Effect of Relaxation Properties on the Bonding Durability of Polyisobutylene Pressure-Sensitive Adhesives
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Rheology of Adhesives
- Quadrant I (top-left, high G′, low G″) corresponds to anti-adhesive coatings;
- Quadrant II (top-right, high G′ and G″) describes PSAs with high resistance to shear loads;
- Quadrant III (bottom-left, low G′ and G″) represents removable and medical adhesives;
- Quadrant IV (bottom-right, low G′, high G″) points on PSAs with fast adhesion at low temperatures.
3.2. Relaxation of Adhesives
3.3. Adhesive Properties
4. Conclusions
- Double differentiation of a continuous relaxation time spectrum of an adhesive with respect to time in logarithmic coordinates enables the simple and accurate determination of its characteristic relaxation times, which are associated with the durability of its adhesive bonds.
- In a mixture of three polymers with different molecular weights, the higher-molecular-weight polymer plays a dominant role, determining both the stress relaxation during the formation of the adhesive bond and its durability under applied load.
- A way to improve adhesive bond durability is by extending both the bond formation time and the adhesive’s longest relaxation time. In turn, the relaxation time of the three-component adhesive elongates with an increase in (1) the proportion and (2) molecular weight of the highest-molecular-weight polymer, (3) a reduced content of the lowest-molecular-weight plasticizer, and (4) a lower operational temperature. In particular, the increased formation time of an adhesive bond enhances its durability by up to 10–100 times, whereas the greater proportion of the highest-molecular-weight polymer or the reduced amount of the lowest-molecular-weight component improves durability by 100–350%.
- There is a universal correlation between the time to failure of adhesive bonds and the time of their formation after dividing these times by the product of the relaxation time and the time–temperature shift factor, which respectively determine the relaxation rate and its dependence on temperature for an adhesive.
- The generalized dependence of the reduced durability on the reduced pressure-holding time enables the prediction of adhesive bond performance, thereby aiding in the development of new pressure-sensitive adhesives with improved adhesion characteristics.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Webster, I. Recent Developments in Pressure-Sensitive Adhesives for Medical Applications. Int. J. Adhes. Adhes. 1997, 17, 69–73. [Google Scholar] [CrossRef]
- Ossowicz-Rupniewska, P.; Bednarczyk, P.; Nowak, M.; Nowak, A.; Duchnik, W.; Kucharski, Ł.; Rokicka, J.; Klimowicz, A.; Czech, Z. Sustainable UV-Crosslinkable Acrylic Pressure-Sensitive Adhesives for Medical Application. Int. J. Mol. Sci. 2021, 22, 11840. [Google Scholar] [CrossRef]
- Ma, Z.; Bao, G.; Li, J. Multifaceted Design and Emerging Applications of Tissue Adhesives. Adv. Mater. 2021, 33, 2007663. [Google Scholar] [CrossRef]
