Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (80)

Search Parameters:
Keywords = ternary polymer blends

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1794 KB  
Article
Enhanced Photovoltaic Performance of Ternary Small Molecule/Polymer Bulk Heterojunction Solar Cells
by Soo Ah Nam, Jinwoo Lee and Joonwon Lim
Micromachines 2026, 17(1), 97; https://doi.org/10.3390/mi17010097 - 12 Jan 2026
Abstract
We report a notable enhancement in the performance of small-molecule-based organic photovoltaics (OPVs) through the use of a ternary blend comprising a small-molecule donor (DTS(FBTTh2)2), a polymer donor (PBDTTT-EFT), and a fullerene acceptor (PC71BM). By optimizing the [...] Read more.
We report a notable enhancement in the performance of small-molecule-based organic photovoltaics (OPVs) through the use of a ternary blend comprising a small-molecule donor (DTS(FBTTh2)2), a polymer donor (PBDTTT-EFT), and a fullerene acceptor (PC71BM). By optimizing the composition of this ternary active layer, we achieved a significant increase in power conversion efficiency from 7.99% to 9.08%. This improvement is attributed to the broader light absorption spectrum and enhanced charge transport pathways provided by the polymeric donor. PBDTTT-EFT optimizes the nanomorphology and ordering of the bulk heterojunction films and forms a cascade energy level that enhances charge carrier mobility. Our results demonstrate that semiconducting polymer donors can effectively control light absorption, charge transport, and exciton dissociation by optimizing morphology and crystallinity. This approach offers new possibilities for advancing the performance of various optoelectronic devices through strategic use of different semiconducting polymer donors. Full article
(This article belongs to the Special Issue Organic Electronic-Based Devices for Biomedical Applications)
Show Figures

Figure 1

12 pages, 2246 KB  
Article
Constructing High-Performance Solar Cells by Incorporating an A1-A2-Type Polymer Donor as a Guest Material
by Min Li, Guo Chen, Ai Lan, Sein Chung, Mingming Que, Yongjoon Cho and Bin Huang
Molecules 2025, 30(24), 4755; https://doi.org/10.3390/molecules30244755 - 12 Dec 2025
Viewed by 427
Abstract
Owing to the intramolecular push-pull electron effect between the electron donor (D) unit and electron acceptor (A) unit, the D-A type based polymer donors display outstanding device performance. However, the imperfect energy levels lead to the D-A-type-based polymer device exhibiting high voltage loss. [...] Read more.
Owing to the intramolecular push-pull electron effect between the electron donor (D) unit and electron acceptor (A) unit, the D-A type based polymer donors display outstanding device performance. However, the imperfect energy levels lead to the D-A-type-based polymer device exhibiting high voltage loss. In this study, an A1-A2-type copolymer M1 was developed with 1,3-bis(2-ethylhexyl)-5,7-di(thiophen-2-yl)benzo[1,2-c:4,5-c’]dithiophene-4,8-dione (BDD) as the A1 unit and dithieno[3′,2′:3,4;2″,3″:5,6]benzo[1,2-c][1,2,5]thiadiazole (DTBT) as the A2 unit. Compared with D-A-type-based polymer donor PM6, the A1-A2 type based M1 possesses lower energy levels, broader absorption, and stronger crystallinity. After introducing M1 to the PM6:L8-BO-based system as the guest material, the ternary blend films exhibited exceptional face-on molecular orientation and favorable active-layer morphology, which promotes exciton dissociation and suppresses charge recombination. Consequently, the PM6:M1(5%):L8-BO-based ternary device exhibited an impressive power conversion efficiency (PCE) of 19.70% with simultaneously enhanced photostability, which is superior to the PM6:L8-BO-based binary system. Our work offers an efficient approach to developing high-performance ternary devices by introducing a novel A1-A2 type polymer donors as the guest material. Full article
Show Figures

