Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (179)

Search Parameters:
Keywords = tetraspanin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 13009 KB  
Article
Comparative Profiling of Mouse and Human Microglial Small Extracellular Vesicles Reveals Conserved Core Functions with Distinct miRNA Signatures
by Amir-Hossein Bayat, Damien D. Pearse, Praveen Kumar Singh and Mousumi Ghosh
Cells 2026, 15(2), 184; https://doi.org/10.3390/cells15020184 - 19 Jan 2026
Viewed by 122
Abstract
Microglia-derived small extracellular vesicles (MGEVs) are key mediators of neuroimmune communication, yet their cross-species comparability and translational relevance remain poorly defined. Here, we establish a harmonized framework to compare the molecular and biochemical signatures of sEVs derived from immortalized mouse (BV2) and human [...] Read more.
Microglia-derived small extracellular vesicles (MGEVs) are key mediators of neuroimmune communication, yet their cross-species comparability and translational relevance remain poorly defined. Here, we establish a harmonized framework to compare the molecular and biochemical signatures of sEVs derived from immortalized mouse (BV2) and human (HMC3) microglial cells as well as assess their bioactivity on a human Schwann cell (HuSC) line. MGEVs were isolated via MISEV-aligned size-exclusion chromatography (SEC) and characterized by nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and immunoblotting for canonical EV markers CD9, CD63, CD81, TSG101. Human and mouse MGEVs exhibited similar morphology but displayed distinct membrane tetraspanin protein enrichment patterns. Functionally, mouse and human MGEVs attenuated HuSC migration while enhancing HuSC proliferation and their resistance to H2O2-induced oxidative stress, with human MGEVs providing stronger protective effects, suggesting they retain similar core functional properties. Short, non-coding-miRNA sequencing analysis identified 196 shared miRNAs (Spearman ρ = 0.72) with species-specific enrichment: human MGEVs-derived miRNAs favored regenerative and metabolic pathways, whereas mouse MGEVs-derived miRNAs aligned more so with inflammatory signaling. This study delivers the first integrated cross-species blueprint of MGEVs, revealing conserved neuroprotective actions alongside species-biased miRNA cargo that define translational boundaries and highlight human-relevant MGEV signatures for therapeutic innovation, therefore contributing to the importance of considering these differences in translational research. Full article
Show Figures

Graphical abstract

23 pages, 7112 KB  
Article
Molecular Evaluation of Different Enrichment Methods for Extracellular Vesicles from Healthy Subjects’ Biobanked Serum
by Michela Deiana, Elisabetta Vezzelli, Cristina Mazzi, Denise Lavezzari, Marcello Manfredi, Francesca Moretta, Chiara Piubelli, Federico Giovanni Gobbi and Natalia Tiberti
Int. J. Mol. Sci. 2026, 27(2), 892; https://doi.org/10.3390/ijms27020892 - 15 Jan 2026
Viewed by 251
Abstract
Extracellular vesicles (EVs) from human body fluids are valuable tools for biomarker discovery and for exploring the mechanisms underlying various pathologies, including infectious diseases. The translation of EV research into clinical practice is however hindered by the variability in EV pre-clinical investigations. Therefore, [...] Read more.
Extracellular vesicles (EVs) from human body fluids are valuable tools for biomarker discovery and for exploring the mechanisms underlying various pathologies, including infectious diseases. The translation of EV research into clinical practice is however hindered by the variability in EV pre-clinical investigations. Therefore, standardisation of analytical procedures and reporting policies is essential. Human serum is a key biological matrix for biomarker discovery and is commonly stored within biobanks. Here, we investigated different strategies for EV enrichment from small volumes of biobanked serum and evaluated their impact on EVs’ downstream analyses. EVs were obtained from 250 μL of biobanked serum using ultracentrifugation (UC), size-exclusion chromatography-based methods (ExoSpin-ES, qEV1-35 nm, and qEV1-70 nm), or ExoRNeasy (ER). The resulting EVs were subsequently characterised for morphology, concentration, surface phenotype, and multi-omics profiles. All methods successfully enriched small EVs expressing tetraspanins on their surface, although at different concentrations. The most efficient method for proteomics analyses was qEV1-70 nm, followed by ES, which was more susceptible to contamination by serum proteins. EV-miRNA cargo was effectively profiled in UC-, ES-, and ER-EVs, with the latter providing the broadest miRNA coverage. Our results support the feasibility of using biobanked serum for EV-based research and further highlight the importance of selecting appropriate EV enrichment methods, since they influence both miRNA and protein cargo characterisation. Full article
(This article belongs to the Special Issue Extracellular Vesicles: Advances in Multi-Omics)
Show Figures

