Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,724)

Search Parameters:
Keywords = the coastal waters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 30180 KiB  
Article
Evaluating Distributed Hydrologic Modeling to Assess Coastal Highway Vulnerability to High Water Tables
by Bruno Jose de Oliveira Sousa, Luiz M. Morgado and Jose G. Vasconcelos
Water 2025, 17(15), 2327; https://doi.org/10.3390/w17152327 - 5 Aug 2025
Abstract
Due to increased precipitation intensity and sea-level rise, low-lying coastal roads are increasingly vulnerable to subbase saturation. Widely applied lumped hydrological approaches cannot accurately represent time and space-varying groundwater levels in some highly conductive coastal soils, calling for more sophisticated tools. This study [...] Read more.
Due to increased precipitation intensity and sea-level rise, low-lying coastal roads are increasingly vulnerable to subbase saturation. Widely applied lumped hydrological approaches cannot accurately represent time and space-varying groundwater levels in some highly conductive coastal soils, calling for more sophisticated tools. This study assesses the suitability of the Gridded Surface Subsurface Hydrologic Analysis model (GSSHA) for representing hydrological processes and groundwater dynamics in a unique coastal roadway setting in Alabama. A high-resolution model was developed to assess a 2 km road segment and was calibrated for hydraulic conductivity and aquifer bottom levels using observed groundwater level (GWL) data. The model configuration included a fixed groundwater tidal boundary representing Mobile Bay, a refined land cover classification, and an extreme precipitation event simulation representing Hurricane Sally. Results indicated good agreement between modeled and observed groundwater levels, particularly during short-duration high-intensity events, with NSE values reaching up to 0.83. However, the absence of dynamic tidal forcing limited its ability to replicate certain fine-scale groundwater fluctuations. During the Hurricane Sally simulation, over two-thirds of the segment remained saturated for over 6 h, and some locations exceeded 48 h of pavement saturation. The findings underscore the importance of incorporating shallow groundwater processes in hydrologic modeling for coastal roads. This replicable modeling framework may assist DOTs in identifying critical roadway segments to improve drainage infrastructure in order to increase resiliency. Full article
(This article belongs to the Topic Natural Hazards and Disaster Risks Reduction, 2nd Edition)
Show Figures

