building envelopes under resource-constrained conditions—specifically, the absence of specialized inspection equipment—with a particular focus on the detrimental effects of such damage on thermal performance and energy efficiency. An efficient [...] Read more.
This study addresses the challenge of rapid identification and assessment of localized damage to building envelopes under resource-constrained conditions—specifically, the absence of specialized inspection equipment—with a particular focus on the detrimental effects of such damage on thermal performance and energy efficiency. An efficient detection methodology tailored to small-scale maintenance scenarios is proposed, leveraging the YOLOv11 object detection architecture to develop an intelligent system capable of recognizing common envelope defects in contemporary residential buildings, including cracks, spalling, and sealant failure. The system prioritizes the detection of anomalies that may induce thermal bridging, reduced airtightness, or insulation degradation. Defects are classified according to severity and their potential impact on thermal behavior, enabling a graded, integrated repair strategy that holistically balances structural safety, thermal restoration, and façade aesthetics. By explicitly incorporating energy performance recovery as a core objective, the proposed approach not only enhances the automation of spatial data processing but also actively supports the green operation and low-carbon retrofitting of existing urban building stock. Characterized by low cost, high efficiency, and ease of deployment, this method offers a practical and scalable technical pathway for the intelligent diagnosis of thermal anomalies and the enhancement of building energy performance. It aligns with the principles of high-quality architectural development and sustainable building governance, while concretely advancing operational energy reduction in the built environment and contributing meaningfully to energy conservation goals. Full article
Show Figures

Figure 1

20 pages, 5799 KB  
Article
Comparative Evaluation of Multi-Source Geospatial Data and Machine Learning Models for Hourly Near-Surface Air Temperature Mapping
by Zexiang Yan, Yixu Chen, Ruoxue Li and Meiling Gao
Atmosphere 2026, 17(1), 71; https://doi.org/10.3390/atmos17010071 - 9 Jan 2026
Viewed by 250
Abstract
Accurate estimation of hourly near-surface air temperature (NSAT) is critical for climate analysis, environmental monitoring, and urban thermal studies. However, existing temperature datasets remain constrained by coarse spatial resolution and limited hourly accuracy. This study systematically evaluates four widely used land surface temperature [...] Read more.
Accurate estimation of hourly near-surface air temperature (NSAT) is critical for climate analysis, environmental monitoring, and urban thermal studies. However, existing temperature datasets remain constrained by coarse spatial resolution and limited hourly accuracy. This study systematically evaluates four widely used land surface temperature (LST) datasets—MODIS, ERA5-Land, FY-2F, and CGLS—and five machine learning models (RF, MDN, DNN, XGBoost, and GTNNWR) for NSAT estimation across two contrasting regions in Shaanxi, China: a complex-terrain region in southwestern Shaanxi and the urban area of Xi’an. Results demonstrate that single-source LST inputs outperform multi-source LST stacking, largely due to compounded systematic biases across heterogeneous datasets. MODIS provides the best performance in the mountainous region, while CGLS excels in the urban environment. Among all models, GTNNWR—which explicitly captures spatiotemporal non-stationarity—consistently achieves the highest accuracy, reducing RMSE by 44.8% and 44.2% relative to the second-best model in the two study areas, respectively, whereas the remaining four models exhibit broadly comparable performance. This work identifies effective data–model configurations for generating high-resolution hourly NSAT products and provides methodological insights for climate and environmental applications in regions with complex terrain or strong urban heterogeneity. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