Figure 1

13 pages, 1530 KB  
Article
Tetraspanin CD9 Is a Positive Regulator of Filovirus Egress
by Loveleena K. Anand, Marija A. Djurkovic, Ariel Shepley-McTaggart, Olena Shtanko and Ronald N. Harty
Viruses 2026, 18(1), 104; https://doi.org/10.3390/v18010104 - 13 Jan 2026
Viewed by 292
Abstract
Filoviruses, including Ebola (EBOV) and Marburg (MARV) viruses, are zoonotic pathogens that cause severe hemorrhagic fever in humans, with mortality rates reaching up to 90%. Filovirus egress and spread are driven by the viral matrix protein VP40 and regulated both positively and negatively [...] Read more.
Filoviruses, including Ebola (EBOV) and Marburg (MARV) viruses, are zoonotic pathogens that cause severe hemorrhagic fever in humans, with mortality rates reaching up to 90%. Filovirus egress and spread are driven by the viral matrix protein VP40 and regulated both positively and negatively by a growing number of specific host interactors. Here, we identify tetraspanin protein CD9, a plasma membrane organizing and scaffolding protein, as playing a role in facilitating efficient egress of EBOV and MARV. Indeed, we observed a significant decrease in viral egress of VLPs and live filoviruses from CD9-KD cells as compared to that from WT cells. Moreover, exogenous expression of CD9 rescued egress of VP40 VLPs close to WT levels in the CD9-KD cells. These findings identify tetraspanin CD9 as a positive regulator of filovirus egress, and thus CD9 may represent a potential new target for antiviral therapies targeting the late stage of the filovirus lifecycle. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

28 pages, 1526 KB  
Review
Applications of Exosomes in Female Medicine: A Systematic Review of Molecular Biology, Diagnostic and Therapeutic Perspectives
by Heidi Mariadas, Jie-Hong Chen and Kuo-Hu Chen
Int. J. Mol. Sci. 2026, 27(1), 504; https://doi.org/10.3390/ijms27010504 - 3 Jan 2026
Viewed by 582
Abstract
Exosomes are nanoscale extracellular vesicles that mediate intercellular communication by transporting microRNAs, proteins, and lipids. Generated through Endosomal Sorting Complex Required for Transport (ESCRT)-dependent mechanisms or ESCRT-independent pathways, exosomes are released when multivesicular bodies fuse with the plasma membrane. The ESCRT-dependent pathway involves [...] Read more.
Exosomes are nanoscale extracellular vesicles that mediate intercellular communication by transporting microRNAs, proteins, and lipids. Generated through Endosomal Sorting Complex Required for Transport (ESCRT)-dependent mechanisms or ESCRT-independent pathways, exosomes are released when multivesicular bodies fuse with the plasma membrane. The ESCRT-dependent pathway involves sequential protein complexes (ESCRT-0, I, II, III) that recognize and sort ubiquitinated cargo, induce membrane budding, and facilitate vesicle scission. In contrast, the ESCRT-independent pathway relies on membrane lipids such as ceramide and proteins like tetraspanins (CD9, CD63, CD81) to promote vesicle formation without ESCRT machinery. Furthermore, post-translational modifications, including ubiquitination, sumoylation, and phosphorylation, further serve as molecular switches, modulating the affinity of ESCRT complexes or cargo proteins for membrane domains and affecting ILV formation rates. In reproductive medicine, exosomes regulate oocyte maturation, embryo–endometrial crosstalk, placental development, and maternal–fetal communication. Altered exosomal signaling contributes to obstetric complications, including preeclampsia, gestational diabetes mellitus, and preterm birth, whereas distinct exosomal miRNA signatures serve as potential diagnostic biomarkers. In gynecology, dysregulated exosomes are implicated in endometriosis, polycystic ovary syndrome, premature ovarian insufficiency, and gynecological malignancies. In contrast, mesenchymal stem cell-derived exosomes show therapeutic promise in restoring ovarian function and enhancing fertility outcomes. The distinctive molecular profiles of circulating exosomes enable minimally invasive diagnosis, while their biocompatibility and ability to cross biological barriers position them as vehicles for targeted drug delivery. Characterization of accessible data provides non-invasive opportunities for disease monitoring. However, clinical translation faces challenges, including standardization of isolation protocols, establishment of reference ranges for biomarkers, and optimization of therapeutic dosing. This review summarizes exosome biogenesis, characterization methods, physiological functions, and clinical applications in obstetrics and gynecology, with an emphasis on their diagnostic and therapeutic potential. Future directions include large-scale biomarker validation studies, engineering approaches to enhance exosome targeting, and integration with precision medicine platforms to advance personalized reproductive healthcare. Full article
(This article belongs to the Special Issue Exosomes—3rd Edition)
Show Figures