Figure 1

26 pages, 1567 KiB  
Article
A CDC–ANFIS-Based Model for Assessing Ship Collision Risk in Autonomous Navigation
by Hee-Jin Lee and Ho Namgung
J. Mar. Sci. Eng. 2025, 13(8), 1492; https://doi.org/10.3390/jmse13081492 - 1 Aug 2025
Viewed by 141
Abstract
To improve collision risk prediction in high-traffic coastal waters and support real-time decision-making in maritime navigation, this study proposes a regional collision risk prediction system integrating the Computed Distance at Collision (CDC) method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Unlike Distance at [...] Read more.
To improve collision risk prediction in high-traffic coastal waters and support real-time decision-making in maritime navigation, this study proposes a regional collision risk prediction system integrating the Computed Distance at Collision (CDC) method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Unlike Distance at Closest Point of Approach (DCPA), which depends on the position of Global Positioning System (GPS) antennas, Computed Distance at Collision (CDC) directly reflects the actual hull shape and potential collision point. This enables a more realistic assessment of collision risk by accounting for the hull geometry and boundary conditions specific to different ship types. The system was designed and validated using ship motion simulations involving bulk and container ships across varying speeds and crossing angles. The CDC method was used to define collision, almost-collision, and near-collision situations based on geometric and hydrodynamic criteria. Subsequently, the FIS–CDC model was constructed using the ANFIS by learning patterns in collision time and distance under each condition. A total of four input variables—ship speed, crossing angle, remaining time, and remaining distance—were used to infer the collision risk index (CRI), allowing for a more nuanced and vessel-specific assessment than traditional CPA-based indicators. Simulation results show that the time to collision decreases with higher speeds and increases with wider crossing angles. The bulk carrier exhibited a wider collision-prone angle range and a greater sensitivity to speed changes than the container ship, highlighting differences in maneuverability and risk response. The proposed system demonstrated real-time applicability and accurate risk differentiation across scenarios. This research contributes to enhancing situational awareness and proactive risk mitigation in Maritime Autonomous Surface Ship (MASS) and Vessel Traffic System (VTS) environments. Future work will focus on real-time CDC optimization and extending the model to accommodate diverse ship types and encounter geometries. Full article
11 pages, 1043 KiB  
Article
Persistent Pharmaceuticals in a South African Urban Estuary and Bioaccumulation in Endobenthic Sandprawns (Kraussillichirus kraussi)
by Olivia Murgatroyd, Leslie Petrik, Cecilia Y. Ojemaye and Deena Pillay
Water 2025, 17(15), 2289; https://doi.org/10.3390/w17152289 - 1 Aug 2025
Viewed by 141
Abstract
Pharmaceuticals are increasingly being detected in coastal ecosystems globally, but contamination and bioaccumulation levels are understudied in temporarily closed estuaries. In these systems, limited freshwater inputs and periodic closure may predispose them to pharmaceutical accumulation. We quantified in situ water column pharmaceutical levels [...] Read more.
Pharmaceuticals are increasingly being detected in coastal ecosystems globally, but contamination and bioaccumulation levels are understudied in temporarily closed estuaries. In these systems, limited freshwater inputs and periodic closure may predispose them to pharmaceutical accumulation. We quantified in situ water column pharmaceutical levels at five sites in a temporarily closed model urban estuary (Zandvlei Estuary) in Cape Town, South Africa, that has been heavily anthropogenically modified. The results indicate an almost 100-fold greater concentration of pharmaceuticals in the estuary relative to False Bay, into which the estuary discharges, with acetaminophen (max: 2.531 µg/L) and sulfamethoxazole (max: 0.138 µg/L) being the primary pollutants. Acetaminophen was potentially bioaccumulative, while nevirapine, carbamazepine and sulfamethoxazole were bioaccumulated (BAF > 5000 L/kg) by sandprawns (Kraussillichirus kraussi), which are key coastal endobenthic ecosystem engineers in southern Africa. The assimilative capacity of temporarily closed estuarine environments may be adversely impacted by wastewater discharges that contain diverse pharmaceuticals, based upon the high bioaccumulation detected in key benthic engineers. Full article
Show Figures

Figure 1

14 pages, 3804 KiB  
Article
Geospatial Analysis of Heavy Metal Concentrations in the Coastal Marine Environment of Beihai, Guangxi During April 2021
by Chaolu, Bo Miao and Na Qian
Coasts 2025, 5(3), 27; https://doi.org/10.3390/coasts5030027 - 1 Aug 2025
Viewed by 110
Abstract
Heavy metal pollution from human activities is an increasing environmental concern. This study investigates the concentrations of Cu, Pb, Zn, Cd, Hg, and As in the coastal seawater offshore of Beihai, Guangxi, in April 2021, and explores their relationships with dissolved inorganic nitrogen, [...] Read more.
Heavy metal pollution from human activities is an increasing environmental concern. This study investigates the concentrations of Cu, Pb, Zn, Cd, Hg, and As in the coastal seawater offshore of Beihai, Guangxi, in April 2021, and explores their relationships with dissolved inorganic nitrogen, phosphate, and salinity. Our results reveal higher heavy metal concentrations in the northern nearshore waters and lower levels in southern offshore areas, with surface waters generally exhibiting greater enrichment than bottom waters. Surface concentrations show a decreasing trend from the northeast to the southwest, likely influenced by prevailing northeast monsoon winds. While bottom water concentrations decline from the northwest to the southeast, which indicates the influence of riverine runoff, particularly from the Qinzhou Bay estuary. Heavy metal levels in southern Beihai waters are comparable to those in the Beibu Gulf, except for Hg and Zn, which are significantly higher in the water of the Beibu Gulf. Notably, heavy metal concentrations in both Beihai and Beibu Gulf remain considerably lower than those observed in the coastal waters of Guangdong. Overall, Beihai’s coastal seawater meets China’s Class I quality standards. Nonetheless, continued monitoring is essential, especially of the potential ecological impacts of Hg and Zn on marine life. Full article
Show Figures

