Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,257)

Search Parameters:
Keywords = the central nervous system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 546 KiB  
Review
The Inflammatory Bridge Between Type 2 Diabetes and Neurodegeneration: A Molecular Perspective
by Housem Kacem, Michele d’Angelo, Elvira Qosja, Skender Topi, Vanessa Castelli and Annamaria Cimini
Int. J. Mol. Sci. 2025, 26(15), 7566; https://doi.org/10.3390/ijms26157566 (registering DOI) - 5 Aug 2025
Abstract
Chronic low-grade inflammation is a hallmark of both metabolic and neurodegenerative diseases. In recent years, several studies have highlighted the pivotal role of systemic metabolic dysfunction, particularly insulin resistance, in shaping neuroinflammatory processes and contributing to impaired cognitive performance. Among metabolic disorders, type [...] Read more.
Chronic low-grade inflammation is a hallmark of both metabolic and neurodegenerative diseases. In recent years, several studies have highlighted the pivotal role of systemic metabolic dysfunction, particularly insulin resistance, in shaping neuroinflammatory processes and contributing to impaired cognitive performance. Among metabolic disorders, type 2 diabetes mellitus has emerged as a major risk factor for the development of age-related neurodegenerative conditions, suggesting a complex and bidirectional crosstalk between peripheral metabolic imbalance and central nervous system function. This review aims to explore the cellular and molecular mechanisms underlying the interaction between metabolic dysregulation and brain inflammation. By integrating current findings from endocrinology, immunology, and neuroscience, this work provides a comprehensive overview of how chronic metabolic inflammation may contribute to the onset and progression of neurodegenerative conditions. This interdisciplinary approach could offer novel insights into potential therapeutic strategies targeting both metabolic and neuroinflammatory pathways. Full article
(This article belongs to the Collection Latest Review Papers in Endocrinology and Metabolism)
Show Figures

Figure 1

16 pages, 745 KiB  
Review
Bidirectional Interplay Between Microglia and Mast Cells
by Szandra Lakatos and Judit Rosta
Int. J. Mol. Sci. 2025, 26(15), 7556; https://doi.org/10.3390/ijms26157556 (registering DOI) - 5 Aug 2025
Abstract
Microglia, the brain’s resident innate immune cells, play a fundamental role in maintaining neural homeostasis and mediating responses to injury or infection. Upon activation, microglia undergo morphological and functional changes, including phenotypic switching between pro- and anti-inflammatory types and the release of different [...] Read more.
Microglia, the brain’s resident innate immune cells, play a fundamental role in maintaining neural homeostasis and mediating responses to injury or infection. Upon activation, microglia undergo morphological and functional changes, including phenotypic switching between pro- and anti-inflammatory types and the release of different inflammatory mediators. These processes contribute to neuroprotection and the pathogenesis of various central nervous system (CNS) disorders. Mast cells, although sparsely located in the brain, exert a significant influence on neuroinflammation through their interactions with microglia. Through degranulation and secretion of different mediators, mast cells disrupt the blood–brain barrier and modulate microglial responses, including alteration of microglial phenotypes. Notably, mast cell-derived factors, such as histamine, interleukins, and tryptase, activate microglia through various pathways including protease-activated receptor 2 and purinergic receptors. These interactions amplify inflammatory cascades via various signaling pathways. Previous studies have revealed an exceedingly complex crosstalk between mast cells and microglia suggesting a bidirectional regulation of CNS immunity, implicating their cooperation in both neurodegenerative progression and repair mechanisms. Here, we review some of the diverse communication pathways involved in this complex interplay. Understanding this crosstalk may offer novel insights into the cellular dynamics of neuroinflammation and highlight potential therapeutic targets for a variety of CNS disorders. Full article
Show Figures