Graphical abstract

22 pages, 7505 KB  
Article
Impact of Different Surfactants on Oral Bioavailability of Paclitaxel/HPMC-AS Amorphous Solid Dispersion
by Chenzhao Zhang, Siyi Mao, Jinhua Yuan, Xiuzhen Ma, Aiya Xing, Xiaoling Liu and Yuejie Chen
Pharmaceutics 2025, 17(11), 1487; https://doi.org/10.3390/pharmaceutics17111487 - 18 Nov 2025
Viewed by 768
Abstract
Objectives: Surfactants are commonly incorporated into amorphous solid dispersions (ASDs) to improve manufacturing and enhance the dissolution of poorly water-soluble drugs. However, their impact on in vitro dissolution, in vivo bioavailability, and in vitro-in vivo correlation (IVIVC) remains poorly understood, impeding the rational [...] Read more.
Objectives: Surfactants are commonly incorporated into amorphous solid dispersions (ASDs) to improve manufacturing and enhance the dissolution of poorly water-soluble drugs. However, their impact on in vitro dissolution, in vivo bioavailability, and in vitro-in vivo correlation (IVIVC) remains poorly understood, impeding the rational design of ASDs. This study aimed to elucidate the impact of six surfactants: anionic sodium lauroyl glutamate (SLG), sodium taurocholate (NaTC), sodium lauryl sulfate (SLS), and non-ionic polysorbate 80 (TW80), poloxamer 188 (P188), and polyoxyethylene lauryl ether (Brij-35), on the performance of paclitaxel (PTX)/HPMC-AS ASD. Methods: Binary PTX/HPMC-AS and ternary PTX/HPMC-AS/surfactant ASDs were prepared via rotary evaporation for FT-IR study. For dissolution and pharmacokinetic studies, low drug-loading formulations were prepared by physically blending PTX/HPMC-AS ASD with surfactants. Drug–polymer–surfactant interactions were investigated using NMR and FT-IR techniques. Dissolution performance was systematically evaluated by analyzing: (1) solubility of crystalline PTX in HPMC-AS/surfactant solutions; (2) supersaturation sustaining capacity in HPMC-AS/surfactant solutions; (3) surfactant effects on ASD dissolution and supersaturation generation; and (4) phase transformation during ASD dissolution. In vivo bioavailability was assessed in rats. Results: Findings revealed surfactant-specific effects: (1) SLG and P188 minimally affected bioavailability of PTX/HPMC-AS ASD (p > 0.05), consistent with their negligible effect on dissolution, attributable to incompatibility with PTX/HPMC-AS and weak molecular interactions; (2) TW80 significantly reduced bioavailability (p < 0.001) by inducing crystallization; thereby diminishing the amorphous advantage; (3) NaTC, Brij-35, and SLS markedly increased bioavailability (p < 0.001), owing to their compatibility with PTX and HPMC-AS, which enhanced dissolution and maintained amorphous state of precipitates. Surfactants appear to modulate ASD performance by governing supersaturation generation in solution and maintaining amorphous stability in the undissolved solid. Conclusions: The dissolution and bioavailability of ASDs are fundamentally controlled by compatibility between drug, polymer, and surfactant. Surfactant selection critically impacts ASD bioavailability. Comprehensive dissolution characterization, including supersaturation kinetics and precipitate phase analysis, enables prediction of bioavailability. Integrating molecular-level interaction analysis with multidimensional dissolution profiling is therefore essential for rational ASD design. Full article
(This article belongs to the Special Issue Advances in Amorphous Solid Dispersions)
Show Figures