Figure 1

21 pages, 4292 KB  
Article
Intermethod Characterization of Commercially Available Extracellular Vesicles as Reference Materials
by Sumeet Poudel, Diane L. Nelson, James H. Yen, Yuefan Wang, Hui Zhang, Zhiyong He, Ashley Beasley Green, Wyatt N. Veerland, Thomas E. Cleveland IV, Sean E. Lehman, Kurt D. Benkstein, Bryant C. Nelson and Lili Wang
Biomolecules 2026, 16(1), 66; https://doi.org/10.3390/biom16010066 - 31 Dec 2025
Viewed by 517
Abstract
The National Institute of Standards and Technology (NIST) is developing analytical methods to characterize extracellular vesicles (EVs) to support the urgent need for standardized EV reference materials (RMs). This study used orthogonal techniques, cryogenic electron microscopy (Cryo-EM), particle tracking analysis (PTA), asymmetrical flow [...] Read more.
The National Institute of Standards and Technology (NIST) is developing analytical methods to characterize extracellular vesicles (EVs) to support the urgent need for standardized EV reference materials (RMs). This study used orthogonal techniques, cryogenic electron microscopy (Cryo-EM), particle tracking analysis (PTA), asymmetrical flow field-flow fractionation (AF4), and microfluidic resistive pulse sensing (MRPS), to evaluate particle size distributions (PSDs) and particle number concentrations (PNCs) of human mesenchymal stem cells (MSCs) and LNCaP prostate cancer cell EVs. Proteomic profiles were assessed by mass spectrometry (MS), and microRNA (miRNA) content of LNCaP EVs was evaluated by small RNA-seq at two independent laboratories. A commercial green fluorescent protein exosome served as a control, except in Cryo-EM, proteomic, and miRNA analyses. Cryo-EM, regarded as the gold standard for morphological resolution, served as PSD reference. PSDs from all methods skewed larger than Cryo-EM, with MRPS closest, AF4 most divergent, and PTA intermediate with broader distributions. All techniques reported broad PSDs (30 nm to >350 nm) with PNCs decreasing with increasing particle size, except for AF4. Quantitative discrepancies in PNCs reached up to two orders of magnitude across methods and cell sources. MS identified global and EV-specific proteins, including syntenin-1 and tetraspanins CD9, CD63, and CD81. RNA-seq revealed notable inter-laboratory variation. These findings highlight the variability across measurement platforms and emphasize the need for reproducible methods to support NIST’s mission of developing reliable EV reference materials. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

20 pages, 23106 KB  
Article
Profiling of CD63 and EpCAM Membrane Proteins of Extracellular Vesicles on Tannic Acid-Coated Magnetic Beads Using Conventional Flow Cytometry
by Ekaterina Moiseeva, Igor Sergeev, Vasiliy Chernyshev, Olga Zaborova, Daria Kohzevnikova, Alexander Yakovlev, Olesya Kuznetsova, Alexey Tryakin, Aleksei Komlev, Dmitry Gorin and Alexey Yashchenok
Int. J. Mol. Sci. 2025, 26(23), 11324; https://doi.org/10.3390/ijms262311324 - 23 Nov 2025
Viewed by 742
Abstract
Extracellular vesicles (EVs) are considered to be a promising tool in disease diagnosis. However, the clinical translation of EV-based liquid biopsy faces significant challenges due to the lack of inexpensive, rapid, and high-throughput methods of EV analysis. Bead-based platforms, combined with conventional flow [...] Read more.
Extracellular vesicles (EVs) are considered to be a promising tool in disease diagnosis. However, the clinical translation of EV-based liquid biopsy faces significant challenges due to the lack of inexpensive, rapid, and high-throughput methods of EV analysis. Bead-based platforms, combined with conventional flow cytometry, allow for the simultaneous capture and immunolabeling of EVs. In this study, we present a new approach based on the label-free isolation of EVs by tannic acid-coated superparamagnetic beads (TASPMB) combined with immunofluorescence detection of EV membrane proteins using flow cytometry. First, we tested the molecular profiling capabilities of the approach using EVs derived from human breast and colorectal cancer cell lines and from plasma of colorectal cancer patients to recognize the tetraspanin protein CD63 and the epithelial cell adhesion molecule (EpCAM). Subsequently, the developed approach was validated to identify proteins on EVs enriched with TASPMB from the conditioned media of SKBR3 and HT29 cell cultures without preliminary purification by a size-exclusion chromatography (SEC) column. The developed approach demonstrates a high capacity for isolating EVs and subsequently profiling of their membrane proteins, with a total assay time of approximately 2 h. The approach presented here can be a promising tool for rapid detection of EV membrane proteins using conventional instruments, such as flow cytometry. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