Figure 1

18 pages, 3834 KiB  
Article
Therapeutic Potential of BMX-001 for Preventing Chemotherapy-Induced Peripheral Neuropathic Pain
by Tianshu Pan, Olawale A. Alimi, Bo Liu, Mena A. Krishnan, Mitchell Kuss, Wei Shi, Jairam Krishnamurthy, Jianghu James Dong, Rebecca E. Oberley-Deegan and Bin Duan
Pharmaceuticals 2025, 18(8), 1159; https://doi.org/10.3390/ph18081159 - 5 Aug 2025
Abstract
Background/Objectives: Chemotherapy-induced neuropathic pain (CINP) represents a critical challenge in oncology, emerging as a common and debilitating side effect of widely used chemotherapeutic agents, such as paclitaxel (PTX). Current therapeutic interventions and preventive strategies for CINP are largely insufficient, as they fail [...] Read more.
Background/Objectives: Chemotherapy-induced neuropathic pain (CINP) represents a critical challenge in oncology, emerging as a common and debilitating side effect of widely used chemotherapeutic agents, such as paclitaxel (PTX). Current therapeutic interventions and preventive strategies for CINP are largely insufficient, as they fail to address the underlying peripheral nerve damage, highlighting an urgent need for the development of new drugs. This study aimed to investigate the dual-function effects on normal cell protection and tumor suppression of BMX-001, a redox-active manganese metalloporphyrin that has demonstrated antioxidant and anti-inflammatory properties, which offers potential in protecting central nervous system tissues and treating CINP. Methods: This study assessed BMX-001’s different roles in protecting normal cells while acting as a pro-oxidant and pro-inflammatory molecule in cancer cells in vitro. We also evaluated its neuroprotective effect in preclinical PTX-induced CINP models in vivo. Results: Our results showed significant reductions in mechanical and cold allodynia, decreased pro-inflammatory cytokine levels, and restored antioxidant capacity in peripheral nerves and dorsal root ganglia (DRGs) following BMX-001 treatment. Conclusions: Overall, our study highlights the therapeutic potential of BMX-001 to mitigate CINP and enhance anticancer efficiency. Its dual-selective mechanism supports the future clinical investigation of BMX-001 as a novel adjunct to chemotherapeutic regimens. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

37 pages, 1583 KiB  
Review
Glial Cells and Aging: From the CNS to the Cerebellum
by Gina La Sala and Donatella Farini
Int. J. Mol. Sci. 2025, 26(15), 7553; https://doi.org/10.3390/ijms26157553 (registering DOI) - 5 Aug 2025
Abstract
Among brain regions, the cerebellum (CBL) has traditionally been associated with motor control. However, increasing evidence from connectomics and functional imaging has expanded this view, revealing its involvement in a wide range of cognitive and integrative processes. Despite this emerging relevance, the CBL [...] Read more.
Among brain regions, the cerebellum (CBL) has traditionally been associated with motor control. However, increasing evidence from connectomics and functional imaging has expanded this view, revealing its involvement in a wide range of cognitive and integrative processes. Despite this emerging relevance, the CBL has received comparatively less attention in aging research, which has focused mainly on other central nervous system (CNS) regions such as the neocortex and hippocampus. This review synthesizes the current evidence on glial cell aging across the CNS, emphasizing how cerebellar circuits follow distinct trajectories in terms of cellular remodeling, transcriptional reprogramming, and structural vulnerability. Recent findings highlight that cerebellar astrocytes and microglia exhibit specific signatures related to aging compared to their cortical counterpart, including moderate reactivity, selective immune response, and spatial reorganization. Cerebellar white matter (WM) undergoes structural alteration, suggesting that oligodendroglial cells may undergo region-specific alterations, particularly within WM tracts, although these aspects remain underexplored. Despite the presence of glial remodeling, the CBL maintains a notable degree of structural and functional integrity during aging. This resilience may be the result of the CBL’s ability to maintain synaptic adaptability and homeostatic balance, supported by its highly organized and compartmentalized architecture. A better understanding of the dynamics of cerebellar glial cells in aging may provide new insight into the mechanisms of brain maintenance and identify potential biomarkers for healthy brain aging. Full article
(This article belongs to the Special Issue Cellular and Molecular Biology of Glial Cells)
Show Figures