Figure 1

16 pages, 4054 KiB  
Article
Uncovering Fibrocapsa japonica (Raphidophyceae) in South America: First Taxonomic and Toxicological Insights from Argentinean Coastal Waters
by Delfina Aguiar Juárez, Inés Sunesen, Ana Flores-Leñero, Luis Norambuena, Bernd Krock, Gonzalo Fuenzalida and Jorge I. Mardones
Toxins 2025, 17(8), 386; https://doi.org/10.3390/toxins17080386 - 31 Jul 2025
Viewed by 208
Abstract
Fibrocapsa japonica (Raphidophyceae) is a cosmopolitan species frequently associated with harmful algal blooms (HABs) and fish mortality events, representing a potential threat to aquaculture and coastal ecosystems. This study provides the first comprehensive morphological, phylogenetic, pigmentary, and toxicological characterization of F. japonica strains [...] Read more.
Fibrocapsa japonica (Raphidophyceae) is a cosmopolitan species frequently associated with harmful algal blooms (HABs) and fish mortality events, representing a potential threat to aquaculture and coastal ecosystems. This study provides the first comprehensive morphological, phylogenetic, pigmentary, and toxicological characterization of F. japonica strains isolated from Argentina. Light and transmission electron microscopy confirmed key diagnostic features of the species, including anterior flagella and the conspicuous group of mucocyst in the posterior region. Phylogenetic analysis based on the LSU rDNA D1–D2 region revealed monophyletic relationships with strains from geographically distant regions. Pigment analysis by HPLC identified chlorophyll-a (62.3 pg cell−1) and fucoxanthin (38.4 pg cell−1) as the main dominant pigments. Cytotoxicity assays using RTgill-W1 cells exposed for 2 h to culture supernatants and intracellular extracts showed strain-specific effects. The most toxic strain (LPCc049) reduced gill cell viability down to 53% in the supernatant exposure, while LC50 values ranged from 1.6 × 104 to 4.7 × 105 cells mL−1, depending directly on the strain and treatment type. No brevetoxins (PbTx-1, -2, -3, -6, -7, -8, -9, -10, BTX-B1 and BTX-B2) were detected by LC–MS/MS, suggesting that the cytotoxicity may be linked to the production of reactive oxygen species (ROS), polyunsaturated fatty acids (PUFAs), or hemolytic compounds, as previously hypothesized in the literature. These findings offer novel insights into the toxic potential of F. japonica in South America and underscore the need for further research to elucidate the mechanisms underlying its ichthyotoxic effect. Full article
Show Figures

Figure 1

20 pages, 5076 KiB  
Article
Brackish Water Desalination Using Electrodialysis: Influence of Operating Parameters on Energy Consumption and Scalability
by Angie N. Medina-Toala, Priscila E. Valverde-Armas, Jonathan I. Mendez-Ruiz, Kevin Franco-González, Steeven Verdezoto-Intriago, Tomas Vitvar and Leonardo Gutiérrez
Membranes 2025, 15(8), 227; https://doi.org/10.3390/membranes15080227 - 31 Jul 2025
Viewed by 268
Abstract
Groundwater is one of the main water sources for consumption, domestic use, agriculture, and tourism in coastal communities. However, high total dissolved solids (TDS) levels in the water (700–2000 mg L−1 TDS) and electrical conductivity (3000–5000 µS cm−1) threaten the [...] Read more.
Groundwater is one of the main water sources for consumption, domestic use, agriculture, and tourism in coastal communities. However, high total dissolved solids (TDS) levels in the water (700–2000 mg L−1 TDS) and electrical conductivity (3000–5000 µS cm−1) threaten the health and economic growth opportunities for residents. This research aims to evaluate the performance of a laboratory-scale electrodialysis system as a technology for desalinating brackish water. For this purpose, water samples were collected from real groundwater sources. Batch experiments were conducted with varying operational parameters, such as voltage (2–10 V), feed volume (100–1600 mL), recovery rate (50–80%), and cros-flow velocity (1.3–5.1 cm s−1) to determine the electrodialysis system setup that meets the requirements for drinking water in terms of TDS and energy efficiency. A total specific energy consumption of 1.65 kWh m−3, including pumping energy, was achieved at a laboratory scale. The conditions were as follows: flow velocity of 5.14 cm s−1, applied voltage of 6 V, feed volume of 1.6 L, and a water recovery of 66%. Furthermore, increasing the flow velocity and the applied voltage enhanced the desalination kinetics and salt removal. Additionally, the system presented opportunities for scalability. This research aims to evaluate a sustainable membrane-based treatment technology for meeting the growing demand for water resources in coastal communities, particularly in developing countries in South America. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

