Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (304,754)

Search Parameters:
Keywords = testes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5014 KB  
Article
Axial Compressive Behavior of Square Double-Skin Hybrid Concrete Bar Columns with Small-Diameter Concrete-Infilled GFRP Tubes
by Jingran He, Yi Liu, Qinling Hong, Runran Li, Ruofan Gao, Bing Fu, Luchuan Ding and Xiaodi Dai
Buildings 2025, 15(21), 3888; https://doi.org/10.3390/buildings15213888 (registering DOI) - 27 Oct 2025
Abstract
With the increasing demand for lightweight, high-strength, and ductile structural systems in modern infrastructure, the hybrid composite column has emerged as a promising solution to overcome the limitations of single-material members. This paper proposes an innovative variant of double-skin tubular columns (DSTCs), termed [...] Read more.
With the increasing demand for lightweight, high-strength, and ductile structural systems in modern infrastructure, the hybrid composite column has emerged as a promising solution to overcome the limitations of single-material members. This paper proposes an innovative variant of double-skin tubular columns (DSTCs), termed as square double-skin hybrid concrete bar columns (SDHCBCs), composed of one square-shaped outer steel tube, small-diameter concrete-infilled glass FRP tubes (SDCFs), interstitial mortar, and an inner circular steel tube. A series of axial compression tests were conducted on eight SDHCBCs and one reference DSTC to investigate the effects of key parameters, including the thicknesses of the outer steel tube and GFRP tube, the substitution ratio of SDCFs, and their distribution patterns. As a result, significantly enhanced performance is observed in the proposed SDHCBCs, including the following: ultimate axial bearing capacity improved by 79.6%, while the ductility is increased by 328.3%, respectively, compared to the conventional DSTC. A validated finite element model was established to simulate the mechanical behavior of SDHCBCs under axial compression. The model accurately captured the stress distribution and progressive failure modes of each component, offering insights into the complex interaction mechanisms within the hybrid columns. The findings suggest that incorporating SDCFs into hybrid columns is a promising strategy to achieve superior load-carrying performance, with strong potential for application in high-rise and infrastructure engineering. Full article
(This article belongs to the Special Issue Innovations in Composite Material Technologies and Structural Design)
9 pages, 2093 KB  
Article
A Cosmic Radiation Modular Telescope on the Moon: The MoonRay Concept
by Pier Simone Marrocchesi
Particles 2025, 8(4), 86; https://doi.org/10.3390/particles8040086 (registering DOI) - 27 Oct 2025
Abstract
The MoonRay project is carrying out a concept study of a permanent lunar cosmic-ray (CR) and gamma-ray observatory, in view of the implementation of habitats on our satellite. The idea is to build a modular telescope that will be able to overcome the [...] Read more.
The MoonRay project is carrying out a concept study of a permanent lunar cosmic-ray (CR) and gamma-ray observatory, in view of the implementation of habitats on our satellite. The idea is to build a modular telescope that will be able to overcome the limitations, in available power and weight, of the present generation of CR instruments in Low Earth Orbit, while carrying out high-energy gamma-ray observations from a vantage point at the South Pole of the Moon. An array of fully independent modules (towers), with limited individual size and mass, can provide an acceptance more than one order of magnitude larger than instruments in flight at present. The modular telescope is designed to be deployed progressively, during a series of lunar missions, while collecting meaningful scientific data at the intermediate stages of its implementation. The operational power will be made available by the facilities maintaining the lunar habitats. With a geometric factor close to 15 m2sr and about 8 times larger sensitive area than FERMI-LAT, MoonRay will be able to carry out a very rich observational program over a time span of