Figure 1

25 pages, 1035 KiB  
Review
Liquid Biopsy and Epigenetic Signatures in AML, ALL, and CNS Tumors: Diagnostic and Monitoring Perspectives
by Anne Aries, Bernard Drénou and Rachid Lahlil
Int. J. Mol. Sci. 2025, 26(15), 7547; https://doi.org/10.3390/ijms26157547 (registering DOI) - 5 Aug 2025
Abstract
To deliver the most effective cancer treatment, clinicians require rapid and accurate diagnoses that delineate tumor type, stage, and prognosis. Consequently, minimizing the need for repetitive and invasive procedures like biopsies and myelograms, along with their associated risks, is a critical challenge. Non-invasive [...] Read more.
To deliver the most effective cancer treatment, clinicians require rapid and accurate diagnoses that delineate tumor type, stage, and prognosis. Consequently, minimizing the need for repetitive and invasive procedures like biopsies and myelograms, along with their associated risks, is a critical challenge. Non-invasive monitoring offers a promising avenue for tumor detection, screening, and prognostication. While the identification of oncogenes and biomarkers from circulating tumor cells or tissue biopsies is currently standard practice for cancer diagnosis and classification, accumulating evidence underscores the significant role of epigenetics in regulating stem cell fate, including proliferation, self-renewal, and malignant transformation. This highlights the importance of analyzing the methylome, exosomes, and circulating RNA for detecting cellular transformation. The development of diagnostic assays that integrate liquid biopsies with epigenetic analysis holds immense potential for revolutionizing tumor management by enabling rapid, non-invasive diagnosis, real-time monitoring, and personalized treatment decisions. This review covers current studies exploring the use of epigenetic regulation, specifically the methylome and circulating RNA, as diagnostic tools derived from liquid biopsies. This approach shows promise in facilitating the differentiation between primary central nervous system lymphoma and other central nervous system tumors and may enable the detection and monitoring of acute myeloid/lymphoid leukemia. We also discuss the current limitations hindering the rapid clinical translation of these technologies. Full article
(This article belongs to the Special Issue Molecular Research in Hematologic Malignancies)
Show Figures

Figure 1

11 pages, 579 KiB  
Case Report
Thirty-Three Years Follow-Up of a Greek Family with Abetalipoproteinemia: Absence of Liver Damage on Long-Term Medium Chain Triglycerides Supplementation
by John K. Triantafillidis, Areti Manioti, Theodoros Pittaras, Theodoros Kozonis, Emmanouil Kritsotakis, Georgios Malgarinos, Konstantinos Pantos, Konstantinos Sfakianoudis, Manousos M. Konstadoulakis and Apostolos E. Papalois
J. Pers. Med. 2025, 15(8), 354; https://doi.org/10.3390/jpm15080354 - 4 Aug 2025
Abstract
Background: The long-term clinical and laboratory results of a 33-year follow-up of a Greek family with abetalipoproteinemia (ABL) are described. Case Report: The patients (two brothers and their sister, aged 57, 49, and 62 years, respectively) are still alive, being under close surveillance. [...] Read more.
Background: The long-term clinical and laboratory results of a 33-year follow-up of a Greek family with abetalipoproteinemia (ABL) are described. Case Report: The patients (two brothers and their sister, aged 57, 49, and 62 years, respectively) are still alive, being under close surveillance. In two of the three patients, diarrhea appeared in early infancy, while in the third, it appeared during adolescence. CNS symptomatology worsened after the second decade of life. At the same time, night blindness appeared in the advanced stages of the disease, resulting in almost complete loss of vision in one of the male patients and severe impairment in the other. The diagnosis was based on the clinical picture, ophthalmological findings, serum lipid estimations, and presence of peripheral acanthocytosis. All patients exhibited typical serum lipidemic profile, ophthalmological findings, and acanthocytes in the peripheral blood. During the follow-up period, strict dietary modifications were applied, including the substitution of fat with medium-chain triglycerides (MCT oil). After 33 years since the initial diagnosis, all patients are alive without any sign of liver dysfunction despite continuous use of MCT oil. However, symptoms from the central nervous system and vision impairment worsened. Conclusion: The course of these patients suggests that the application of a modified diet, including MCT oil, along with close surveillance, could prolong the survival of patients without significant side effects from the liver. Full article
(This article belongs to the Special Issue Clinical and Experimental Surgery in Personalized Molecular Medicine)
Show Figures