16 pages, 1275 KB  
Article
Serum Extracellular Vesicles as Pathogenetic Signals in Obese and Lean Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease
by Chi-Yi Chen, Che-Yu Hsu, Wei-Pang Chung, Hung-Yu Sun, Tzu-Ching Kao, Tzu-Yi Chen, Xing-Min Li, Wei-Lung Huang and Kung-Chia Young
Metabolites 2025, 15(11), 746; https://doi.org/10.3390/metabo15110746 - 17 Nov 2025
Viewed by 634
Abstract
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is highly prevalent worldwide and represents a growing healthcare challenge due to its risk of progression and association with metabolic comorbidities. Extracellular vesicles (EVs), nanosized membrane-bound particles mediating intercellular communication, have emerged as candidate biomarkers [...] Read more.
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is highly prevalent worldwide and represents a growing healthcare challenge due to its risk of progression and association with metabolic comorbidities. Extracellular vesicles (EVs), nanosized membrane-bound particles mediating intercellular communication, have emerged as candidate biomarkers in multiple diseases. This study aimed to characterize serum EV profiles in MASLD patients, stratified into obese and lean groups using a body mass index cutoff of 23 for Asians. Methods: We enrolled 170 MASLD patients, 83 obese (median age 50, range 20–80) and 87 lean (median age 50, range 20–87), along with 57 non-MASLD controls (median age 44, range 21–86). Serum EV concentrations and particle sizes were quantified using nanoparticle tracking analysis and correlated with clinical and laboratory parameters. EV cargo proteins, including tetraspanins (CD9, CD63) and lipid droplet-associated perilipins (PLIN2, PLIN3), were assessed by Western blotting. Results: Obese MASLD patients displayed marked biochemical abnormalities, whereas lean MASLD patients showed levels comparable to non-MASLD controls. Nevertheless, serum EV concentrations were elevated in both the obese and lean MASLD groups. Importantly, in lean MASLD, EV levels correlated strongly with disruptions in lipid and glycemic homeostasis. Furthermore, a reduction in the PLIN3/CD63 ratio was observed in EVs isolated from lean MASLD patients. Conclusions: Circulating EVs are elevated in both obese and lean MASLD, but lean patients demonstrate a distinctive decrease in the EV PLIN3/CD63 ratio. These findings highlight the potential of EV profiling to uncover disease heterogeneity and to inform risk stratification in MASLD. Full article
(This article belongs to the Section Lipid Metabolism)
Show Figures

Graphical abstract

10 pages, 4601 KB  
Commentary
Cable Cars to the Nucleus: TM4SF1-Enriched Microdomains Conduct Signaling in Endothelial Cells for Blood Vessel Formation
by Shou-Ching Jaminet
Int. J. Mol. Sci. 2025, 26(21), 10491; https://doi.org/10.3390/ijms262110491 - 29 Oct 2025
Viewed by 747
Abstract
Endothelial cell proliferation, migration, and intercellular interactions for blood vessel formation require coordinated signaling by a myriad of molecules. Following endothelial cell activation by growth factors and cytokines, a variety of signaling molecules are activated on the surface and transported intracellularly by TM4SF1-enriched [...] Read more.
Endothelial cell proliferation, migration, and intercellular interactions for blood vessel formation require coordinated signaling by a myriad of molecules. Following endothelial cell activation by growth factors and cytokines, a variety of signaling molecules are activated on the surface and transported intracellularly by TM4SF1-enriched microdomains (TMEDs), 100–300 nm diameter protein–lipid complexes recruited by the transmembrane protein TM4SF1. TMEDs internalize via microtubules from the cell surface toward the microtubule-organizing center (MTOC) and then enter the nucleus via nuclear pores (see Graphic Illustration). This internalization pathway permits delivery of activated proteins and other signaling molecules from the cell surface to the nucleus, which directly translates extracellular stimuli to modulation of gene expression. Molecules transported by this route include phospholipase C, gamma 1 (PLCγ1), histone deacetylase 6 (HDAC6), and importins. In the absence of TMEDs, endothelial cells lose the ability to divide into cultures in vitro and to support blood vessel formation in mouse embryos in vivo. We liken TMEDs to cable cars, which take in passengers at the cell surface, travel along microtubule cables, and deliver their passengers to various locations, including the “city center”, the nucleus. This commentary aims to elucidate the functions of TMEDs in endothelial cells, to show that cells, like busy cities, need efficient transport systems to deliver molecules to the destinations where they perform their cellular functions. TMEDs offer a novel and curated transport system providing selected molecules with access to the nucleus. Full article
Show Figures