Graphical abstract

19 pages, 3859 KB  
Article
PP-Based Blends with PVP-I Additive: Mechanical, Thermal, and Barrier Properties for Packaging of Iodophor Pharmaceutical Formulations
by Melania Leanza, Domenico Carmelo Carbone, Giovanna Poggi, Marco Rapisarda, Marilena Baiamonte, Emanuela Teresa Agata Spina, David Chelazzi, Piero Baglioni, Francesco Paolo La Mantia and Paola Rizzarelli
Polymers 2025, 17(18), 2442; https://doi.org/10.3390/polym17182442 - 9 Sep 2025
Cited by 2 | Viewed by 1636
Abstract
The influence of minor components on leaching molecular iodine (I2) through polypropylene (PP)-based packaging from a povidone iodine-based (PVP-I) formulation, simulating an ophthalmic application, was evaluated. I2 is a cheap, broad-spectrum, and multi-target antiseptic. Nevertheless, it is volatile, and the [...] Read more.
The influence of minor components on leaching molecular iodine (I2) through polypropylene (PP)-based packaging from a povidone iodine-based (PVP-I) formulation, simulating an ophthalmic application, was evaluated. I2 is a cheap, broad-spectrum, and multi-target antiseptic. Nevertheless, it is volatile, and the prolonged storage of I2-based formulations is demanding in plastic packaging because of transmission through the material. Therefore, we explored the possibility of moderating the loss of I2 from an iodophor formulation by introducing small amounts of molecular iodine into the polymer material commonly used in eyedropper caps, i.e., PP. Thus, PP was blended via an extrusion process with a polymeric complex containing iodine (such as PVP-I) or with a second polymeric component able to complex the I2 released from an iodophor solution. The aim of this work was to introduce I2 into PP-based polymer matrices without using organic solvents and indirectly, i.e., through the addition of components that could generate molecular iodine or complex it in the solid phase, as I2 is heat-sensitive. To increase the miscibility between PP and PVP-I, poly(N-vinylpyrrolidone) (PVP) or a vinyl pyrrolidone vinyl acetate copolymer 55/45 (Sokalan) were added as compatibilizers. The PP-based binary and ternary blends, in granular or sheet form, were characterized thermally (Differential Scanning Calorimetry, DSC, and Thermogravimetric analysis, TGA), mechanically (tensile tests), morphologically (scanning electron microscopy (SEM)), and chemically (attenuated total reflectance Fourier transform infrared (ATR-FTIR)). Additionally, the variation in wettability induced by the introduction of the hydrophilic minority components was determined by static contact angle measurements (static contact angle (SCA)), and tests were carried out to determine the barrier properties against oxygen (oxygen transmission rate (OTR)) and molecular iodine. The I2 leaching of the different blends was compared with that of PP by monitoring the I2 retention in a buffered PVP-I solution via UV-vis spectroscopy. Overall, the experimental data showed the capability of the minority components in the blends to increase thermal stability as well as act as a barrier to oxygen. Additionally, the PP blend with PVP-I induced a reduction in molecular iodine leaching in comparison with PP. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Graphical abstract

18 pages, 1637 KB  
Article
Exploiting the Applicative Potential of Hydroxyethyl Cellulose-Based Composites by Composition-Tailoring of the Optical and Dielectric Features
by Andreea Irina Barzic, Iuliana Stoica, Raluca Marinica Albu, Igori Belotercovschii, Victor Suman, Victor V. Zalamai and Victor Cojocaru
Polymers 2025, 17(17), 2315; https://doi.org/10.3390/polym17172315 - 27 Aug 2025
Viewed by 963
Abstract
This work deals with the preparation of a novel set of ternary polymer composites, where the matrix is a cellulose ether and the reinforcement agent is a 50:50 mixture of TiO2 nanoparticles with PbCl2 micropowder (0.25–4 wt%). The attained film samples [...] Read more.
This work deals with the preparation of a novel set of ternary polymer composites, where the matrix is a cellulose ether and the reinforcement agent is a 50:50 mixture of TiO2 nanoparticles with PbCl2 micropowder (0.25–4 wt%). The attained film samples are investigated from morphological, optical, and electrical points of view to explore the applicative potential as LED encapsulants or flexible dielectric layers for capacitors. Morphological analyses at micro- and nanoscale evidence the level of distribution of the fillers blended within the matrix. UV-VIS spectroscopy and refractometry emphasize that at 0.5 wt% the samples display the best balance between transparency and high refractive index, which matches the applicative criteria for LED encapsulation. The electrical testing with broadband dielectric spectrometer proves that the dielectric constant at 1 kHz of the composite with 4 wt% fillers is enhanced by about 6.63 times in comparison to the neat polymer. This is beneficial for designing eco-friendly and flexible dielectrics for capacitor devices. Full article
Show Figures