27 pages, 4302 KiB  
Article
Human Health Risk and Bioaccessibility of Arsenic in Wadis and Marine Sediments in a Coastal Lagoon (Mar Menor, Spain)
by Salvadora Martínez López, Carmen Pérez Sirvent, María José Martínez Sánchez and María Ángeles Esteban Abad
Toxics 2025, 13(8), 647; https://doi.org/10.3390/toxics13080647 - 30 Jul 2025
Viewed by 176
Abstract
This study evaluates the potential health risks posed by geogenic arsenic in environments suitable for leisure activities, such as walking, bathing, and playing, for adults and children alike, as well as in neighbouring agricultural areas. The study includes an analysis of environmental characteristics [...] Read more.
This study evaluates the potential health risks posed by geogenic arsenic in environments suitable for leisure activities, such as walking, bathing, and playing, for adults and children alike, as well as in neighbouring agricultural areas. The study includes an analysis of environmental characteristics and the main stream originating in the adjacent mining area, with water and sediment samples taken. The study area is representative of other areas in the vicinity of the Mar Menor Lagoon, which is one of the largest and most biodiverse coastal lagoons in the Mediterranean Sea. The general characteristics of the soil and water were determined for this study, as was the concentration of As in the soil and water samples. A granulometric separation was carried out into four different fractions (<2 mm, <250 µm, <100 µm, and <65 µm). The mineralogical composition, total As content, and bioaccessible As content are analysed in each of these fractions. This provides data with which to calculate the danger of arsenic (As) to human health by ingestion and to contribute to As bioaccessibility studies and the role played by the mineralogical composition and particle size of soil ingestion. The conclusions rule out residential use of this environment, although they allow for eventual tourist use and traditional agricultural use of the surrounding soils. Full article
Show Figures

Figure 1

19 pages, 15535 KiB  
Article
Impact of Landfill Sites on Coastal Contamination Using GIS and Multivariate Analysis: A Case from Al-Qunfudhah in Western Saudi Arabia
by Talal Alharbi, Abdelbaset S. El-Sorogy, Naji Rikan and Hamdi M. Algarni
Minerals 2025, 15(8), 802; https://doi.org/10.3390/min15080802 - 30 Jul 2025
Viewed by 170
Abstract
The contamination due to coastal landfill is a growing environmental concern, particularly in fragile marine ecosystems, where leachate can mobilize toxic elements into soil, water, air, and sediment. This study aims to assess the impact of a coastal landfill in Al-Qunfudhah, western Saudi [...] Read more.
The contamination due to coastal landfill is a growing environmental concern, particularly in fragile marine ecosystems, where leachate can mobilize toxic elements into soil, water, air, and sediment. This study aims to assess the impact of a coastal landfill in Al-Qunfudhah, western Saudi Arabia, on nearby coastal sediments by identifying the concentration, distribution, and ecological risk of potentially toxic elements (PTEs) using geospatial and multivariate analysis tools. The results indicate significant accumulation of Pb, Zn, Cu, and Fe, with Pb reaching alarming levels of up to 1160 mg/kg in the landfill area, compared to 120 mg/kg in the coastal sediments. Zn contamination also exhibited substantial elevation, with values reaching 278 mg/kg in landfill soil and 157 mg/kg in coastal sediment. The enrichment factor values indicate moderate to severe enrichment for Pb (up to 73.20) and Zn (up to 6.91), confirming anthropogenic influence. The contamination factor analysis categorized Pb contamination as very high (CF > 6), suggesting significant ecological risk. Comparison with sediment quality guidelines suggest that Pb, Zn, and Cu concentrations exceeded threshold effect levels (TEL) in some samples, posing potential risks to marine organisms. The spatial distribution maps revealed pollutant migration from the landfill toward the coastal zone, emphasizing the necessity of monitoring and mitigation strategies. As the first comprehensive study on landfill-induced PTEs contamination in Al-Qunfudhah, these findings provide essential insights for environmental management and pollution control policies along the Red Sea coast. Full article
Show Figures