Graphical abstract

23 pages, 1536 KB  
Review
Insights into the Bioactivities and Mechanism of Action of the Microbial Diketopiperazine Cyclic Dipeptide Cyclo(L-leucyl-L-prolyl)
by Christian Bailly
Mar. Drugs 2025, 23(10), 397; https://doi.org/10.3390/md23100397 - 9 Oct 2025
Cited by 2 | Viewed by 1975
Abstract
Diketopiperazines (DKPs) are biologically important cyclic dipeptides widespread in nature, associated primarily with microorganisms. This is the case for the 2,5-DKP derivative cyclo(L-Leu-L-Pro) (cLP), also known as gancidin W or PPDHMP, identified from a variety of bacteria and fungi, and occasionally found in [...] Read more.
Diketopiperazines (DKPs) are biologically important cyclic dipeptides widespread in nature, associated primarily with microorganisms. This is the case for the 2,5-DKP derivative cyclo(L-Leu-L-Pro) (cLP), also known as gancidin W or PPDHMP, identified from a variety of bacteria and fungi, and occasionally found in food products. The present review retraces the discovery of cLP, its identification in living species, its chemical syntheses, and its biochemical properties. In bacteria, cLP is often associated with other DKPs to serve as a defense element against other microorganisms and/or as a regulator of bacterial growth. cLP plays a role in quorum-sensing and functions as an anticariogenic and antifungal agent. The antimicrobial mechanism of action and molecular targets of cLP are evoked. The interest in cLP for combatting certain parasitic diseases, such as malaria, and cancers is discussed. The capacity of cLP to interact with CD151 and to down-regulate the expression of this tetraspanin can be exploited to reduce tumor dissemination and metastases. The review sheds light on the pharmacology and specific properties of cyclo(L-Leu-L-Pro), which can be useful for the development of a novel therapeutic approach for different human pathologies. It is also of interest to help define the bioactivity and mechanisms of action of closely related DKP-based natural products. Full article
(This article belongs to the Section Marine Pharmacology)
Show Figures

Graphical abstract

21 pages, 1963 KB  
Review
Lipids, Tetraspanins, and Exosomes: Cell Factors in Orthoflavivirus Replication and Propagation
by Magda L. Benitez-Vega, Carlos D. Cordero-Rivera, Jose De Jesus Bravo-Silva, Ricardo Jimenez-Camacho, Carlos Noe Farfan-Morales, Jonathan Hernández-Castillo, Marcos Pérez-García and Rosa M. del Ángel
Viruses 2025, 17(10), 1321; https://doi.org/10.3390/v17101321 - 29 Sep 2025
Viewed by 1174
Abstract
The cellular membrane is a dynamic structure composed of lipids and proteins organized into specialized domains that facilitate interactions between extracellular molecules and the intracellular environment. Tetraspanins are a family of transmembrane proteins involved in diverse cellular processes, including membrane stabilization and fusion, [...] Read more.
The cellular membrane is a dynamic structure composed of lipids and proteins organized into specialized domains that facilitate interactions between extracellular molecules and the intracellular environment. Tetraspanins are a family of transmembrane proteins involved in diverse cellular processes, including membrane stabilization and fusion, endocytosis, extracellular vesicle formation, and the organization of proteins and lipids at specific membrane sites known as Tetraspanin-Enriched Microdomains (TEMs). These lipid–protein interactions play a critical role in the replicative cycle of Orthoflavivirus, including dengue, Zika, and West Nile, by facilitating viral entry, replication, assembly, and egress. In addition, tetraspanins also regulate the biogenesis and function of extracellular vesicles, contributing to viral dissemination, persistent infection, and immune evasion. This review summarizes the current knowledge on the structural and functional aspects of tetraspanins, their interplay with lipids, and their emerging roles in the Orthoflavivirus replicative cycle. We also discuss how these insights may inform the development of antiviral strategies targeting membrane organization and virus–host interactions. Full article
(This article belongs to the Special Issue Dengue, Zika and Yellow Fever Virus Replication)
Show Figures