14 pages, 16690 KB  
Article
Experimental Study on Thermal Oxidative Aging Effects on the Performance and Compatibility of Different Types of Waterproofing Membranes
by Shaochun Li, Yang Du, Wenbin Geng, Ruiyun Zhang, Guojun Sun and Xingpeng Ma
Polymers 2026, 18(2), 162; https://doi.org/10.3390/polym18020162 - 7 Jan 2026
Viewed by 236
Abstract
As urbanization and extreme weather conditions intensify, the comprehensive performance requirements for building waterproofing systems are becoming more demanding. Single-layer waterproof membranes often struggle to meet usage requirements in complex environments, leading to the gradual rise of composite waterproof systems. This paper selects [...] Read more.
As urbanization and extreme weather conditions intensify, the comprehensive performance requirements for building waterproofing systems are becoming more demanding. Single-layer waterproof membranes often struggle to meet usage requirements in complex environments, leading to the gradual rise of composite waterproof systems. This paper selects three different types of waterproof membranes, ultra-thin reinforced self-adhesive polymer-modified bitumen waterproof membrane, polymer self-adhesive waterproof membrane, and polymer-modified bitumen root penetration-resistant waterproof membrane, and conducts a systematic study on their compatibility and durability. Through tensile performance, low-temperature flexibility, and peel compatibility tests, combined with thermal oxidative aging experiments at different aging times, the mechanical behavior, low-temperature adaptability, and interfacial bonding characteristics of the membranes were analyzed. The results show that the three membranes differ significantly in tensile performance. The root penetration-resistant membrane has the highest strength but is more brittle, the polymer self-adhesive membrane has lower strength but better stability, and the ultra-thin reinforced membrane performs better initially but lacks durability. In terms of low-temperature flexibility, the root penetration-resistant membrane demonstrates superior crack resistance and aging resistance. These divergent aging responses are closely related to differences in reinforcement structure, polymer modification, and the thermal–oxidative sensitivity of the bituminous adhesive layers. Peel compatibility tests show that the peel strength of the composite membranes of the ultra-thin reinforced and polymer self-adhesive membranes is significantly improved, indicating a good synergistic effect and compatibility. Overall, different waterproof membranes exhibit distinct compatibility mechanisms and aging patterns in composite applications, providing a scientific basis for the design and optimization of composite waterproof systems. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

18 pages, 2553 KB  
Article
From Landscape Configuration to Health Outcomes: A Spatial–Behavioral Framework Linking Park Landscapes to Public Perceived Health Through Thermal Comfort and Loyalty Dynamics
by Jiang Li, Yudan Liu, Xiaoxi Cai, Dandi Zhu, Xingyu Liu, Shaobo Liu and Weiwei Liu
Buildings 2026, 16(2), 260; https://doi.org/10.3390/buildings16020260 - 7 Jan 2026
Viewed by 247
Abstract
Urban park landscape design has significant potential to alleviate heat stress and promote public health, particularly during extreme summer heat. This study explores how the spatial configuration of landscapes within the Yanghu Wetland Park in Changsha, China, influences pedestrian thermal comfort and destination [...] Read more.
Urban park landscape design has significant potential to alleviate heat stress and promote public health, particularly during extreme summer heat. This study explores how the spatial configuration of landscapes within the Yanghu Wetland Park in Changsha, China, influences pedestrian thermal comfort and destination loyalty under hot summer conditions, and how these factors affect public perceived health. It enriches current research by examining the impact of landscape spatial configuration, thermal comfort, and destination loyalty on public perceived health from a psychological perspective. We identified connections between park users’ spatial perceptions and their psychological and health perceptions. We used structural equation modeling (SEM) to examine the relationships among visitors’ spatial perception, psychological perceptions, and health perceptions within this large urban wetland park. At the same time, we explored how landscape characteristics, thermal comfort, destination loyalty, and public perceived health interact. This research constructs a Spatial–Thermal–Perception–Behavior (SPB) theoretical framework for such complex blue-green spaces, providing a multidimensional perspective on the relationship between the environment and health. Based on a survey of 321 visitors, This study pioneers the SPB theoretical framework, clarifying how this wetland park’s landscape configurations impact public perceived health through the mediating pathways of thermal comfort and destination loyalty. It provides a scientific basis for heat-adaptive landscape design in similar wetland park settings, aiming to enhance resident well-being and improve public perceived health. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