Figure 1

30 pages, 7008 KiB  
Article
Microfossil (Diatoms, Tintinnids, and Testate Amoebae) Assemblages in the Holocene Sediments of the Laptev Sea Shelf off the Yana River as a Proxy for Paleoenvironments
by Maria S. Obrezkova, Lidiya N. Vasilenko, Ira B. Tsoy, Xuefa Shi, Limin Hu, Yaroslav V. Kuzmin, Aleksandr N. Kolesnik, Alexandr V. Alatortsev, Anna A. Mariash, Evgeniy A. Lopatnikov, Irina A. Yurtseva, Darya S. Khmel and Anatolii S. Astakhov
Quaternary 2025, 8(3), 40; https://doi.org/10.3390/quat8030040 - 30 Jul 2025
Viewed by 214
Abstract
The paper presents the results of a microfossil study of Holocene sediments in the Yana River flow zone in the southeastern part of the Laptev Sea. A rich diatom flora (242 species and intraspecific taxa, of which 177 species are freshwater) was revealed; [...] Read more.
The paper presents the results of a microfossil study of Holocene sediments in the Yana River flow zone in the southeastern part of the Laptev Sea. A rich diatom flora (242 species and intraspecific taxa, of which 177 species are freshwater) was revealed; additionally, five species of marine tintinnids (planktonic ciliates) and 15 species of freshwater testate amoebae (testacean) were discovered for the first time in the sea sediments. Three assemblages of microfossils reflecting the phases of environmental changes during the Holocene transgression are distinguished in the studied sediments of core LV83-32. Assemblage 1 was formed under terrestrial conditions (assemblage of diatoms Eunotia-Pinnularia and testacean Difflugia-Cylindrifflugia-Centropyxis), assemblage 2 in the zone of mixing of sea and fresh waters (assemblages of diatoms Cyclotella striata-Aulacoseira, Thalassiosira hyperborea-Chaetoceros and T. hyperborea-Aulacoseira, testacean Cyclopyxis kahli, tintinnids Tintinnopsis fimbriata), and assemblage 3 reflects modern conditions in the inner shelf of the Laptev Sea under the strong influence of river runoff (assemblage of diatoms T. hyperborea-Aulacoseira-M. arctica and tintinnids Tintinnopsis ventricosoides). Changes in the natural environment in the coastal part of the Laptev Sea shelf during the Holocene, established by microfossil assemblages, are confirmed by geochemical data. Full article
Show Figures

Figure 1

8 pages, 7294 KiB  
Interesting Images
A Rocky Intertidal Desert at the Head of a Large Macrotidal Estuary in Quebec, Canada
by Ricardo A. Scrosati
Diversity 2025, 17(8), 535; https://doi.org/10.3390/d17080535 - 30 Jul 2025
Viewed by 239
Abstract
This article documents the widespread absence of sessile species in bedrock intertidal habitats at the head of the St. Lawrence Estuary, a large macrotidal estuary located in eastern Canada. Extensive observations revealed that no seaweeds or sessile invertebrates occurred anywhere (including cracks and [...] Read more.
This article documents the widespread absence of sessile species in bedrock intertidal habitats at the head of the St. Lawrence Estuary, a large macrotidal estuary located in eastern Canada. Extensive observations revealed that no seaweeds or sessile invertebrates occurred anywhere (including cracks and crevices) on substrate areas that become exposed to the air during low tides. Only one sessile species, a green filamentous alga, was found submerged in tidepools. The lack of truly marine sessile species is likely explained by the very low water salinity of this coast, while the absence of sessile freshwater species on intertidal substrates outside of tidepools likely responds to a combination of oligohaline conditions during high tides and daily exposures to the air during low tides, which freshwater species are typically not adapted to. Influences of winter ice scour and coastal suspended sediments are likely secondary. Experimental research could unravel the interactive effects of these abiotic stressors. Overall, this “intertidal desert” could be a useful model system to further explore the boundaries of life on our planet. Full article
(This article belongs to the Collection Interesting Images from the Sea)
Show Figures