Figure 1

16 pages, 1247 KiB  
Review
When Bone Forms Where It Shouldn’t: Heterotopic Ossification in Muscle Injury and Disease
by Anthony Facchin, Sophie Lemaire, Li Gang Toner, Anteneh Argaw and Jérôme Frenette
Int. J. Mol. Sci. 2025, 26(15), 7516; https://doi.org/10.3390/ijms26157516 (registering DOI) - 4 Aug 2025
Abstract
Heterotopic ossification (HO) refers to the pathological formation of bone in soft tissues, typically following trauma, surgical procedures, or as a result of genetic disorders. Notably, injuries to the central nervous system significantly increase the risk of HO, a condition referred to as [...] Read more.
Heterotopic ossification (HO) refers to the pathological formation of bone in soft tissues, typically following trauma, surgical procedures, or as a result of genetic disorders. Notably, injuries to the central nervous system significantly increase the risk of HO, a condition referred to as neurogenic HO (NHO). This review outlines the cellular and molecular mechanisms driving HO, focusing on the inflammatory response, progenitor cell reprogramming, and current treatment strategies. HO is primarily fuelled by a prolonged and dysregulated inflammatory response, characterized by sustained expression of osteoinductive cytokines secreted by M1 macrophages. These cytokines promote the aberrant differentiation of fibro-adipogenic progenitor cells (FAPs) into osteoblasts, leading to ectopic mineralization. Additional factors such as hypoxia, BMP signalling, and mechanotransduction pathways further contribute to extracellular matrix (ECM) remodelling and osteogenic reprogramming of FAPs. In the context of NHO, neuroendocrine mediators enhance ectopic bone formation by influencing both local inflammation and progenitor cell fate decisions. Current treatment options such as nonsteroidal anti-inflammatory drugs (NSAIDs), radiation therapy, and surgical excision offer limited efficacy and are associated with significant risks. Novel therapeutic strategies targeting inflammation, neuropeptide signalling, and calcium metabolism may offer more effective approaches to preventing or mitigating HO progression. Full article
Show Figures

Graphical abstract

21 pages, 1024 KiB  
Review
The Impact of Environmental Factors on the Secretion of Gastrointestinal Hormones
by Joanna Smarkusz-Zarzecka, Lucyna Ostrowska and Marcelina Radziszewska
Nutrients 2025, 17(15), 2544; https://doi.org/10.3390/nu17152544 - 2 Aug 2025
Viewed by 216
Abstract
The enteroendocrine system of the gastrointestinal (GI) tract is the largest endocrine organ in the human body, playing a central role in the regulation of hunger, satiety, digestion, and energy homeostasis. Numerous factors—including dietary components, physical activity, and the gut microbiota—affect the secretion [...] Read more.
The enteroendocrine system of the gastrointestinal (GI) tract is the largest endocrine organ in the human body, playing a central role in the regulation of hunger, satiety, digestion, and energy homeostasis. Numerous factors—including dietary components, physical activity, and the gut microbiota—affect the secretion of GI hormones. This study aims to analyze how these factors modulate enteroendocrine function and influence systemic metabolic regulation. This review synthesizes the current scientific literature on the physiology and distribution of enteroendocrine cells and mechanisms of hormone secretion in response to macronutrients, physical activity, and microbial metabolites. Special attention is given to the interactions between gut-derived signals and central nervous system pathways involved in appetite control. Different GI hormones are secreted in specific regions of the digestive tract in response to meal composition and timing. Macronutrients, particularly during absorption, stimulate hormone release, while physical activity influences hormone concentrations, decreasing ghrelin and increasing GLP-1, PYY, and leptin levels. The gut microbiota, through fermentation and metabolite production (e.g., SCFAs and bile acids), modulates enteroendocrine activity. Species such as Akkermansia muciniphila are associated with improved gut barrier integrity and enhanced GLP-1 secretion. These combined effects contribute to appetite regulation and energy balance. Diet composition, physical activity, and gut microbiota are key modulators of gastrointestinal hormone secretion. Their interplay significantly affects appetite regulation and metabolic health. A better understanding of these relationships may support the development of personalized strategies for managing obesity and related disorders. Full article
(This article belongs to the Section Nutritional Immunology)
Show Figures