23 pages, 7753 KB  
Article
Urban Area Sustainability Analysis by Means of Integrated Microclimatic Measurement Techniques Combined with Thermal Comfort Modelling—A Pilot Project Application
by Giacomo Pierucci, Michele Baia and Carla Balocco
Energies 2026, 19(1), 217; https://doi.org/10.3390/en19010217 - 31 Dec 2025
Viewed by 239
Abstract
Although the literature is rich in studies of indoor thermal comfort, there is a lack of research on outdoor thermal comfort, despite its importance in response to global warming and the rise of urban heat islands. Physics models addressing spatial (urban energy form, [...] Read more.
Although the literature is rich in studies of indoor thermal comfort, there is a lack of research on outdoor thermal comfort, despite its importance in response to global warming and the rise of urban heat islands. Physics models addressing spatial (urban energy form, green areas) and temporal (climate variability) factors are urgently needed. This study proposes a useful method for outdoor comfort evaluation at a district scale, based on the energy form of built-up areas and hyperlocal climatic conditions. It enables the determination of distributed Physiological Environmental Temperature values at a district scale, assessing the greenery effect and mutual radiative exchanges. Applied to a case study in Florence, Italy, it integrates multiple measurement techniques. The main results highlight the model’s ability to evaluate outdoor thermal perception through the new identified indicator of Virtual Physiological Environmental Temperature (PET*) spread, ranging from 23.5 to 101.0 °C, specifically referring to the worst climatic conditions inside an urban canyon in relation to different real scenarios. The results confirm the method’s effectiveness as a tool for thermodynamics and planning for the well-being of an urban built-up environment. It offers useful support for sustainability and human-centric design, oriented to UHI mitigation and climate change adaptation strategies. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

15 pages, 2608 KB  
Article
Temporal Evolution and Extremes of Urban Thermal and Humidity Environments in a Tibetan Plateau City
by Jinzhao Wang, Suonam Kealdrup Tysa, Guoxin Chen and Qiong Li
Land 2026, 15(1), 64; https://doi.org/10.3390/land15010064 - 29 Dec 2025
Viewed by 272
Abstract
To elucidate features of the recent urban thermal–humidity climate, this study interrogates high-density observational data (2018–2023) from Xining, a key urban area on the Tibetan Plateau (TP), focusing on recent changes and extremes. Results show that the summer urban heat island intensity (UHII) [...] Read more.
To elucidate features of the recent urban thermal–humidity climate, this study interrogates high-density observational data (2018–2023) from Xining, a key urban area on the Tibetan Plateau (TP), focusing on recent changes and extremes. Results show that the summer urban heat island intensity (UHII) has intensified in recent years, marked by a surging frequency of extreme heat island days and increased variability, as exemplified by the maximum hourly UHII increasing from 3.95 °C to 6.60 °C during 2018–2023. Conversely, the summer urban dry island intensity (UDII) exhibited a clear weakening, yet this is accompanied by a dramatic increase in transient extreme events, characterized by a sharp rise in weak dry island occurrences and the emergence of urban moist islands. Furthermore, the hourly UHII is dominantly modulated by atmospheric humidity and temperature conditions, and these influences displayed a pronounced diurnal asymmetry, being strongest at night while weak or even reversed during the pre-noon hours. These findings underscore the escalating thermal risks and complex humidity dynamics in this highland city, providing critical insights for urban planning and climate adaptation strategies in similar environments. Full article
Show Figures

Figure 1

25 pages, 12082 KB  
Article
Impacts of Open Spaces in Traditional Blocks on Human Thermal Comfort: Taking an Old Street in a Hot-Summer Cold-Winter Climate Region as an Example
by Yi-Pu Chen, Ran Hu, Komi Bernard Bedra and Qi-Meng Ning
Buildings 2026, 16(1), 136; https://doi.org/10.3390/buildings16010136 - 26 Dec 2025
Viewed by 273
Abstract
The microclimate of traditional blocks, a key component of urban fabric, directly affects the overall urban thermal environment. Creating a suitable microclimate is crucial for improving urban living quality. Field measurements, ENVI-met simulations, and the PET index were used to analyze the spatiotemporal [...] Read more.
The microclimate of traditional blocks, a key component of urban fabric, directly affects the overall urban thermal environment. Creating a suitable microclimate is crucial for improving urban living quality. Field measurements, ENVI-met simulations, and the PET index were used to analyze the spatiotemporal variations and core drivers of thermal comfort. Temporally, five open space types showed a unimodal “rise–stabilization–fall” PET curve, with peak heat stress occurring at 11:00–14:00. Courtyards heated fastest, but green spaces had the most stable thermal environment because trees provided shading and transpiration for gentle cooling. Spatially, thermal comfort varied significantly. For example, green spaces rich in trees performed best (PET 5–8 °C lower than pure grassland), while squares and courtyards faced severe midday heat stress (PET mostly moderate or above). Alley comfort depended on aspect ratio and orientation—north–south alleys with an aspect ratio > 2 were 2–3 °C cooler than open spaces, but east–west or narrower alleys (aspect ratio < 1.5) and low-enclosed courtyard control apply to southern Hunan’s hot-humid zone. However, the synergistic principles can be extended to similar southern regions, providing technical reference for traditional block livability and climate-resilient cities. Full article
(This article belongs to the Special Issue Advances in Urban Heat Island and Outdoor Thermal Comfort)
Show Figures