Figure 1

17 pages, 2754 KB  
Article
Effect of Relaxation Properties on the Bonding Durability of Polyisobutylene Pressure-Sensitive Adhesives
by Anna V. Vlasova, Nina M. Smirnova, Viktoria Y. Melekhina, Sergey V. Antonov and Sergey O. Ilyin
Polymers 2025, 17(17), 2297; https://doi.org/10.3390/polym17172297 - 25 Aug 2025
Cited by 2 | Viewed by 1421
Abstract
Pressure-sensitive adhesion arises at a specific rheological behavior of polymer systems, which should correlate with their relaxation properties, making them potentially useful for predicting and altering adhesive performance. This work systematically studied the rheology of eco-friendly pressure-sensitive adhesives based on non-crosslinked polyisobutylene ternary [...] Read more.
Pressure-sensitive adhesion arises at a specific rheological behavior of polymer systems, which should correlate with their relaxation properties, making them potentially useful for predicting and altering adhesive performance. This work systematically studied the rheology of eco-friendly pressure-sensitive adhesives based on non-crosslinked polyisobutylene ternary blends free of solvents and byproducts, which serve for reversible adhesive bonding. The ratio between individual polymer components differing in molecular weight affected the rheological, relaxation, and adhesion properties of the constituted adhesive blends, allowing for their tuning. The viscosity and viscoelasticity of the adhesives were studied using rotational rheometry, while their adhesive bonds with steel were examined by probe tack and shear lap tests at different temperatures. The adhesive bond durability at shear and pull-off detachments depended on the adhesive composition, temperature, and contact time under pressure. The double differentiation of the continuous relaxation spectra of the adhesives enabled the accurate determination of their characteristic relaxation times, which controlled the durability of the adhesive bonds. A universal linear correlation between the reduced failure time of adhesive bonds and their reduced formation time enabled the prediction of their durability with high precision (Pearson correlation coefficient = 0.958, p-value < 0.001) over at least a four-order-of-magnitude time range. The reduction in the formation/failure times of adhesive bonds was most accurately achieved using the longest relaxation time of the adhesives, associated with their highest-molecular-weight polyisobutylene component. Thus, the highest-molecular-weight polymer played a dominant role in adhesive performance, determining both the stress relaxation during the formation of adhesive bonds and their durability under applied load. In turn, this finding enables the prediction and improvement of adhesive bond durability by increasing the bond formation time (a durability rise by up to 10–100 times) and extending the adhesive’s longest relaxation time through elevating the molecular weight or proportion of its highest-molecular-weight component (a durability rise by 100–350%). Full article
Show Figures

Figure 1

16 pages, 2576 KB  
Article
Viscoelastic and Damping Behavior of Composed Modified Asphalt for Functional Interlayers in Photovoltaic Pavements
by Jianrong Rao, Yian Zhao, Xichun Cao, Jiantao Li and Jinbo Xie
Buildings 2025, 15(16), 2830; https://doi.org/10.3390/buildings15162830 - 9 Aug 2025
Viewed by 1013
Abstract
This study presents the development and performance evaluation of a rock asphalt-modified damping asphalt binder tailored for interlayer applications in photovoltaic pavement systems. A series of composite binders was formulated by incorporating Qingchuan rock asphalt, crumb rubber powder, and SBS polymer into base [...] Read more.
This study presents the development and performance evaluation of a rock asphalt-modified damping asphalt binder tailored for interlayer applications in photovoltaic pavement systems. A series of composite binders was formulated by incorporating Qingchuan rock asphalt, crumb rubber powder, and SBS polymer into base asphalt using an orthogonal design approach. The effects of different modifiers and their interactions were systematically assessed through conventional physical tests, DSR, BBR and damping ratio measurements. Furthermore, full-scale specimens (30 cm × 30 cm) were subjected to both single-pass and 24 h sustained loading tests to simulate real-world stress conditions. The results revealed that rock asphalt (RA) significantly enhanced the high-temperature stiffness and rutting resistance, while SBS improved ductility and low-temperature flexibility. Rubber powder (RP) notably increased the damping ratio, demonstrating superior energy dissipation potential. Among the nine formulations, the ternary blend of SBS, RA, and RP (denoted as L5) exhibited the most balanced and optimal performance, with G*/sinδ exceeding 5.0 kPa at 64 °C, a ductility of 132 cm, and damping ratios above 0.14. Load testing confirmed the material’s capacity for both instantaneous deformation resistance and delayed elastic recovery. These findings suggest that the L5 formulation is well suited for use in smart pavements where both mechanical durability and vibration attenuation are required. Full article
(This article belongs to the Special Issue Advances in Performance-Based Asphalt and Asphalt Mixtures)
Show Figures