- Fitzgerald, D.M.; Colson, Y.L.; Grinstaff, M.W. Synthetic Pressure Sensitive Adhesives for Biomedical Applications. Prog. Polym. Sci. 2023, 142, 101692. [Google Scholar] [CrossRef]
- Tan, H.S.; Pfister, W.R. Pressure-Sensitive Adhesives for Transdermal Drug Delivery Systems. Pharm. Sci. Technol. Today 1999, 2, 60–69. [Google Scholar] [CrossRef]
- Lobo, S.; Sachdeva, S.; Goswami, T. Role of Pressure-Sensitive Adhesives in Transdermal Drug Delivery Systems. Ther. Deliv. 2016, 7, 33–48. [Google Scholar] [CrossRef]
- Wang, L.; Ma, J.; Li, J.; Fang, L.; Liu, C. Transdermal Patch Based on Pressure-Sensitive Adhesive: The Importance of Adhesion for Efficient Drug Delivery. Expert Opin. Drug Deliv. 2025, 22, 405–420. [Google Scholar] [CrossRef]
- Barrios, C.A. Pressure Sensitive Adhesive Tape: A Versatile Material Platform for Optical Sensors. Sensors 2020, 20, 5303. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Bai, Y.; Cao, W.; Meng, L.; Bai, Y. Research Progress on Displays and Optical Adhesives for Flexible 3C Products. Eur. Polym. J. 2024, 212, 113053. [Google Scholar] [CrossRef]
- Rodrigues, V.C.M.B.; Kasaei, M.M.; Marques, E.A.S.; Carbas, R.J.C.; Da Silva, L.F.M. Adhesive Bonding in Automotive Battery Pack Manufacturing and Dismantling: A Review. Discov Mech. Eng. 2025, 4, 25. [Google Scholar] [CrossRef]
- Czech, Z.; Bartkowiak, M.; Krystofiak, T. Effect of Residue Acrylic Monomers in Synthesized Solvent-Free Photoreactive Pressure-Sensitive Adhesives on the Main Properties of Transfer Tapes Applied to Joining Wooden Elements. Materials 2023, 16, 7563. [Google Scholar] [CrossRef]
- Du, Y.; Li, Y.; Li, C.; Xu, R.; Meng, L.; Bai, Y. Optical Adhesives and Screen Sealants for Foldable Displays: Analysis, Progress and Trends. ACS Appl. Mater. Interfaces 2025, 17, 5578–5594. [Google Scholar] [CrossRef]
- Benedek, I.; Feldstein, M.M. Handbook of Pressure-Sensitive Adhesives and Products: Application of Pressure-Sensitive Products; CRC, Taylor & Francis: Boca Raton, FL, USA, 2009. [Google Scholar]
- Gollins, K.; Elvin, N.; Delale, F. Characterization of Adhesive Joints under High-Speed Normal Impact: Part II—Numerical Studies. Int. J. Adhes. Adhes. 2020, 98, 102530. [Google Scholar] [CrossRef]
- Borges, C.S.P.; Akhavan-Safar, A.; Tsokanas, P.; Carbas, R.J.C.; Marques, E.A.S.; Da Silva, L.F.M. From Fundamental Concepts to Recent Developments in the Adhesive Bonding Technology: A General View. Discov Mech. Eng. 2023, 2, 8. [Google Scholar] [CrossRef]
- Park, K.H.; Lee, D.Y.; Yoon, S.H.; Kim, S.H.; Han, M.S.; Jeon, S.; Kim, Y.; Lim, Y.K.; Hwang, D.-H.; Jung, S.-H.; et al. Adhesion Improvement of Solvent-Free Pressure-Sensitive Adhesives by Semi-IPN Using Polyurethanes and Acrylic Polymers. Polymers 2022, 14, 3963. [Google Scholar] [CrossRef] [PubMed]
- Falsafi, A. The Science and Mechanics of Adhesion: An Industrial View. Dent. Mater. 2023, 39, 682–685. [Google Scholar] [CrossRef] [PubMed]
- Ebnesajjad, S. Introduction and Adhesion Theories. In Handbook of Adhesives and Surface Preparation; Elsevier: Amsterdam, The Netherlands, 2011; pp. 3–13. ISBN 978-1-4377-4461-3. [Google Scholar]