Graphical abstract

11 pages, 3160 KiB  
Case Report
Congenital Malformations of the Central Nervous System Caused by Bluetongue Virus Serotype 3 (BTV-3) in Two Calves
by Phuong Do Duc, Solveig Reeh, Pauline Pöpperl, Tom Schreiner, Natascha Gundling, Andreas Beineke, Peter Wohlsein and Martina Hoedemaker
Vet. Sci. 2025, 12(8), 728; https://doi.org/10.3390/vetsci12080728 - 1 Aug 2025
Viewed by 142
Abstract
Since the first emergence of the Bluetongue virus (BTV) in 2006 in Northern Europe, there has been a reported association between BTV Serotype 8 (BTV-8) and brain malformations in calves. The first BTV-3 outbreak in Germany was registered in October 2023. Since then, [...] Read more.
Since the first emergence of the Bluetongue virus (BTV) in 2006 in Northern Europe, there has been a reported association between BTV Serotype 8 (BTV-8) and brain malformations in calves. The first BTV-3 outbreak in Germany was registered in October 2023. Since then, numbers have increased steadily. In a suckler cow herd in the Lower Saxony region, two Angus calves with clinical signs of diffuse encephalopathy, including ataxia, abnormal gait, and central blindness, were born in autumn 2024. Both calves were submitted for Magnetic Resonance Imaging (MRI) and pathological examination, revealing hydranencephaly and internal hydrocephalus, respectively. BTV-3 was detected in blood and tissue samples of both calves using BTV-specific real-time PCR. The presented findings demonstrate that there seems to be an association between transplacental BTV-3 infections and congenital malformations in calves, as previously reported for BTV-8 and -10. Full article
Show Figures

Figure 1

24 pages, 6639 KiB  
Article
CNS Axon Regeneration in the Long Primary Afferent System in E15/E16 Hypoxic-Conditioned Fetal Rats: A Thrust-Driven Concept
by Frits C. de Beer and Harry W. M. Steinbusch
Anatomia 2025, 4(3), 12; https://doi.org/10.3390/anatomia4030012 - 1 Aug 2025
Viewed by 83
Abstract
Background: Lower phylogenetic species are known to rebuild cut-off caudal parts with regeneration of the central nervous system (CNS). In contrast, CNS regeneration in higher vertebrates is often attributed to immaturity, although this has never been conclusively demonstrated. The emergence of stem cells [...] Read more.
Background: Lower phylogenetic species are known to rebuild cut-off caudal parts with regeneration of the central nervous system (CNS). In contrast, CNS regeneration in higher vertebrates is often attributed to immaturity, although this has never been conclusively demonstrated. The emergence of stem cells and their effective medical applications has intensified research into spinal cord regeneration. However, despite these advances, the impact of clinical trials involving spinal cord-injured (SCI) patients remains disappointingly low. Long-distance regeneration has yet to be proven. Methods: Our study involved a microsurgical dorsal myelotomy in fetal rats. The development of pioneering long primary afferent axons during early gestation was examined long after birth. Results: A single cut triggered the intrinsic ability of the dorsal root ganglion (DRG) neurons to reprogram. Susceptibility to hypoxia caused the axons to stop developing. However, the residual axonal outgrowth sheds light on the intriguing temporal and spatial events that reveal long-distance CNS regeneration. The altered phenotypes displayed axons of varying lengths and different features, which remained visible throughout life. The previously designed developmental blueprint was crucial for interpreting these enigmatic features. Conclusions: This research into immaturity enabled the exploration of the previously impenetrable domain of early life and the identification of a potential missing link in CNS regeneration research. Central axon regeneration appeared to occur much faster than is generally believed. The paradigm provides a challenging approach for exhaustive intrauterine reprogramming. When the results demonstrate pre-clinical effectiveness in CNS regeneration research, the transformational impact may ultimately lead to improved outcomes for patients with spinal cord injuries. Full article
(This article belongs to the Special Issue From Anatomy to Clinical Neurosciences)
Show Figures