Figure 1

24 pages, 3919 KB  
Article
High Drug Loading of Amorphous Solid Dispersion by Hot Melt Extrusion: The Role of Magnesium Aluminometasilicate (Neusilin® US2)
by Nithin Vidiyala, Pavani Sunkishala, Prashanth Parupathi, Preethi Mandati, Srujan Kumar Mantena, Raghu Rami Reddy Kasu and Dinesh Nyavanandi
Sci. Pharm. 2025, 93(3), 30; https://doi.org/10.3390/scipharm93030030 - 16 Jul 2025
Cited by 2 | Viewed by 2230
Abstract
The objective of the current research is to investigate the role of Neusilin US2 as a porous carrier for improving the drug loading and stability of Ezetimibe (EZB) by hot melt extrusion (HME). The amorphous solid dispersions (ASDs) were developed from 10–40% of [...] Read more.
The objective of the current research is to investigate the role of Neusilin US2 as a porous carrier for improving the drug loading and stability of Ezetimibe (EZB) by hot melt extrusion (HME). The amorphous solid dispersions (ASDs) were developed from 10–40% of drug loading using Kollidon VA 64 (Copovidone) as a polymer matrix and Neusilin US2 as a porous carrier. The solid-state characterization of EZB was studied using differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform infrared spectroscopy (FTIR). The formulation blends were characterized for flow properties, and CTC (compressibility, tabletability, compactibility) profile. The in-vitro drug release profiles were studied in 0.1 N HCl (pH 1.2). The incorporation of Neusilin US2 has facilitated the development of ASDs up to 40% of drug loading. The CTC profile has demonstrated excellent tabletability for the ternary (EZB, copovidone and Neusilin) dispersions over binary dispersion (EZB and copovidone) formulations. The tablet formulations with binary (20%) and ternary (30% and 40%) dispersions have demonstrated complete dissolution of the drug in 30 min in 0.1 N HCl (pH 1.2). The incorporation of copovidone has prevented the recrystallization of the drug in the solution state. Upon storage of formulations at accelerated conditions, the stability of ternary dispersion tablets was preserved attributing to the entrapment of the drug within Neusilin pores thereby inhibiting molecular mobility. Based on the observations, the current research concludes that it is feasible to incorporate Neusilin US2 to improve the drug loading and stability of ASD systems. Full article
Show Figures

Figure 1

23 pages, 3314 KB  
Article
The Effect of Poly (Methyl Methacrylate) Content on Chemical, Thermomechanical, Mechanical, and Fatigue Life Characteristics of Ternary PC/ABS/PMMA Blends
by Hamdi Kuleyin and Recep Gümrük
Polymers 2025, 17(14), 1905; https://doi.org/10.3390/polym17141905 - 10 Jul 2025
Cited by 2 | Viewed by 2334
Abstract
Polymer blending techniques enable the tailoring of desired properties for diverse applications. This study investigates the effect of PMMA content on the thermomechanical, chemical, mechanical, and fatigue life properties of PC/ABS/PMMA (polycarbonate/acrylonitrile–butadiene–styrene/polymethylmethacrylate) ternary blends. To this end, various characterization analyses, as well as [...] Read more.
Polymer blending techniques enable the tailoring of desired properties for diverse applications. This study investigates the effect of PMMA content on the thermomechanical, chemical, mechanical, and fatigue life properties of PC/ABS/PMMA (polycarbonate/acrylonitrile–butadiene–styrene/polymethylmethacrylate) ternary blends. To this end, various characterization analyses, as well as tensile, impact, and fatigue tests, were conducted. The results indicate that the viscoelastic modulus improves with increasing PMMA content in ternary blends. Furthermore, PC/ABS/PMMA blends exhibit an immiscible phase morphology. The elastic modulus, yield strength, and tensile strength increase with higher PMMA content, while the elongation at break and impact strength decrease. Fatigue strength and the fatigue strength exponent were found to vary nonlinearly with PMMA content. Compared to PC/ABS blends, PC/ABS/PMMA blends demonstrated improvements of approximately 12% to 58% and 26% to 117% in hysteresis energy and the dynamic elastic modulus, respectively. Additionally, fatigue life cycles improved by 5% to 11% at low stress amplitudes. This experimental study provides comprehensive insight into the complex interplay among the chemical, thermomechanical, mechanical, and fatigue properties of ternary PC/ABS/PMMA blends, highlighting their potential for applications requiring balanced or tailored structural and material characteristics. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