- Weisbrodt, M.; Kowalczyk, A. Removable Pressure-Sensitive Adhesives Based on Acrylic Telomer Syrups. Processes 2023, 11, 885. [Google Scholar] [CrossRef]
- Dillard, D.A.; Pocius, A.V. Adhesion Science and Engineering. 1. The Mechanics of Adhesion; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Lin, S.B.; Durfee, L.D.; Ekeland, R.A.; McVie, J.; Schalau, G.K. Recent Advances in Silicone Pressure-Sensitive Adhesives. J. Adhes. Sci. Technol. 2007, 21, 605–623. [Google Scholar] [CrossRef]
- Zech, Z.C.; Ilker, R.M. Development trends in pressure-sensitive adhesive systems. Mater. Sci. Pol. 2005, 23, 605–623. [Google Scholar]
- Novikov, M.B.; Borodulina, T.A.; Kotomin, S.V.; Kulichikhin, V.G.; Feldstein, M.M. Relaxation Properties of Pressure-Sensitive Adhesives upon Withdrawal of Bonding Pressure. J. Adhes. 2005, 81, 77–107. [Google Scholar] [CrossRef]
- Juijerm, P.; Altenberger, I. Residual Stress Relaxation of Deep-Rolled Al–Mg–Si–Cu Alloy during Cyclic Loading at Elevated Temperatures. Scr. Mater. 2006, 55, 1111–1114. [Google Scholar] [CrossRef]
- Creton, C.; Leibler, L. How Does Tack Depend on Time of Contact and Contact Pressure? J. Polym. Sci. B Polym. Phys. 1996, 34, 545–554. [Google Scholar] [CrossRef]
- Droesbeke, M.A.; Aksakal, R.; Simula, A.; Asua, J.M.; Du Prez, F.E. Biobased Acrylic Pressure-Sensitive Adhesives. Prog. Polym. Sci. 2021, 117, 101396. [Google Scholar] [CrossRef]
- Ballard, N. Designing Acrylic Latexes for Pressure-sensitive Adhesives: A Review. Polym. Int. 2024, 73, 75–87. [Google Scholar] [CrossRef]
- Aliyar, H.; Schalau, G. Recent Developments in Silicones for Topical and Transdermal Drug Delivery. Ther. Deliv. 2015, 6, 827–839. [Google Scholar] [CrossRef]
- Maulana, S.; Wibowo, E.S.; Mardawati, E.; Iswanto, A.H.; Papadopoulos, A.; Lubis, M.A.R. Eco-Friendly and High-Performance Bio-Polyurethane Adhesives from Vegetable Oils: A Review. Polymers 2024, 16, 1613. [Google Scholar] [CrossRef]
- Ciastowicz, Ż.; Pamuła, R.; Białowiec, A. Utilization of Plant Oils for Sustainable Polyurethane Adhesives: A Review. Materials 2024, 17, 1738. [Google Scholar] [CrossRef]
- Li, A.; Li, K. Pressure-Sensitive Adhesives Based on Epoxidized Soybean Oil and Dicarboxylic Acids. ACS Sustain. Chem. Eng. 2014, 2, 2090–2096. [Google Scholar] [CrossRef]
- Lei, Y.-F.; Wang, X.-L.; Liu, B.-W.; Ding, X.-M.; Chen, L.; Wang, Y.-Z. Fully Bio-Based Pressure-Sensitive Adhesives with High Adhesivity Derived from Epoxidized Soybean Oil and Rosin Acid. ACS Sustain. Chem. Eng. 2020, 8, 13261–13270. [Google Scholar] [CrossRef]
- Hajare, B.; Shuib, R.K. A Comprehensive Review on Rubber-Based Adhesives. J. Adhes. Sci. Technol. 2025, 39, 1133–1180. [Google Scholar] [CrossRef]
- Sarilak, D.; Marom, T.; Wiroonpochit, P.; Chisti, Y.; Hansupalak, N. Natural Rubber-Based Pressure-Sensitive Adhesive Films. Prog. Org. Coat. 2025, 208, 109510. [Google Scholar] [CrossRef]
- Cohen, E.; Binshtok, O.; Dotan, A.; Dodiuk, H. Prospective Materials for Biodegradable and/or Biobased Pressure-Sensitive Adhesives: A Review. J. Adhes. Sci. Technol. 2013, 27, 1998–2013. [Google Scholar] [CrossRef]