a few decades with an energy reach of 10 PeV allowing the exploration of the CR “knee” and the observation of the Southern Sky with gamma rays well into the TeV scale. Each tower (of approximate size 20 cm × 20 cm ×100 cm) is equipped with three instruments. A combined Charge and Time-of-Flight detector (CD-ToF) can identify individual cosmic elements, leveraging on an innovative two-layered array of pixelated Low-Gain Avalanche Diode (LGAD) sensors, with sub-ns time resolution. The latter can achieve an unprecedented rejection power against backscattered radiation from the calorimeter. It is followed by a tracker, providing also photon conversion, and by a thick crystal calorimeter (55 radiation lengths, 3 proton interaction lengths at normal incidence) with an energy resolution of 30–40% (1–2%) for protons (electrons) and a proton/electron rejection in excess of 105. A time resolution close to 100 ps has been obtained, with prototypal arrays of 3 mm × 3 mm LGAD pixels, in a recent test campaign carried out at CERN with Pb beam fragments. Full article
Show Figures

Figure 1

13 pages, 1754 KB  
Article
An ERA-CRISPR/Cas12a Method for Highly Sensitive Detection of Human Adenovirus Type 55
by Letian Zhang, Zhenghan Luo, Taiwu Wang, Yifang Han, Fuqiang Ye, Chunhui Wang, Yue Chen and Jinhai Zhang
Diagnostics 2025, 15(21), 2725; https://doi.org/10.3390/diagnostics15212725 (registering DOI) - 27 Oct 2025
Abstract
Background/Objectives: Human adenovirus 55 (HAdV55) is a notable pathogen causing community-acquired pneumonia; outbreaks occur frequently in military camps, hospitals, and schools, thereby posing a threat to public health security. This study aimed to develop a method for detecting HAdV55 nucleic acid by targeting [...] Read more.
Background/Objectives: Human adenovirus 55 (HAdV55) is a notable pathogen causing community-acquired pneumonia; outbreaks occur frequently in military camps, hospitals, and schools, thereby posing a threat to public health security. This study aimed to develop a method for detecting HAdV55 nucleic acid by targeting the conserved region of the Hexon gene. The sequence was amplified using enzymatic recombination isothermal amplification (ERA) technology, in conjunction with CRISPR-Cas12a technology, to enhance the amplification signal. Methods: Optimized primer and crRNA sequences were selected through ERA isothermal amplification testing. The ERA-CRISPR/Cas12a detection method was completed within 30 min at a constant temperature of 42 °C. Results: Sensitivity was assessed by detecting standard plasmids and live strains at various dilution concentrations. The detection limits were determined to be 9 copies/reaction for standard plasmids and 2.5 copies/reaction for cultured HAdV55 strains. Specificity tests were conducted on positive samples for five common respiratory pathogens and five other adenovirus subtypes, all of which showed no cross-reactivity. Conclusions: A rapid ERA-CRISPR/Cas12a nucleic acid detection method for HAdV55 has been successfully developed, demonstrating high sensitivity and specificity without the need for expensive or complex instruments. This method holds promise for on-site pathogen screening and detection. Full article
(This article belongs to the Special Issue Point-of-Care Testing (POCT) for Infectious Diseases)
Show Figures

Figure 1

13 pages, 697 KB  
Article
Distribution of Hematologic Parameters of Complete Blood Count in Anemic and Nonanemic Children in a Mining-Exposed Highland Peruvian Community
by Gloria Cruz-Gonzales, Arístides Hurtado-Concha, Héctor Bejarano-Benites, Hernán Bedoya-Vílchez, Merly Sarabia-Tarrillo, Eliane A. Goicochea-Palomino and Jeel Moya-Salazar
Int. J. Environ. Res. Public Health 2025, 22(11), 1637; https://doi.org/10.3390/ijerph22111637 (registering DOI) - 27 Oct 2025
Abstract
Exposure to heavy metals from mining activities has been consistently associated with disruptions in hematologic homeostasis, adversely affecting children’s overall development. We aimed to determine population-specific distributions of hematological markers and to compare anemic and nonanemic children in a mining-exposed highland community. A [...] Read more.