17 pages, 3907 KB  
Review
Polyamide 6 as a Liner Material for Type IV Hydrogen Storage Cylinders: Performance Challenges and Modification Strategies
by Wenyan Wang, Guanxi Zhao, Xiao Ma, Dengxun Ren, Min Nie and Rui Han
Polymers 2025, 17(13), 1848; https://doi.org/10.3390/polym17131848 - 1 Jul 2025
Cited by 3 | Viewed by 1660
Abstract
Type IV hydrogen storage cylinders are pivotal for high-pressure hydrogen storage and transportation, offering advantages such as lightweight design, high hydrogen storage density, and cost efficiency. Polyamide 6 (PA6) has emerged as a promising liner material due to its excellent mechanical strength, chemical [...] Read more.
Type IV hydrogen storage cylinders are pivotal for high-pressure hydrogen storage and transportation, offering advantages such as lightweight design, high hydrogen storage density, and cost efficiency. Polyamide 6 (PA6) has emerged as a promising liner material due to its excellent mechanical strength, chemical resistance, and gas barrier properties. However, challenges remain, including high hydrogen permeability and insufficient mechanical performance under extreme temperature and pressure conditions. This review systematically summarizes recent advances in modification strategies to enhance PA6’s suitability for Type IV hydrogen storage cylinders. Incorporating nanofillers (e.g., graphene, montmorillonite, and carbon nanotubes) significantly reduces hydrogen permeability. In situ polymerization and polymer blending techniques improve toughness and interfacial adhesion (e.g., ternary blends achieve a special increase in impact strength). Multiscale structural design (e.g., biaxial stretching) and process optimization further enhance PA6’s overall performance. Future research should focus on interdisciplinary innovation, standardized testing protocols, and industry–academia collaboration to accelerate the commercialization of PA6-based composites for hydrogen storage applications. This review provides theoretical insights and engineering guidelines for developing high-performance liner materials. Full article
Show Figures

Figure 1

26 pages, 4898 KB  
Article
Antibacterial Crosslinker for Ternary PCL-Reinforced Hydrogels Based on Chitosan, Polyvinyl Alcohol, and Gelatin for Tissue Engineering
by Karina Del Angel-Sánchez, Ana Victoria Treviño-Pacheco, Imperio Anel Perales-Martínez, Oscar Martínez-Romero, Daniel Olvera-Trejo and Alex Elías-Zúñiga
Polymers 2025, 17(11), 1520; https://doi.org/10.3390/polym17111520 - 29 May 2025
Cited by 2 | Viewed by 1875
Abstract
Current hydrogels used for cartilage tissue engineering often lack the mechanical strength and structural integrity required to mimic native human cartilage. This study addresses this limitation by developing reinforced hydrogels based on a ternary polymer blend of poly(vinyl) alcohol (PVA), gelatin (GL), and [...] Read more.
Current hydrogels used for cartilage tissue engineering often lack the mechanical strength and structural integrity required to mimic native human cartilage. This study addresses this limitation by developing reinforced hydrogels based on a ternary polymer blend of poly(vinyl) alcohol (PVA), gelatin (GL), and chitosan (CH), with gentamicin sulfate (GS) as an antimicrobial agent and a crosslinker. The hydrogels were produced using two crosslinking methods, the freeze/thaw and heated cycles, and reinforced with forcespun polycaprolactone (PCL) nanofiber to improve mechanical performance. Chemical characterization revealed that GS forms weak hydrogen bonds with the ternary polymers, leading to esterification with PVA, and covalent bonds are formed as the result of the free amino group (-NH2) of chitosan that reacts with the carboxylic acid group (-COOH) of gelatin. SEM images help us to see how the hydrogels are reinforced with polycaprolactone (PCL) fibers produced via force spinning technology, while mechanical properties were evaluated via uniaxial tensile and compressive tests. Water retention measurements were performed to examine the crosslinking process’s influence on the hydrogel’s water retention, while the hydrogel surface roughness was obtained via confocal microscopy images. A constitutive model based on non-Gaussian strain energy density was introduced to predict experimental mechanical behavior data of the hydrogel, considering a non-monotonous softening function. Loading and unloading tests demonstrated that GS enhanced crosslinking without compromising water retention or biocompatibility because of the reaction between the free amino group of CH and the carboxylic group of gelatin. The PCL-reinforced PVA/GL/CH hydrogel shows strong potential for cartilage repair and tissue engineering applications. Full article
Show Figures