Figure 1

12 pages, 1252 KB  
Article
Transcriptional Control of TSPAN32 in T-ALL Reveals Interplay Between TAL1 and NOTCH1
by Grazia Scuderi, Antonio Arcidiacono, Eugenio Cavalli, Maria Sofia Basile, Antonella Nardo, Ferdinando Nicoletti and Paolo Fagone
Biomedicines 2025, 13(9), 2090; https://doi.org/10.3390/biomedicines13092090 - 27 Aug 2025
Viewed by 803
Abstract
Background: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of immature T cells, driven by dysregulated transcriptional networks and oncogenic signaling pathways. Here, we present the first comprehensive analysis of the expression and regulation of TSPAN32, a tetraspanin implicated in lymphocyte homeostasis, [...] Read more.
Background: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of immature T cells, driven by dysregulated transcriptional networks and oncogenic signaling pathways. Here, we present the first comprehensive analysis of the expression and regulation of TSPAN32, a tetraspanin implicated in lymphocyte homeostasis, in T-ALL. Methods: Transcriptomic data from the Leukemia MILE study (GSE13159) were analyzed to assess TSPAN32 expression across leukemic subtypes. Gene Set Enrichment Analysis (GSEA) was performed to explore biological pathways associated with TSPAN32-correlated genes. For mechanistic validation, HPB-ALL cells were used as a model, with NOTCH signaling inhibited by γ-secretase inhibitor (GSI) treatment and TAL1–LMO1 overexpression induced through doxycycline-inducible lentiviral vectors. Gene expression changes were quantified by RT-qPCR. Results: TSPAN32 was frequently downregulated in T-ALL compared to healthy bone marrow, although expression was retained in a subset of cases. GSEA revealed that TSPAN32-correlated genes were inversely associated with cell cycle–related programs, consistent with its established role as a negative regulator of T cell proliferation. Mechanistically, TAL1–LMO1 overexpression strongly induced TSPAN32, while GSI-mediated NOTCH inhibition partially reactivated its expression. Interestingly, GSI treatment also increased TAL1 levels despite downregulating LMO1. Conversely, TAL1–LMO1 overexpression suppressed NOTCH1 and NOTCH3, highlighting a reciprocal regulatory interplay between NOTCH and TAL1/LMO1 oncogenic circuits that shapes TSPAN32 expression dynamics in T-ALL. Conclusions: This study identifies TSPAN32 as a novel transcriptional target under the influence of key leukemogenic pathways and suggests its potential role as a modulator of leukemic T cell proliferation, with implications for therapeutic strategies targeting TAL1 and NOTCH signaling. Full article
(This article belongs to the Special Issue Advances in Immune Cell Biology: Insights from Molecular Perspectives)
Show Figures

Figure 1

19 pages, 4709 KB  
Article
The Tetraspanin CD9 Facilitates SARS-CoV-2 Infection and Brings Together Different Host Proteins Involved in SARS-CoV-2 Attachment and Entry into Host Cells
by Vanessa Rivero, María Laura Saiz, Daniel Torralba, Carlos López-Larrea, Beatriz Suarez-Alvarez and Marta L. DeDiego
Viruses 2025, 17(8), 1141; https://doi.org/10.3390/v17081141 - 20 Aug 2025
Viewed by 4143
Abstract
CD9 protein belongs to a family of proteins called tetraspanins, so named for their four-transmembrane-spanning architectures. These proteins are located in domains in the plasmatic membrane, called tetraspanin-enriched microdomains (TEMs). Several proteases and cellular receptors for virus entry cluster into TEMs, suggesting that [...] Read more.
CD9 protein belongs to a family of proteins called tetraspanins, so named for their four-transmembrane-spanning architectures. These proteins are located in domains in the plasmatic membrane, called tetraspanin-enriched microdomains (TEMs). Several proteases and cellular receptors for virus entry cluster into TEMs, suggesting that TEMs are preferred virus entry portals. Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein mediates virus attachment and entry into cells by binding to human angiotensin-converting enzyme 2 (ACE-2). In addition, the secretory, type-I membrane-bound SARS-CoV-2 S protein is synthesized as a precursor (proS) that undergoes posttranslational cleavages by host cell proteases, such as furin and TMPRSS2. Moreover, it has been shown that neuropilin-1 (NRP1), which is known to bind furin-cleaved substrates, potentiates SARS-CoV-2 infectivity. Our results indicate that CD9 facilitates SARS-CoV-2 infection. In addition, we show how knocking out CD9 leads to a decrease in the expression of NRP1, a protein that improves SARS-CoV-2 infection. Furthermore, we show that CD9 colocalizes with ACE-2, NRP1, furin, and TMPRSS2 at the plasma membrane; that the absence of CD9 decreases the expression of these proteins on the plasma membrane CD9-enriched microdomains, and that CD9 interacts with ACE2. In conclusion, our data suggest that CD9 facilitates SARS-CoV-2 infection and that CD9 brings together different host proteins involved in SARS-CoV-2 attachment and entry into host cells, such as ACE2, NRP1, furin, and TMPRSS2. Importantly, the fact that a blocking antibody targeting CD9 can effectively reduce SARS-CoV-2 titers highlights not only the mechanistic role of CD9 in viral entry but also offers translational potential, suggesting that tetraspanin-targeting antibodies could be developed as therapeutic agents against SARS-CoV-2 and possibly other coronaviruses, with meaningful implications for clinical intervention. Full article
(This article belongs to the Special Issue Coronaviruses Pathogenesis, Immunity, and Antivirals (2nd Edition))
Show Figures