Exposure to heavy metals from mining activities has been consistently associated with disruptions in hematologic homeostasis, adversely affecting children’s overall development. We aimed to determine population-specific distributions of hematological markers and to compare anemic and nonanemic children in a mining-exposed highland community. A cross-sectional study was conducted with 156 children aged 3 to 7 years from the Peruvian highlands, using non-probability sampling and following CLSI C28-A3 guidelines for this population. Inclusion criteria were children with complete blood count results and residency in mining-contaminated areas. Blood samples were collected via venipuncture and analyzed with a 3-part Sysmex differential hematology analyzer. The mean WBC count was 10.42 ± 1.76 × 103/µL, with no significant differences between males and females (p = 0.770). Hematological indices, including RBC, hemoglobin, and hematocrit levels, were consistent between sexes. However, significant differences were noted between anemic and nonanemic 3–4-year-old children for RBC (5.56 ± 0.47 vs. 7.06 ± 0.96 × 106/µL) and HCT (33.97 ± 6.89 vs. 35.64 ± 5%) (each p < 0.00001), with lower values in anemic subjects. Also, anemic and nonanemic 5–7-year-old children had significant differences in RBC (5.87 ± 1.02 vs. 7.36 ± 0.79 × 106/µL) and HCT (31.13 ± 1.73 vs. 36.54 ± 4) (each p < 0.00001). Our findings reveal variations in hematological parameter distributions, emphasizing the importance of personalized blood assessments for mining-exposed populations. This approach could enable earlier diagnosis and intervention for anemia among vulnerable pediatric groups. Full article
29 pages, 1285 KB  
Article
Stability Assessment of Fully Inverter-Based Power Systems Using Grid-Forming Controls
by Zahra Ahmadimonfared and Stefan Eichner
Electronics 2025, 14(21), 4202; https://doi.org/10.3390/electronics14214202 (registering DOI) - 27 Oct 2025
Abstract
The displacement of synchronous machines by inverter-based resources raises critical concerns regarding the stability of future low-inertia power systems. Grid-forming (GFM) inverters offer a pathway to address these challenges by autonomously establishing voltage and frequency while emulating inertia and damping. This paper investigates [...] Read more.
The displacement of synchronous machines by inverter-based resources raises critical concerns regarding the stability of future low-inertia power systems. Grid-forming (GFM) inverters offer a pathway to address these challenges by autonomously establishing voltage and frequency while emulating inertia and damping. This paper investigates the feasibility of operating a transmission-scale network with 100% GFM penetration by fully replacing all synchronous generators in the IEEE 39-bus system with a heterogeneous mix of droop, virtual synchronous machine (VSM), and synchronverter controls. System stability is assessed under a severe fault-initiated separation, focusing on frequency and voltage metrics defined through center-of-inertia formulations and standard acceptance envelopes. A systematic parameter sweep of virtual inertia (H) and damping (Dp) reveals their distinct and complementary roles: inertia primarily shapes the Rate of Change in Frequency and excursion depth, while damping governs convergence speed and steady-state accuracy. All tested parameter combinations remain within established stability limitations, confirming the robust operability of a fully inverter-dominated grid. These findings demonstrate that properly tuned GFM inverters can enable secure and reliable operation of future power systems without reliance on synchronous machines. Full article
(This article belongs to the Topic Power System Dynamics and Stability, 2nd Edition)
26 pages, 6881 KB  
Article
State of Health Aware Adaptive Scheduling of Battery Energy Storage System Charging and Discharging in Rural Microgrids Using Long Short-Term Memory and Convolutional Neural Networks
by Chi Nghiep Le, Arangarajan Vinayagam, Phat Thuan Tran, Stefan Stojcevski, Tan Ngoc Dinh, Alex Stojcevski and Jaideep Chandran
Energies 2025, 18(21), 5641; https://doi.org/10.3390/en18215641 (registering DOI) - 27 Oct 2025
Abstract
This study presents a novel LSTM–CNN-based adaptive scheduling framework (LSTM-CNN–AS) designed to improve real-time energy management and extend the lifespan of lithium-ion Battery Energy Storage Systems (BESS) in rural and resource-constrained microgrids. In contrast to conventional methods that prioritize economic optimization, the proposed [...] Read more.