Figure 1

34 pages, 13488 KiB  
Review
Numeric Modeling of Sea Surface Wave Using WAVEWATCH-III and SWAN During Tropical Cyclones: An Overview
by Ru Yao, Weizeng Shao, Yuyi Hu, Hao Xu and Qingping Zou
J. Mar. Sci. Eng. 2025, 13(8), 1450; https://doi.org/10.3390/jmse13081450 - 29 Jul 2025
Viewed by 180
Abstract
Extreme surface winds and wave heights of tropical cyclones (TCs)—pose serious threats to coastal community, infrastructure and environments. In recent decades, progress in numerical wave modeling has significantly enhanced the ability to reconstruct and predict wave behavior. This review offers an in-depth overview [...] Read more.
Extreme surface winds and wave heights of tropical cyclones (TCs)—pose serious threats to coastal community, infrastructure and environments. In recent decades, progress in numerical wave modeling has significantly enhanced the ability to reconstruct and predict wave behavior. This review offers an in-depth overview of TC-related wave modeling utilizing different computational schemes, with a special attention to WAVEWATCH III (WW3) and Simulating Waves Nearshore (SWAN). Due to the complex air–sea interactions during TCs, it is challenging to obtain accurate wind input data and optimize the parameterizations. Substantial spatial and temporal variations in water levels and current patterns occurs when coastal circulation is modulated by varying underwater topography. To explore their influence on waves, this study employs a coupled SWAN and Finite-Volume Community Ocean Model (FVCOM) modeling approach. Additionally, the interplay between wave and sea surface temperature (SST) is investigated by incorporating four key wave-induced forcing through breaking and non-breaking waves, radiation stress, and Stokes drift from WW3 into the Stony Brook Parallel Ocean Model (sbPOM). 20 TC events were analyzed to evaluate the performance of the selected parameterizations of external forcings in WW3 and SWAN. Among different nonlinear wave interaction schemes, Generalized Multiple Discrete Interaction Approximation (GMD) Discrete Interaction Approximation (DIA) and the computationally expensive Wave-Ray Tracing (WRT) A refined drag coefficient (Cd) equation, applied within an upgraded ST6 configuration, reduce significant wave height (SWH) prediction errors and the root mean square error (RMSE) for both SWAN and WW3 wave models. Surface currents and sea level variations notably altered the wave energy and wave height distributions, especially in the area with strong TC-induced oceanic current. Finally, coupling four wave-induced forcings into sbPOM enhanced SST simulation by refining heat flux estimates and promoting vertical mixing. Validation against Argo data showed that the updated sbPOM model achieved an RMSE as low as 1.39 m, with correlation coefficients nearing 0.9881. Full article
(This article belongs to the Section Ocean and Global Climate)
Show Figures