Figure 1

18 pages, 12067 KB  
Article
Preparation and Performance of PAN/PS/PMMA Ternary Blend-Modified Fiber Membranes via Centrifugal Spinning for Lithium-Ion Batteries
by Shunqi Mei, Feng Luo, Yi Xie, Bin Xu and Quan Zheng
Nanomaterials 2025, 15(11), 789; https://doi.org/10.3390/nano15110789 - 24 May 2025
Cited by 2 | Viewed by 1081
Abstract
Addressing the issues of poor thermal resistance in conventional polyolefin separators and the low production efficiency of electrospinning, this study innovatively employed high-efficiency centrifugal spinning technology to fabricate a ternary blended modified fiber membrane composed of polyacrylonitrile (PAN), polystyrene (PS), and polymethyl methacrylate [...] Read more.
Addressing the issues of poor thermal resistance in conventional polyolefin separators and the low production efficiency of electrospinning, this study innovatively employed high-efficiency centrifugal spinning technology to fabricate a ternary blended modified fiber membrane composed of polyacrylonitrile (PAN), polystyrene (PS), and polymethyl methacrylate (PMMA). By precisely adjusting the polymer ratio (8:2:2) and fine-tuning the spinning process parameters, a separator with a three-dimensional network structure was successfully produced. The research results indicate that the separator exhibited excellent overall performance, with a porosity of 75.87%, an electrolyte absorption rate of up to 346%, and a thermal shrinkage of less than 3% after 1 h at 150 °C, along with a tensile strength reaching 23.48 MPa. A lithium-ion battery assembled with this separator delivered an initial discharge capacity of 159 mAh/g at a 0.2 C rate and maintained a capacity retention of 98.11% after 25 cycles. Moreover, under current rates of 0.5, 1.0, and 2.0 C, the battery assembled with the ASM-14 configuration achieved high discharge capacities of 148, 136, and 116 mAh/g, respectively. This study offers a novel design strategy for modifying multi-component polymer battery separators. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

21 pages, 3867 KB  
Article
Influence of Honey Bee Brood Protein on the Hydrophilic, Mechanical, and Thermal Properties of Polysaccharide Gel Films
by Suthaphat Kamthai, Pairote Wiriyacharee, Srisuwan Naruenartwongsakul, Patompong Khaw-on, Aree Deenu, Supakit Chaipoot, Rewat Phongphisutthinant, Kamonwan Tachai and Sawichaya Orpool
Gels 2025, 11(4), 236; https://doi.org/10.3390/gels11040236 - 24 Mar 2025
Cited by 2 | Viewed by 1042
Abstract
Growing concerns over the environmental impact of plastic packaging have driven interest in sustainable alternatives, particularly biopolymer-based films. This study developed ternary-blended polysaccharide gel films composed of carboxymethyl starch (CMS), chitosan (CS), and pectin (PT), with dialdehyde carboxymethyl cellulose (DCMC) as a crosslinker, [...] Read more.
Growing concerns over the environmental impact of plastic packaging have driven interest in sustainable alternatives, particularly biopolymer-based films. This study developed ternary-blended polysaccharide gel films composed of carboxymethyl starch (CMS), chitosan (CS), and pectin (PT), with dialdehyde carboxymethyl cellulose (DCMC) as a crosslinker, and investigated the effects of honey bee brood protein (BBP) (0–0.4% w/v) on their mechanical, barrier, and thermal properties. A completely randomized design (CRD) was employed to evaluate the impact of BBP concentration on film characteristics. Results demonstrated that adding 0.4% BBP enhanced water vapor barrier properties and thermal stability while reducing hydrophilicity. The optimal formulation was observed at 0.1% BBP, providing the highest tensile strength (7.73 MPa), elongation at break (32.23%), and water-absorption capacity (369.01%). The improvements in thermal stability and hydrophilicity were attributed to BBP’s hydrophobic amino acids, which interacted with DCMC to form a denser polymer network, enhancing structural integrity and moisture resistance. Additionally, BBP incorporation contributed to the biodegradability of polysaccharide gel films, improving their environmental sustainability compared to conventional biopolymers. The findings suggest that BBP can serve as a functional additive in polysaccharide-based films, balancing performance and eco-friendliness for applications in biodegradable food and medical packaging. Full article
(This article belongs to the Special Issue Food Gels: Structure and Function)
Show Figures