This study presents a novel LSTM–CNN-based adaptive scheduling framework (LSTM-CNN–AS) designed to improve real-time energy management and extend the lifespan of lithium-ion Battery Energy Storage Systems (BESS) in rural and resource-constrained microgrids. In contrast to conventional methods that prioritize economic optimization, the proposed framework incorporates state of health (SOH) aware control and adaptive closed-loop scheduling to enhance operational reliability and battery longevity. The architecture combines Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) for accurate SOH estimation, with lightweight Multi-Layer Perceptron (MLP) models supporting real-time scheduling and state of charge (SOC) regulation. Operational safety is maintained by keeping SOC within 20–80% and SOH above 70%. The proposed model training and validation are conducted using two real-world datasets: the Mendeley Lithium-Ion SOH Test Dataset and the DKA Solar System Dataset from Alice Springs, both sampled at 5-minute intervals. Performance is evaluated across three operational scenarios, which are 2C charging with random discharge; random charging with 3C discharge; and fully random profiles, achieving up to 44% reduction in MAE and an R² score of 0.9767. A one-month deployment demonstrates a 30% reduction in charging time and 40% lower operational costs, confirming the framework’s effectiveness and scalability for rural microgrid applications. Full article
18 pages, 1662 KB  
Article
Multimodal Fusion for Trust Assessment in Lower-Limb Rehabilitation: Measurement Through EEG and Questionnaires Integrated by Fuzzy Logic
by Kangjie Zheng, Fred Han and Cenwei Li
Sensors 2025, 25(21), 6611; https://doi.org/10.3390/s25216611 (registering DOI) - 27 Oct 2025
Abstract
This study aimed to evaluate the effectiveness of a multimodal trust assessment approach that integrated electroencephalography (EEG) and self-report questionnaires compared with unimodal methods within the context of lower-limb rehabilitation training. Twenty-one mobility-impaired participants performed tasks using handrails, walkers, and stairs. Synchronized EEG, [...] Read more.
This study aimed to evaluate the effectiveness of a multimodal trust assessment approach that integrated electroencephalography (EEG) and self-report questionnaires compared with unimodal methods within the context of lower-limb rehabilitation training. Twenty-one mobility-impaired participants performed tasks using handrails, walkers, and stairs. Synchronized EEG, questionnaire, and behavioral data were collected. EEG trust scores were derived from the alpha-beta power ratio, while subjective trust was assessed via questionnaire. An adaptive neuro-fuzzy inference system was used to fuse these into a composite score. Analyses included variance, correlation, and classification consistency against behavioral ground. Results showed that EEG-based scores had higher dynamic sensitivity (Spearman’s ρ = 0.55) but greater dispersion (Kruskal–Wallis H-test: p = 0.001). Questionnaires were more stable but less temporally precise (ρ = 0.40). The fused method achieved stronger behavioral correlation (ρ = 0.59) and higher classification consistency (κ = 0.69). Cases with discordant unimodal results revealed complementary strengths: EEG captured real-time neural states despite motion artifacts, while questionnaires offered contextual insight prone to bias. Multimodal fusion through fuzzy logic mitigated the limitations of isolated assessment methods. These preliminary findings support integrated measures for adaptive rehabilitation monitoring, though further research with a larger cohort is needed due to the small sample size. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

20 pages, 6870 KB  
Article
Bond Properties Between Bimetallic Steel Bar and Polyoxymethylene Fiber-Reinforced Seawater Sea–Sand Concrete
by Fei Wang, Xuanyi Xue, Neng Wang, Shuai Li, Zhengtao Yang and Yuruo Chang
Polymers 2025, 17(21), 2866; https://doi.org/10.3390/polym17212866 (registering DOI) - 27 Oct 2025
Abstract
With the development of infrastructure construction, seawater sea–sand concrete (SWSSC) is expected to solve the shortage of freshwater and river sand. Polyoxymethylene (POM) fiber, owing to its excellent corrosion resistance, provides a novel approach to enhancing the bond performance of SWSSC. This study [...] Read more.