Figure 1

26 pages, 8897 KiB  
Article
Numerical Study of Wave-Induced Longshore Current Generation Zones on a Circular Sandy Sloping Topography
by Mohammad Shaiful Islam, Tomoaki Nakamura, Yong-Hwan Cho and Norimi Mizutani
Water 2025, 17(15), 2263; https://doi.org/10.3390/w17152263 - 29 Jul 2025
Viewed by 261
Abstract
Wave deformation and sediment transport nearest the shoreside are among the main reasons for sand erosion and beach profile changes. In particular, identifying the areas of incident-wave breaking and longshore current generation parallel to the shoreline is important for understanding the morphological changes [...] Read more.
Wave deformation and sediment transport nearest the shoreside are among the main reasons for sand erosion and beach profile changes. In particular, identifying the areas of incident-wave breaking and longshore current generation parallel to the shoreline is important for understanding the morphological changes of coastal beaches. In this study, a two-phase incompressible flow model along with a sandy sloping topography was employed to investigate the wave deformation and longshore current generation areas in a circular wave basin model. The finite volume method (FVM) was implemented to discretize the governing equations in cylindrical coordinates, the volume-of-fluid method (VOF) was adopted to differentiate the air–water interfaces in the control cells, and the zonal embedded grid technique was employed for grid generation in the cylindrical computational domain. The water surface elevations and velocity profiles were measured in different wave conditions, and the measurements showed that the maximum water levels per wave were high and varied between cases, as well as between cross-sections in a single case. Additionally, the mean water levels were lower in the adjacent positions of the approximated wave-breaking zones. The wave-breaking positions varied between cross-sections in a single case, with the incident-wave height, mean water level, and wave-breaking position measurements indicating the influence of downstream flow variation in each cross-section on the sloping topography. The cross-shore velocity profiles became relatively stable over time, while the longshore velocity profiles predominantly moved in the alongshore direction, with smaller fluctuations, particularly during the same time period and in measurement positions near the wave-breaking zone. The computed velocity profiles also varied between cross-sections, and for the velocity profiles along the cross-shore and longshore directions nearest the wave-breaking areas where the downstream flow had minimal influence, it was presumed that there was longshore-current generation in the sloping topography nearest the shoreside. The computed results were compared with the experimental results and we observed similar characteristics for wave profiles in the same wave period case in both models. In the future, further investigations can be conducted using the presented circular wave basin model to investigate the oblique wave deformation and longshore current generation in different sloping and wave conditions. Full article
(This article belongs to the Special Issue Numerical Modeling of Hydrodynamics and Sediment Transport)
Show Figures

Figure 1

19 pages, 4467 KiB  
Article
Delineation of Dynamic Coastal Boundaries in South Africa from Hyper-Temporal Sentinel-2 Imagery
by Mariel Bessinger, Melanie Lück-Vogel, Andrew Luke Skowno and Ferozah Conrad
Remote Sens. 2025, 17(15), 2633; https://doi.org/10.3390/rs17152633 - 29 Jul 2025
Viewed by 145
Abstract
The mapping and monitoring of coastal regions are critical to ensure their sustainable use and viability in the long term. Delineation of coastlines is becoming increasingly important in the light of climate change and rising sea levels. However, many coastlines are highly dynamic; [...] Read more.
The mapping and monitoring of coastal regions are critical to ensure their sustainable use and viability in the long term. Delineation of coastlines is becoming increasingly important in the light of climate change and rising sea levels. However, many coastlines are highly dynamic; therefore, mono-temporal assessments of coastal ecosystems and coastlines are mere snapshots of limited practical value for space-based planning. Understanding of the spatio-temporal dynamics of coastal ecosystem boundaries is important to inform ecosystem management but also for a meaningful delineation of the high-water mark, which is used as a benchmark for coastal spatial planning in South Africa. This research aimed to use hyper-temporal Sentinel-2 imagery to extract ecological zones on the coast of KwaZulu-Natal, South Africa. A total of 613 images, collected between 2019 and 2023, were classified into four distinct coastal ecological zones—vegetation, bare, surf, and water—using a Random Forest model. Across all classifications, the percentage of each of the four classes’ occurrence per pixel over time was determined. This enabled the identification of ecosystem locations, spatially static ecosystem boundaries, and the occurrence of ecosystem boundaries with a more dynamic location over time, such as the non-permanent vegetation zone of the foredune area as well as the intertidal zone. The overall accuracy of the model was 98.13%, while the Kappa coefficient was 0.975, with user’s and producer’s accuracies ranging between 93.02% and 100%. These results indicate that cloud-based analysis of Sentinel-2 time series holds potential not just for delineating coastal ecosystem boundaries, but also for enhancing the understanding of spatio-temporal dynamics between them, to inform meaningful environmental management, spatial planning, and climate adaptation strategies. Full article
Show Figures