Figure 1

68 pages, 2838 KiB  
Review
Unravelling the Viral Hypothesis of Schizophrenia: A Comprehensive Review of Mechanisms and Evidence
by Mădălina Georgeta Sighencea and Simona Corina Trifu
Int. J. Mol. Sci. 2025, 26(15), 7429; https://doi.org/10.3390/ijms26157429 - 1 Aug 2025
Viewed by 246
Abstract
Schizophrenia is a challenging multifactorial neuropsychiatric disease that involves interactions between genetic susceptibility and environmental insults. Increasing evidence implicates viral infections as significant environmental contributors, particularly during sensitive neurodevelopmental periods. This review synthesises current findings on the viral hypothesis of schizophrenia, encompassing a [...] Read more.
Schizophrenia is a challenging multifactorial neuropsychiatric disease that involves interactions between genetic susceptibility and environmental insults. Increasing evidence implicates viral infections as significant environmental contributors, particularly during sensitive neurodevelopmental periods. This review synthesises current findings on the viral hypothesis of schizophrenia, encompassing a wide array of neurotropic viruses, including influenza viruses, herpesviruses (HSV-1 and 2, CMV, VZV, EBV, HHV-6 and 8), hepatitis B and C viruses, HIV, HERVs, HTLV, Zika virus, BoDV, coronaviruses (including SARS-CoV-2), and others. These pathogens can contribute to schizophrenia through mechanisms such as direct microinvasion, persistent central nervous system infection, immune-mediated neuroinflammation, molecular mimicry, and the disturbance of the blood–brain barrier. Prenatal exposure to viral infections can trigger maternal immune activation, resulting in cytokine-mediated alterations in the neurological development of the foetus that persist into adulthood. Genetic studies highlight the role of immune-related loci, including major histocompatibility complex polymorphisms, in modulating susceptibility to infection and neurodevelopmental outcomes. Clinical data also support the “mild encephalitis” hypothesis, suggesting that a subset of schizophrenia cases involve low-grade chronic neuroinflammation. Although antipsychotics have some immunomodulatory effects, adjunctive anti-inflammatory therapies show promise, particularly in treatment-resistant cases. Despite compelling associations, pathogen-specific links remain inconsistent, emphasising the need for longitudinal studies and integrative approaches such as viromics to unravel causal relationships. This review supports a “multi-hit” model in which viral infections interfere with hereditary and immunological susceptibilities, enhancing schizophrenia risk. Elucidating these virus–immune–brain interactions may facilitate the discovery of biomarkers, targeted prevention, and novel therapeutic strategies for schizophrenia. Full article
(This article belongs to the Special Issue Schizophrenia: From Molecular Mechanism to Therapy)
Show Figures