Figure 1

20 pages, 5322 KB  
Article
Regulation of Tetraspanin CD63 in Chronic Myeloid Leukemia (CML): Single-Cell Analysis of Asymmetric Hematopoietic Stem Cell Division Genes
by Christophe Desterke, Annelise Bennaceur-Griscelli and Ali G. Turhan
Bioengineering 2025, 12(8), 830; https://doi.org/10.3390/bioengineering12080830 - 31 Jul 2025
Viewed by 1141
Abstract
(1) Background: Chronic myeloid leukemia (CML) is a myeloproliferative disorder driven by the BCR::ABL oncoprotein. During the chronic phase, Philadelphia chromosome-positive hematopoietic stem cells generate proliferative myeloid cells with various stages of maturation. Despite this expansion, leukemic stem cells (LSCs) retain self-renewal capacity [...] Read more.
(1) Background: Chronic myeloid leukemia (CML) is a myeloproliferative disorder driven by the BCR::ABL oncoprotein. During the chronic phase, Philadelphia chromosome-positive hematopoietic stem cells generate proliferative myeloid cells with various stages of maturation. Despite this expansion, leukemic stem cells (LSCs) retain self-renewal capacity via asymmetric cell divisions, sustaining the stem cell pool. Quiescent LSCs are known to be resistant to tyrosine kinase inhibitors (TKIs), potentially through BCR::ABL-independent signaling pathways. We hypothesize that dysregulation of genes governing asymmetric division in LSCs contributes to disease progression, and that their expression pattern may serve as a prognostic marker during the chronic phase of CML. (2) Methods: Genes related to asymmetric cell division in the context of hematopoietic stem cells were extracted from the PubMed database with the keyword “asymmetric hematopoietic stem cell”. The collected relative gene set was tested on two independent bulk transcriptome cohorts and the results were confirmed by single-cell RNA sequencing. (3) Results: The expression of genes involved in asymmetric hematopoietic stem cell division was found to discriminate disease phases during CML progression in the two independent transcriptome cohorts. Concordance between cohorts was observed on asymmetric molecules downregulated during blast crisis (BC) as compared to the chronic phase (CP). This downregulation during the BC phase was confirmed at single-cell level for SELL, CD63, NUMB, HK2, and LAMP2 genes. Single-cell analysis during the CP found that CD63 is associated with a poor prognosis phenotype, with the opposite prediction revealed by HK2 and NUMB expression. The single-cell trajectory reconstitution analysis in CP samples showed CD63 regulation highlighting a trajectory cluster implicating HSPB1, PIM2, ANXA5, LAMTOR1, CFL1, CD52, RAD52, MEIS1, and PDIA3, known to be implicated in hematopoietic malignancies. (4) Conclusion: Regulation of CD63, a tetraspanin involved in the asymmetric division of hematopoietic stem cells, was found to be associated with poor prognosis during CML progression and could be a potential new therapeutic target. Full article
(This article belongs to the Special Issue Micro- and Nano-Technologies for Cell Analysis)
Show Figures