Graphical abstract

16 pages, 2647 KB  
Article
Mechanical Properties of PVC/TPU Blends Enhanced with a Sustainable Bio-Plasticizer
by Yitbarek Firew Minale, Ivan Gajdoš, Pavol Štefčák, Tamás Szabó, Annamaria Polyákné Kovács, Andrea Ádámné Major and Kálmán Marossy
Sustainability 2025, 17(5), 2033; https://doi.org/10.3390/su17052033 - 26 Feb 2025
Cited by 5 | Viewed by 4329
Abstract
The development of sustainable and mechanically versatile polymeric materials is essential to meet the growing demand for eco-friendly, high-performance products. This study investigates the mechanical properties of blends comprising polyvinyl chloride (PVC), thermoplastic polyurethane (TPU), and glycerol diacetate monolaurate, a bio-based plasticizer derived [...] Read more.
The development of sustainable and mechanically versatile polymeric materials is essential to meet the growing demand for eco-friendly, high-performance products. This study investigates the mechanical properties of blends comprising polyvinyl chloride (PVC), thermoplastic polyurethane (TPU), and glycerol diacetate monolaurate, a bio-based plasticizer derived from waste cooking oil, addressing the underexplored combined effects of these components. By varying the proportions, the blends’ tensile strength, elasticity, elongation at break, and hardness were tailored for diverse applications. Incorporating the bio-plasticizer significantly enhanced the PVC’s flexibility and elongation at break, while reducing its tensile strength and rigidity. The addition of TPU further enhanced the elasticity, toughness, and resilience, with the final properties governed by synergistic interactions between PVC’s rigidity, TPU’s elasticity, and the plasticizer’s softening effects. Dynamic mechanical analysis (DMA) confirmed that the bio-plasticizer enhanced the compatibility between the PVC and TPU, leading to ternary PVC/TPU/bio-plasticizer blends with an improved elasticity and elongation at break, without a significant loss in tensile strength. These blends exhibited a broad range of tunable properties, enabling applications from flexible films to impact-resistant components. Overall, these findings highlight the potential of PVC/TPU/bio-plasticizer systems to deliver high-performance materials with enhanced sustainability. This work offers valuable insights for developing greener polymer systems and advancing the creation of tailored materials for diverse industrial applications in alignment with global sustainability goals. Full article
Show Figures

Figure 1

16 pages, 4153 KB  
Article
Organic Bulk–Heterojunction Blends with Vertical Phase Separation for Enhanced Organic Photodetector Performance
by Chih-Ping Chen, Yan-Cheng Peng, Bing-Huang Jiang, Ming-Wei Hsu, Choon Kit Chan, He-Yun Du and Yang-Yen Yu
Polymers 2024, 16(21), 3040; https://doi.org/10.3390/polym16213040 - 29 Oct 2024
Cited by 2 | Viewed by 2085
Abstract
The ternary blending strategy is a fundamental approach that is widely recognized in the field of organic optoelectronics. In our investigation, leveraging the inherent advantages of the ternary component blending methodology, we introduced an innovative design for organic photodetectors (OPDs) aimed at reducing [...] Read more.
The ternary blending strategy is a fundamental approach that is widely recognized in the field of organic optoelectronics. In our investigation, leveraging the inherent advantages of the ternary component blending methodology, we introduced an innovative design for organic photodetectors (OPDs) aimed at reducing the dark current density (Jd) under reverse bias. This pioneering effort involved combining two distinct conjugated molecules (IT-4F and IEICO-4F) with a conjugated polymer (PM7), resulting in a composite material characterized by a well-defined vertical phase separation. To thoroughly explore device performance variations, we utilized a comprehensive array of analytical techniques, including atomic force microscopy (AFM) cross-section methodologies and Kelvin probe force microscopy (KPFM). Through the optimization of the blend ratio (PM7:IT-4F: IEICO-4F at 1:0.8:0.2), we achieved significant advancements. The resulting OPD demonstrated an exceptional reduction in JD, reaching a remarkably low value of 4.95 × 10−10 A cm−2, coupled with an ultra-high detectivity of 4.95 × 1013 Jones and an outstanding linear dynamic range exceeding 100 dB at 780 nm under a bias of −1V. Furthermore, the attained cutoff frequency reached an impressive 220 kHz, highlighting substantial improvements in device performance metrics. Of particular significance is the successful translation of this technological breakthrough into real-world applications, such as in heart rate sensing, underscoring its tangible utility and expanding its potential across various fields. This demonstrates its practical relevance and underscores its versatility in diverse settings. Full article
Show Figures

Figure 1

Back to TopTop