Figure 1

8 pages, 212 KiB  
Communication
Retrospective Evaluation of L-Acetyl Carnitine and Palmitoylethanolamide as Add-On Therapy in Patients with Fibromyalgia and Small Fiber Neuropathy
by Crescenzio Bentivenga, Arrigo Francesco Giuseppe Cicero, Federica Fogacci, Natalia Evangelia Politi, Antonio Di Micoli, Eugenio Roberto Cosentino, Paolo Gionchetti and Claudio Borghi
Pharmaceutics 2025, 17(8), 1004; https://doi.org/10.3390/pharmaceutics17081004 - 31 Jul 2025
Viewed by 142
Abstract
Fibromyalgia is a complex disorder characterized by chronic widespread pain and a variety of related symptoms. Growing evidence suggests that the central and peripheral nervous systems are involved, with small fiber neuropathy playing a key role in its development. We retrospectively reviewed the [...] Read more.
Fibromyalgia is a complex disorder characterized by chronic widespread pain and a variety of related symptoms. Growing evidence suggests that the central and peripheral nervous systems are involved, with small fiber neuropathy playing a key role in its development. We retrospectively reviewed the medical records of 100 patients diagnosed with primary fibromyalgia. Those showing symptoms indicative of small fiber dysfunction who were treated with L-Acetyl Carnitine (LAC) and Palmitoylethanolamide (PEA) alongside standard care (SOC) were compared to matched controls who received only SOC. To ensure comparable groups, propensity score matching was used. Changes in Fibromyalgia Impact Questionnaire Revised (FIQR) scores over 12 weeks were analyzed using non-parametric tests due to the data’s non-normal distribution. After matching, 86 patients (43 in each group) were included. The group receiving LAC and PEA as add-on therapy experienced a significant median reduction in FIQR scores (−19.0 points, p < 0.001), while the SOC-only group showed no significant change. Comparisons between groups confirmed that the improvement was significantly greater in the LAC+PEA group (p < 0.001). These results suggest that adding LAC and PEA to standard care may provide meaningful symptom relief for fibromyalgia patients with suspected small fiber involvement. This supports the hypothesis that peripheral nervous system dysfunction contributes to the disease burden in this subgroup. However, further prospective controlled studies are needed to confirm these promising findings. Full article
(This article belongs to the Special Issue Emerging Drugs and Formulations for Pain Treatment)
9 pages, 477 KiB  
Opinion
Underlying Piezo2 Channelopathy-Induced Neural Switch of COVID-19 Infection
by Balázs Sonkodi
Cells 2025, 14(15), 1182; https://doi.org/10.3390/cells14151182 - 31 Jul 2025
Viewed by 161
Abstract
The focal “hot spot” neuropathologies in COVID-19 infection are revealing footprints of a hidden underlying collapse of a novel ultrafast ultradian Piezo2 signaling system within the nervous system. Paradoxically, the same initiating pathophysiology may underpin the systemic findings in COVID-19 infection, namely the [...] Read more.
The focal “hot spot” neuropathologies in COVID-19 infection are revealing footprints of a hidden underlying collapse of a novel ultrafast ultradian Piezo2 signaling system within the nervous system. Paradoxically, the same initiating pathophysiology may underpin the systemic findings in COVID-19 infection, namely the multiorgan SARS-CoV-2 infection-induced vascular pathologies and brain–body-wide systemic pro-inflammatory signaling, depending on the concentration and exposure to infecting SARS-CoV-2 viruses. This common initiating microdamage is suggested to be the primary damage or the acquired channelopathy of the Piezo2 ion channel, leading to a principal gateway to pathophysiology. This Piezo2 channelopathy-induced neural switch could not only explain the initiation of disrupted cell–cell interactions, metabolic failure, microglial dysfunction, mitochondrial injury, glutamatergic synapse loss, inflammation and neurological states with the central involvement of the hippocampus and the medulla, but also the initiating pathophysiology without SARS-CoV-2 viral intracellular entry into neurons as well. Therefore, the impairment of the proposed Piezo2-induced quantum mechanical free-energy-stimulated ultrafast proton-coupled tunneling seems to be the principal and critical underlying COVID-19 infection-induced primary damage along the brain axes, depending on the loci of SARS-CoV-2 viral infection and intracellular entry. Moreover, this initiating Piezo2 channelopathy may also explain resultant autonomic dysregulation involving the medulla, hippocampus and heart rate regulation, not to mention sleep disturbance with altered rapid eye movement sleep and cognitive deficit in the short term, and even as a consequence of long COVID. The current opinion piece aims to promote future angles of science and research in order to further elucidate the not entirely known initiating pathophysiology of SARS-CoV-2 infection. Full article
(This article belongs to the Special Issue Insights into the Pathophysiology of NeuroCOVID: Current Topics)
Show Figures