Figure 1

17 pages, 5286 KB  
Article
Enhanced Urban Heat Island Modeling with Machine Learning and Regression Kriging in a Topographically Diverse Medium-Sized City
by Iulian-Horia Holobaca, Mircea Alexe, Kinga Temerdek-Ivan and Cosmina-Daniela Ursu
Land 2026, 15(1), 49; https://doi.org/10.3390/land15010049 - 26 Dec 2025
Viewed by 389
Abstract
Urban heat islands (UHIs) represent a major environmental challenge, particularly in cities with complex topography and local air dynamics where spatial variability of the surface temperature is difficult to model. This study presents an enhanced UHI modeling framework that integrates Random Forest regression [...] Read more.
Urban heat islands (UHIs) represent a major environmental challenge, particularly in cities with complex topography and local air dynamics where spatial variability of the surface temperature is difficult to model. This study presents an enhanced UHI modeling framework that integrates Random Forest regression with Regression Kriging (RF–RK) in Cluj-Napoca, Romania. Using a network of 36 air temperature sensors and spatial predictors such as urban environment and location parameters, we evaluated the performance of RF–RK against traditional Multiple Linear Regression (MLR). Results show that RF–RK achieved substantially higher accuracy (R2 = 0.844, RMSE = 0.241 °C) compared to MLR (R2 = 0.653, RMSE = 0.359 °C). Spatial patterns revealed that a notable thermal gradient can be seen between the western and eastern parts of the city and the extension of the heat island core eastward. The combined approach effectively captured both the non-linear relationships of predictors and the spatial autocorrelation of residuals, outperforming single-method models. These findings highlight the potential of hybrid machine learning–geostatistical frameworks for urban climate research and provide insights for urban planning and heat mitigation strategies in topographically diverse cities. Full article
(This article belongs to the Special Issue The Impact of Urban Planning on the Urban Heat Island Effect)
Show Figures

Figure 1

23 pages, 5119 KB  
Article
Urban Heat Island Network Identification and Mitigation for Sustainable Urban Development Based on Source–Sink Theory and Local Climate Zone
by Shuran Zhang, Yanhong Chen, Yuanbin Cai and Wenbin Pan
Sustainability 2026, 18(1), 260; https://doi.org/10.3390/su18010260 - 26 Dec 2025
Viewed by 347
Abstract
The urban heat island (UHI) effect, intensified by rapid urbanization, necessitates the precise identification and mitigation of thermal sources and sinks. However, existing studies often overlook landscape connectivity and rarely analyze integrated source–sink networks within a unified framework. To address this gap, this [...] Read more.
The urban heat island (UHI) effect, intensified by rapid urbanization, necessitates the precise identification and mitigation of thermal sources and sinks. However, existing studies often overlook landscape connectivity and rarely analyze integrated source–sink networks within a unified framework. To address this gap, this research combines source–sink theory with the local climate zone classification to examine the spatiotemporal patterns of thermal characteristics in Fuzhou, China, from 2016 to 2023. Using morphological spatial pattern analysis, the minimum cumulative resistance model, and a gravity model, we identified key thermal source and sink landscapes, their connecting corridors, and barrier points. Results indicate that among built-type local climate zones, low-rise buildings exhibited the highest land surface temperature, while LCZ E and LCZ F were the warmest among natural types. Core heat sources were primarily LCZ 4, LCZ 7, and LCZ D, accounting for 19.71%, 13.66%, and 21.72% respectively, whereas LCZ A dominated the heat sinks, contributing to over 86%. We identified 75 heat source corridors, mainly composed of LCZ 7 and LCZ 4, along with 40 barrier points, largely located in LCZ G and LCZ D. Additionally, 70 heat sink corridors were identified, with LCZ A constituting 96.39% of them, alongside 84 barrier points. The location of these key structures implies that intervention efforts—such as implementing green roofs on high-intensity source buildings, enhancing the connectivity of cooling corridors, and performing ecological restoration at pinpointed barrier locations—can be deployed with maximum efficiency to foster sustainable urban thermal environments and support climate-resilient city planning. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

Back to TopTop