With the development of infrastructure construction, seawater sea–sand concrete (SWSSC) is expected to solve the shortage of freshwater and river sand. Polyoxymethylene (POM) fiber, owing to its excellent corrosion resistance, provides a novel approach to enhancing the bond performance of SWSSC. This study systematic study of the bond properties of bimetallic steel bars (BSBs) in POM fiber-reinforced SWSSC and develops a predictive model. Mechanical property tests of SWSSC and pull-out tests of BSB and SWSSC were conducted with various POM fiber contents. The results showed that the optimal volume fraction of POM fibers was 0.6%. At this fraction, the compressive strength and splitting tensile strength of SWSSC were improved by 17.7% and 20.3%, respectively, compared with the group without fibers. All pull-out specimens experienced splitting failure. The bond strength increased monotonically with the increase in relative cover thickness and exhibited a trend of first increasing and then stabilizing with rising POM fiber volume fraction. In addition, a bond stress–slip prediction model between BSBs and POM fiber-reinforced SWSSC was established based on the test results, which can provide theoretical support for the numerical simulation and design of BSB-SWSSC structures. Full article
(This article belongs to the Special Issue Polymers Reinforced Civil Engineering Materials and Components)
15 pages, 297 KB  
Article
Influence of Lipid Sources on Performance, Egg Quality, and Metabolism in Laying Quails
by Jean Kaique Valentim, Felipe Cardoso Serpa, Maria Fernanda de Castro Burbarelli, Alexander Alexandre de Almeida, Vivian Aparecida Rios de Castilho Heiss, Paulo Henrique Braz, Claudia Andrea Lima Cardoso, Claudia Marie Komiyama, Fabiana Ribeiro Caldara, Arele Arlindo Calderano, Sarah Sgavioli and Rodrigo Garofállo Garcia
Animals 2025, 15(21), 3120; https://doi.org/10.3390/ani15213120 (registering DOI) - 27 Oct 2025
Abstract
Japanese quail production can be optimized by selecting appropriate dietary lipid sources, yet comparative effects on performance and egg quality during the laying phase are not fully established. This study evaluated the impact of five lipid sources, namely soybean oil, corn oil, canola [...] Read more.
Japanese quail production can be optimized by selecting appropriate dietary lipid sources, yet comparative effects on performance and egg quality during the laying phase are not fully established. This study evaluated the impact of five lipid sources, namely soybean oil, corn oil, canola oil, sunflower oil, and poultry fat, on performance, egg quality, nutrient metabolism, serum metabolites, and organ traits of 350 Japanese quail aged 60 days with an average weight of 170 ± 10 g. Birds were assigned to diets containing 2800 kcal/kg in a completely randomized design with 10 replicates of seven birds each. Performance was recorded over three 28-day periods and egg quality assessed at the end of each period; at 84 days, one bird per replicate was sampled for nutrient metabolism, serum metabolites, and organ characteristics, and a metabolism trial estimated metabolizability coefficients and metabolizable energy. Data were analyzed by Tukey’s test at the 5% level. Egg production (p = 0.010) and marketable egg production (p = 0.008) were highest with soybean, corn, and sunflower oils, while feed conversion per dozen eggs was less efficient with canola oil (p = 0.048). Egg quality differed in specific gravity (p = 0.027), yolk color (p = 0.008), Haugh unit (p = 0.011), and air cell size (p = 0.001), with poultry fat improving yolk color and Haugh unit. Canola oil increased dry matter (p = 0.027) and ether extract digestibility (p = 0.026), while serum metabolites, organ weights, and reproductive traits were not affected (p > 0.05). All diets supported physiological health, and lipid sources can be chosen according to cost and availability to optimize quail production without compromising performance or health. Full article
(This article belongs to the Special Issue Poultry Nutrition and Management)
15 pages, 618 KB  
Article
RAPID-CARE: Rapid Antibiotic Optimization in the ICU After Implementation of a Pneumonia Multiplex PCR Test—A Real-World Evaluation
by Montserrat Rodríguez-Gómez, Fernando Martínez-Sagasti, María Calle-Romero, Andrea Prieto-Cabrera, Patricia De La Montaña-Díaz, Irene Díaz-De la Torre, Alberto Delgado-Iribarren García-Campero, Sara Domingo-Marín, Miguel Sánchez-García and Ignacio Martín-Loeches
Antibiotics 2025, 14(11), 1084; https://doi.org/10.3390/antibiotics14111084 (registering DOI) - 27 Oct 2025
Abstract
Background/Objectives: Lower respiratory tract infections (LRTIs) are frequent in the intensive care unit (ICU) and drive empiric broad-spectrum antibiotic use. Rapid multiplex PCR assays may improve pathogen detection and stewardship compared with conventional culture. We evaluated the real-world impact of the BioFire [...] Read more.