Figure 1

19 pages, 1487 KiB  
Review
AdipoRon as a Novel Therapeutic Agent for Depression: A Comprehensive Review of Preclinical Evidence
by Lucas Fornari Laurindo, Victória Dogani Rodrigues, Rodrigo Haber Mellen, Rafael Santos de Argollo Haber, Vitor Engrácia Valenti, Lívia Fornari Laurindo, Eduardo Federighi Baisi Chagas, Camila Marcondes de Oliveira, Rosa Direito, Maria Angélica Miglino and Sandra Maria Barbalho
Biomedicines 2025, 13(8), 1867; https://doi.org/10.3390/biomedicines13081867 - 31 Jul 2025
Viewed by 193
Abstract
Background/Objectives: Depression is a mood disorder that causes persistent sadness and loss of interest, and its etiology involves a condition known as hypoadiponectinemia, which is prevalent in depressive individuals compared with healthy individuals and causes neuroinflammation. The use of intact adiponectin protein to [...] Read more.
Background/Objectives: Depression is a mood disorder that causes persistent sadness and loss of interest, and its etiology involves a condition known as hypoadiponectinemia, which is prevalent in depressive individuals compared with healthy individuals and causes neuroinflammation. The use of intact adiponectin protein to target neuroinflammation in depressive moods is complex due to the difficulties associated with using the intact protein. AdipoRon, a synthetic oral adiponectin receptor agonist that targets the AdipoR1 and AdipoR2 receptors for adiponectin, has emerged in this context. Its most prominent effects include reduced inflammation and the attenuation of oxidative stress. To the best of our knowledge, no comprehensive review has addressed these results so far. To fill this literature gap, we present a comprehensive review examining the effectiveness of AdipoRon in treating depression. Methods: Only preclinical models are included due to the absence of clinical studies. Results: Analyzing the included studies shows that AdipoRon demonstrates contrasting effects against depression. However, most of the evidence underscores AdipoRon-based adiponectin replacement therapies as potential candidates for future treatment against this critical psychiatric condition due to their anti-neuroinflammatory potential, ultimately inhibiting several neuroinflammatory pathways. Conclusions: Future research endeavors must address several limitations due to the heterogeneity of the studies’ methodologies and results. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

21 pages, 719 KiB  
Review
Intra-Arterial Administration of Stem Cells and Exosomes for Central Nervous System Disease
by Taishi Honda, Masahito Kawabori and Miki Fujimura
Int. J. Mol. Sci. 2025, 26(15), 7405; https://doi.org/10.3390/ijms26157405 - 31 Jul 2025
Viewed by 398
Abstract
Central nervous system (CNS) disorders present significant therapeutic challenges due to the limited regenerative capacity of neural tissues, resulting in long-term disability for many patients. Consequently, the development of novel therapeutic strategies is urgently warranted. Stem cell therapies show considerable potential for mitigating [...] Read more.
Central nervous system (CNS) disorders present significant therapeutic challenges due to the limited regenerative capacity of neural tissues, resulting in long-term disability for many patients. Consequently, the development of novel therapeutic strategies is urgently warranted. Stem cell therapies show considerable potential for mitigating brain damage and restoring neural connectivity, owing to their multifaceted properties, including anti-apoptotic, anti-inflammatory, neurogenic, and vasculogenic effects. Recent research has also identified exosomes—small vesicles enclosed by a lipid bilayer, secreted by stem cells—as a key mechanism underlying the therapeutic effects of stem cell therapies, and given their enhanced stability and superior blood–brain barrier permeability compared to the stem cells themselves, exosomes have emerged as a promising alternative treatment for CNS disorders. A key challenge in the application of both stem cell and exosome-based therapies for CNS diseases is the method of delivery. Currently, several routes are being investigated, including intracerebral, intrathecal, intravenous, intranasal, and intra-arterial administration. Intracerebral injection can deliver a substantial quantity of stem cells directly to the brain, but it carries the potential risk of inducing additional brain injury. Conversely, intravenous transplantation is minimally invasive but results in limited delivery of cells and exosomes to the brain, which may compromise the therapeutic efficacy. With advancements in catheter technology, intra-arterial administration of stem cells and exosomes has garnered increasing attention as a promising delivery strategy. This approach offers the advantage of delivering a significant number of stem cells and exosomes to the brain while minimizing the risk of additional brain damage. However, the investigation into the therapeutic potential of intra-arterial transplantation for CNS injury is still in its early stages. In this comprehensive review, we aim to summarize both basic and clinical research exploring the intra-arterial administration of stem cells and exosomes for the treatment of CNS diseases. Additionally, we will elucidate the underlying therapeutic mechanisms and provide insights into the future potential of this approach. Full article
(This article belongs to the Special Issue Stem Cells Research: Advancing Science and Medicine)
Show Figures

Graphical abstract

Back to TopTop