Figure 1

24 pages, 5270 KiB  
Article
Ecophysiological Keys to the Success of a Native-Expansive Mediterranean Species in Threatened Coastal Dune Habitats
by Mario Fernández-Martínez, Carmen Jiménez-Carrasco, Mari Cruz Díaz Barradas, Juan B. Gallego-Fernández and María Zunzunegui
Plants 2025, 14(15), 2342; https://doi.org/10.3390/plants14152342 - 29 Jul 2025
Viewed by 190
Abstract
Range-expanding species, or neonatives, are native plants that spread beyond their original range due to recent climate or human-induced environmental changes. Retama monosperma was initially planted near the Guadalquivir estuary for dune stabilisation. However, changes in the sedimentary regime and animal-mediated dispersal have [...] Read more.
Range-expanding species, or neonatives, are native plants that spread beyond their original range due to recent climate or human-induced environmental changes. Retama monosperma was initially planted near the Guadalquivir estuary for dune stabilisation. However, changes in the sedimentary regime and animal-mediated dispersal have facilitated its exponential expansion, threatening endemic species and critical dune habitats. The main objective of this study was to identify the key functional traits that may explain the competitive advantage and rapid spread of R. monosperma in coastal dune ecosystems. We compared its seasonal responses with those of three co-occurring woody species, two native (Juniperus phoenicea and J. macrocarpa) and one naturalised (Pinus pinea), at two sites differing in groundwater availability within a coastal dune area (Doñana National Park, Spain). We measured water relations, leaf traits, stomatal conductance, photochemical efficiency, stable isotopes, and shoot elongation in 12 individuals per species. Repeated-measures ANOVA showed significant effects of species and species × season interaction for relative water content, shoot elongation, effective photochemical efficiency, and stable isotopes. R. monosperma showed significantly higher shoot elongation, relative water content, and photochemical efficiency in summer compared with the other species. Stable isotope data confirmed its nitrogen-fixing capacity. This characteristic, along with the higher seasonal plasticity, contributes to its competitive advantage. Given the ecological fragility of coastal dunes, understanding the functional traits favouring the success of neonatives such as R. monosperma is essential for biodiversity conservation and ecosystem management. Full article
Show Figures

Figure 1

24 pages, 2240 KiB  
Article
Yeast Diversity on Sandy Lake Beaches Used for Recreation in Olsztyn, Poland
by Tomasz Bałabański, Anna Biedunkiewicz and Jan P. Jastrzębski
Pathogens 2025, 14(8), 744; https://doi.org/10.3390/pathogens14080744 - 29 Jul 2025
Viewed by 516
Abstract
Yeasts possess a range of environmental adaptations that allow them to colonize soil and sand. They can circulate seasonally between different components of lake ecosystems, including beach sand, water, and the coastal phyllosphere. The accumulation of people on beaches promotes the development and [...] Read more.
Yeasts possess a range of environmental adaptations that allow them to colonize soil and sand. They can circulate seasonally between different components of lake ecosystems, including beach sand, water, and the coastal phyllosphere. The accumulation of people on beaches promotes the development and transmission of yeasts, posing an increasing sanitary and epidemiological risk. The aim of this study was to determine the species and quantitative composition of potentially pathogenic and pathogenic yeasts for humans present in the sand of supervised and unsupervised beaches along the shores of lakes in the city of Olsztyn (northeastern Poland). The study material consisted of sand samples collected during two summer seasons (2019; 2020) from 12 research sites on sandy beaches of four lakes located within the administrative boundaries of Olsztyn. Standard isolation and identification methods used in diagnostic mycological laboratories were applied and are described in detail in the following sections of this study. A total of 259 yeast isolates (264, counting species in two-species isolates separately) belonging to 62 species representing 47 genera were obtained during the study. Among all the isolates, five were identified as mixed (two species from a single colony). Eight isolated species were classified into biosafety level 2 (BSL-2) and risk group 2 (RG-2). The highest average number of viable yeast cells was found in sand samples collected in July 2019 (5.56 × 102 CFU/g), August, and September 2020 (1.03 × 103 CFU/g and 1.94 × 103 CFU/g, respectively). The lowest concentrations were in samples collected in April, September, and October 2019, and October 2020 (1.48 × 102 CFU/g, 1.47 × 102 CFU/g, 1.40 × 102 CFU/g, and 1.40 × 102 CFU/g, respectively). The results indicate sand contamination with yeasts that may pose etiological factors for human mycoses. In light of these findings, continuous sanitary-epidemiological monitoring of beach sand and further studies on its mycological cleanliness are warranted, along with actions leading to appropriate legal regulations. Full article
Show Figures

Graphical abstract

Back to TopTop