Graphical abstract

21 pages, 4740 KB  
Article
Mosquito Exosomal Tetraspanin CD151 Facilitates Flaviviral Transmission and Interacts with ZIKV and DENV2 Viral Proteins
by Durga Neupane, Md Bayzid, Girish Neelakanta and Hameeda Sultana
Int. J. Mol. Sci. 2025, 26(15), 7394; https://doi.org/10.3390/ijms26157394 - 31 Jul 2025
Cited by 1 | Viewed by 990
Abstract
The expanding distribution and geographic range of mosquitoes have potentially contributed to increased flaviviral dissemination and transmission. Despite the growing burden of flaviviral infections, there are no effective antiviral treatments or vaccines, highlighting the need for novel therapeutic targets. Tetraspanins, a superfamily of [...] Read more.
The expanding distribution and geographic range of mosquitoes have potentially contributed to increased flaviviral dissemination and transmission. Despite the growing burden of flaviviral infections, there are no effective antiviral treatments or vaccines, highlighting the need for novel therapeutic targets. Tetraspanins, a superfamily of transmembrane domain glycoproteins involved in cellular organization, signaling, and protein–protein interactions have been recognized as potential mediators of flaviviral infection and transmission. While their roles in vertebrate hosts have been explored, their involvement in flaviviral replication and dissemination within medically important vectors remains poorly understood. In this study, we investigated the role of arthropod tetraspanins in mosquito cells and extracellular vesicles (EVs) derived from cells infected with Zika virus (ZIKV) and dengue virus (serotype 2; DENV2). Among several of the tetraspanins analyzed, only CD151 was significantly upregulated in both mosquito cells and in EVs derived from ZIKV/DENV2-infected cells. RNAi-mediated silencing of CD151 led to a marked reduction in viral burden, suggesting its crucial role in flavivirus replication. Inhibition of EV biogenesis using GW4869 further demonstrated that EV-mediated viral transmission contributes to flavivirus propagation. Additionally, co-immunoprecipitation and immunofluorescence analyses revealed direct interactions between CD151 and ZIKV NS2B and DENV2 capsid proteins. Overall, our findings highlight the functional importance of mosquito CD151 in the replication and transmission of ZIKV and DENV2. This study provides new insights into the molecular mechanisms of flaviviral infection in mosquitoes and suggests that targeting vector tetraspanins may offer a potential approach to controlling mosquito-borne flaviviruses. Full article
(This article belongs to the Special Issue Advanced Perspectives on Virus–Host Interactions)
Show Figures

Figure 1

21 pages, 4842 KB  
Article
Temporal and Severity-Dependent Alterations in Plasma Extracellular Vesicle Profiles Following Spinal Cord Injury
by Jamie Cooper, Scott Tait Airey, Eric Patino, Theo Andriot, Mousumi Ghosh and Damien D. Pearse
Cells 2025, 14(14), 1065; https://doi.org/10.3390/cells14141065 - 11 Jul 2025
Cited by 1 | Viewed by 1265
Abstract
Spinal cord injury (SCI) triggers both local and systemic pathological responses that evolve over time and differ with injury severity. Small extracellular vesicles (sEVs), known mediators of intercellular communication, may serve as biomarkers reflecting these complex dynamics. In this study, we investigated whether [...] Read more.
Spinal cord injury (SCI) triggers both local and systemic pathological responses that evolve over time and differ with injury severity. Small extracellular vesicles (sEVs), known mediators of intercellular communication, may serve as biomarkers reflecting these complex dynamics. In this study, we investigated whether SCI severity modulates the composition and abundance of circulating plasma-derived sEVs across subacute and chronic phases. Using a graded thoracic contusion model in mice, plasma was collected at defined timepoints post-injury. sEVs were isolated via size-exclusion chromatography and characterized using nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and MACSPlex surface marker profiling. We observed an SCI-dependent increase in sEVs during the subacute (7 days) phase, most notably in moderate injuries (50 kdyne), with overall vesicle counts lower chronically (3 months). CD9 emerged as the predominant tetraspanin sEV marker, while CD63 and CD81 were generally present at low levels across all injury severities and timepoints. Surface sEV analysis revealed dynamic regulation of CD41+, CD44+, and CD61+ in the CD9+ sEV subset, suggesting persistent systemic signaling activity. These markers, traditionally associated with platelet function, may also reflect immune or reparative responses following SCI. Our findings highlight the evolving nature of sEV profiles after SCI and support their potential as non-invasive biomarkers for monitoring injury progression. Full article
(This article belongs to the Special Issue Extracellular Vesicles as Biomarkers for Human Disease)
Show Figures

Figure 1

Back to TopTop