Background/Objectives: Lower respiratory tract infections (LRTIs) are frequent in the intensive care unit (ICU) and drive empiric broad-spectrum antibiotic use. Rapid multiplex PCR assays may improve pathogen detection and stewardship compared with conventional culture. We evaluated the real-world impact of the BioFire® FilmArray® Pneumonia Panel Plus (FA-PNEU®) on antimicrobial management in suspected nosocomial LRTI. Methods: This was a single-centre, prospective observational cohort study conducted in a tertiary ICU (Madrid, Spain) between April 2021 and March 2025. Adult patients with suspected hospital-acquired pneumonia (HAP), ventilator-associated pneumonia (VAP), or ventilator-associated tracheobronchitis (VAT) were included if paired respiratory samples underwent FA-PNEU® and conventional culture (CC). Diagnostic accuracy and prescribing changes were analysed. Results: A total of 344 samples from 236 patients were included. FA-PNEU® demonstrated high sensitivity (93.4%) and negative predictive value (97.9%) but moderate specificity (65.0%) and low positive predictive value (36.5%). False positives occurred in 85.8% of patients with prior antibiotic therapy targeting the detected organism. Antibiotic management was considered directly influenced by FA-PNEU® when any prescribing decision (initiation, escalation, de-escalation, or discontinuation) explicitly followed the panel’s results rather than other clinical or microbiological information. Using this definition, FA-PNEU® directly influenced antibiotic therapy in 57.6% of cases, while in 17.7%, prescribing was instead guided by a suspected alternative infection. In patients without prior antibiotics, treatment initiation or withholding was fully concordant with FA-PNEU® results, while in those already receiving therapy, 60.8% underwent modification, two-thirds in agreement with the panel. Conclusions: In critically ill patients with suspected nosocomial LRTI, FA-PNEU® provided rapid, high-sensitivity diagnostics that substantially influenced antimicrobial prescribing. Its greatest value lies in ruling out bacterial infection and guiding stewardship, though results must be interpreted within the full clinical and microbiological context. Full article
(This article belongs to the Section Antibiotics Use and Antimicrobial Stewardship)
22 pages, 14711 KB  
Article
Numerical Study on the Keying of Suction Embedded Plate Anchors with Chain Effects
by Xue Li, Wei Yan, Yanbing Zhao, Yongye Li, Yan Zhang and Yun Lang
J. Mar. Sci. Eng. 2025, 13(11), 2056; https://doi.org/10.3390/jmse13112056 (registering DOI) - 27 Oct 2025
Abstract
Suction embedded plate anchors are widely used in deepwater mooring systems, which can withstand significant vertical loading. During the installation, the mooring chain is tensioned and causes the anchor to rotate, which is known as keying. With a large deformation finite element approach [...] Read more.
Suction embedded plate anchors are widely used in deepwater mooring systems, which can withstand significant vertical loading. During the installation, the mooring chain is tensioned and causes the anchor to rotate, which is known as keying. With a large deformation finite element approach of the coupled Eulerian–Lagrangian method, the chain effects are incorporated into the keying of suction embedded plate anchors. The effectiveness of the proposed method is verified by numerical results and centrifuge tests. The numerical study reveals that the installation angle of the chain has a significant effect on the loss of embedment, especially combined with the effects of load eccentricity and soil strength. The losses of embedment are 0.024~0.273 and 0.217~1.755 anchor width for the installation angles of 15° and 90°, respectively. The ultimate bearing capacity factor decreases with the increasing of load eccentricity and soil strength, because a cavity is formed at the anchor back. Empirical formulae are finally developed for engineers to rapidly estimate the embedment loss and ultimate pullout capacity of suction embedded plate anchors. Full article
(This article belongs to the Section Ocean Engineering)
26 pages, 1244 KB  
Article
Reliability Study of Low-Voltage Electrical Appliances in Transport Vehicles Under Variable-Load Conditions
by Lin Long, Shu Cheng, Wei Zhang and Min Yue
Actuators 2025, 14(11), 522; https://doi.org/10.3390/act14110522 (registering DOI) - 27 Oct 2025
Abstract
Low-voltage electrical appliances, represented by circuit breakers, contactors, and proximity switches, are widely used in various electrical control systems in transportation vehicles. During vehicle operation, engine vibrations, poor workplace balance, constantly changing operating directions, unbalanced transmission systems, emergency braking, and other factors can [...] Read more.
Low-voltage electrical appliances, represented by circuit breakers, contactors, and proximity switches, are widely used in various electrical control systems in transportation vehicles. During vehicle operation, engine vibrations, poor workplace balance, constantly changing operating directions, unbalanced transmission systems, emergency braking, and other factors can all cause variable loads. These variable loads may decrease the effectiveness of low-voltage electrical contacts; the failure rate of the low-voltage electrical appliances used in transportation vehicles is three times that of normal indoor low-voltage electrical appliances. This study analyzes the failure mechanism of low-voltage electrical appliances used in transportation vehicles and establishes a model for their reliability evaluation and prediction based on a variable-load data-driven approach. This variable-load data comes from the constructed simulated vehicle operation test platform. Nonlinear variable-load test data generated by simulation is collected through the test platform and is then processed. An evaluation feature dataset is constructed and input into the reliability evaluation and prediction model to obtain the remaining life of low-voltage electrical appliances. The analysis and verification of the predicted evaluation values and the real values detected through platform equipment showed that the accuracy of this model for these appliances based on the variable-load data-driven approach reached 94%, meeting the requirements of practical applications. This method used in this study to derive the model can provide a theoretical basis for online evaluation and prediction of low-voltage electrical appliance reliability for transportation vehicles. This can not only prevent vehicle failures and avoid sudden accidents, but also fully utilize the remaining life of low-voltage electrical appliances and reduce the cost of replacing them. Full article
(This article belongs to the Section Actuators for Surface Vehicles)
18 pages, 5193 KB  
Article
A Novel Adaptive AI-Based Framework for Node Scheduling Algorithm Selection in Safety-Critical Wireless Sensor Networks
by Issam Al-Nader, Rand Raheem and Aboubaker Lasebae
Electronics 2025, 14(21), 4198; https://doi.org/10.3390/electronics14214198 (registering DOI) - 27 Oct 2025
Abstract
Wireless Sensor Networks (WSNs) are vital to a wide range of applications, spanning from environmental monitoring to safety-critical systems. Ensuring dependable operation in these networks critically depends on selecting an optimal node scheduling algorithm; however, this remains a major challenge since no single [...] Read more.
Wireless Sensor Networks (WSNs) are vital to a wide range of applications, spanning from environmental monitoring to safety-critical systems. Ensuring dependable operation in these networks critically depends on selecting an optimal node scheduling algorithm; however, this remains a major challenge since no single approach performs best under all conditions. To address this issue, this paper proposes an AI-driven framework that evaluates scenario-specific functional requirements—such as coverage, connectivity, and network lifetime—to identify the optimal node scheduling algorithm from a pool that includes Hidden Markov Models (HMMs), BAT, Bird Flocking, Self-Organizing Maps (SOFMs), and Long Short-Term Memory (LSTM) networks. The framework was evaluated using a neural network trained on simulated data and tested across five real-world scenarios: healthcare monitoring, military operations, industrial IoT, forest fire detection, and disaster recovery. The results clearly demonstrate the effectiveness of the proposed framework in identifying the most suitable algorithm for each scenario. Notably, the LSTM algorithm frequently achieved near-optimal performance, excelling in critical objectives such as network lifetime, connectivity, and coverage. The framework also revealed the complementary strengths of other algorithms—HMM proved superior for maintaining connectivity, while Bird Flocking excelled in extending network lifetime. Consequently, this work validates that a scenario-aware selection strategy is essential for maximizing WSN dependability, as it leverages the unique advantages of diverse algorithms. Full article
(This article belongs to the Special Issue Applications of Sensor Networks and Wireless Communications)
22 pages, 2997 KB  
Article
Determination of HSS Model Parameters for Soft Clays in Hangzhou: Statistical Analysis and Engineering Validation
by Xing Zheng, Xiaowu Wang, Kanmin Shen and Xiaoqiang Gu
Buildings 2025, 15(21), 3886; https://doi.org/10.3390/buildings15213886 (registering DOI) - 27 Oct 2025
Abstract
The hardening soil model with small-strain stiffness (HSS model), capturing nonlinear stiffness of soils at small strains, offers advantages for deformation analysis of tunnels or deep excavations in soft clay areas such as Hangzhou City. However, its complex parameters are rarely determinable via [...] Read more.
The hardening soil model with small-strain stiffness (HSS model), capturing nonlinear stiffness of soils at small strains, offers advantages for deformation analysis of tunnels or deep excavations in soft clay areas such as Hangzhou City. However, its complex parameters are rarely determinable via conventional tests, and regional geological differences render parameter determination methods of other areas inapplicable to Hangzhou. To address this issue, this paper summarizes the geological genesis, spatial distribution, and physical–mechanical properties of Hangzhou soft clays, and clarifies significance and acquisition of HSS model parameters. Via statistical analysis of existing literature data, the relationships between key HSS model parameters and physical indices (e.g., void ratio) were established. A 3D finite element (FE) simulation of a Hangzhou excavation validated the proposed parameter determination method: simulated lateral retaining structure displacement and surface settlement closely matched field measurements. The simulation results employing the model parameters proposed herein are closer to the measurements than those based on the method of Shanghai, providing guidance for excavation design and geotechnical parameter selection in Hangzhou soft soil region. Full article
(This article belongs to the Section Building Structures)
18 pages, 13010 KB  
Article
Multiscale Analysis of Styrene–Butadiene Latex Modified Rubber Concrete
by Weiming Wang, Yong Feng and Jingjie Feng
Buildings 2025, 15(21), 3881; https://doi.org/10.3390/buildings15213881 (registering DOI) - 27 Oct 2025
Abstract
Rubberized concrete is a novel green building material that enhances many features when rubber particles are incorporated into cement mortar, simultaneously yielding economic benefits through the recycling of waste tires. This study applies styrene–butadiene latex (SBL) for toughening treatment. The investigation delves into [...] Read more.
Rubberized concrete is a novel green building material that enhances many features when rubber particles are incorporated into cement mortar, simultaneously yielding economic benefits through the recycling of waste tires. This study applies styrene–butadiene latex (SBL) for toughening treatment. The investigation delves into the mechanism by which SBL improves the interface between rubber and cement, encompassing macroscopic mechanical properties, microscopic structural characteristics, and nano-scale interfacial interactions. Macroscopic mechanical tests reveal a significant increase in flexural strength, shear strength, and compressive strength of the composite concrete upon the introduction of SBL and rubber. Specifically, the compressive strength improved by 8.8%, shear strength by 13.7%, and flexural strength by 18.9% at 28 days. Through electron microscopy observation of corresponding polymer cement concrete sections, observations reveal that SBL reinforces both interfaces and elucidates its bonding impact at the micro-level interface. Molecular dynamics (MD) modeling of SBL/rubber/CSH is employed at the nanoscale to compute and examine the local structure, dynamic behavior, and binding energy of the interface. The findings indicate that SBL mitigates interface impacts, enhances interface hydrogen bonds, van der Waals interactions, CaH coordination bonds, and stability, consequently improving interfacial adhesion and fortifying the feeble interface bonding between organic polymers (rubber) and inorganic silicates (CSH). Full article
(This article belongs to the Topic Sustainable Building Materials)
Show Figures

Figure 1

Back to TopTop