- Pradeep, S.V.; Kandasubramanian, B.; Sidharth, S. A Review on Recent Trends in Bio-Based Pressure Sensitive Adhesives. J. Adhes. 2023, 99, 2145–2166. [Google Scholar] [CrossRef]
- Mapari, S.; Mestry, S.; Mhaske, S.T. Developments in Pressure-Sensitive Adhesives: A Review. Polym. Bull. 2021, 78, 4075–4108. [Google Scholar] [CrossRef]
- Tse, M.F.; Jacob, L. Pressure Sensitive Adhesives Based on VectorR SIS Polymers I. Rheological Model and Adhesive Design Pathways. J. Adhes. 1996, 56, 79–95. [Google Scholar] [CrossRef]
- Gibert, F.X.; Marin, G.; Derail, C.; Allal, A.; Lechat, J. Rheological Properties of Hot Melt Pressure-Sensitive Adhesives Based on Styrene--Isoprene Copolymers. Part 1: A Rheological Model for [SIS-SI] Formulations. J. Adhes. 2003, 79, 825–852. [Google Scholar] [CrossRef]
- Ilyin, S.O.; Kostyuk, A.V.; Ignatenko, V.Y.; Smirnova, N.M.; Alekseeva, O.A.; Petrukhina, N.N.; Antonov, S.V. The Effect of Tackifier on the Properties of Pressure-Sensitive Adhesives Based on Styrene–Butadiene–Styrene Rubber. Russ. J. Appl. Chem. 2018, 91, 1945–1956. [Google Scholar] [CrossRef]
- Geiss, P.L.; Brockmann, W. Creep Resistance of Pressure Sensitive Mounting Tapes. J. Adhes. 1997, 63, 253–263. [Google Scholar] [CrossRef]
- Brantseva, T.; Antonov, S.; Kostyuk, A.; Ignatenko, V.; Smirnova, N.; Korolev, Y.; Tereshin, A.; Ilyin, S. Rheological and Adhesive Properties of PIB-Based Pressure-Sensitive Adhesives with Montmorillonite-Type Nanofillers. Eur. Polym. J. 2016, 76, 228–244. [Google Scholar] [CrossRef]
- Zosel, A. Shear strength of pressure sensitive adhesives and its correlation to mechanical properties. J. Adhes. 1994, 44, 1–16. [Google Scholar] [CrossRef]
- Gdalin, B.E.; Bermesheva, E.V.; Shandryuk, G.A.; Feldstein, M.M. Effect of Temperature on Probe Tack Adhesion: Extension of the Dahlquist Criterion of Tack. J. Adhes. 2011, 87, 111–138. [Google Scholar] [CrossRef]
- Melekhina, V.Y.; Vlasova, A.V.; Ilyin, S.O. Asphaltenes from Heavy Crude Oil as Ultraviolet Stabilizers against Polypropylene Aging. Polymers. 2023, 15, 4313. [Google Scholar] [CrossRef] [PubMed]
- Krenceski, M.A.; Johnson, J.F. Shear, Tack, and Peel of Polyisobutylene: Effect of Molecular Weight and Molecular Weight Distribution. Polym. Eng. Sci. 1989, 29, 36–43. [Google Scholar] [CrossRef]
- Khan, I.; Poh, B.T. Natural Rubber-Based Pressure-Sensitive Adhesives: A Review. J Polym Env. 2011, 19, 793–811. [Google Scholar] [CrossRef]
- Deng, X. Progress on Rubber-Based Pressure-Sensitive Adhesives. J. Adhes. 2018, 94, 77–96. [Google Scholar] [CrossRef]
- Ortega-Iguña, M.; Chludzinski, M.; Sánchez-Amaya, J.M. Comparative Mechanical Study of Pressure Sensitive Adhesives over Aluminium Substrates for Industrial Applications. Polymers 2022, 14, 4783. [Google Scholar] [CrossRef]
- Sun, S.; Li, M.; Liu, A. A Review on Mechanical Properties of Pressure Sensitive Adhesives. Int. J. Adhes. Adhes. 2013, 41, 98–106. [Google Scholar] [CrossRef]
- Huang, H.; Dasgupta, A.; Singh, N. Predictive Mechanistic Model of Creep Response of Single-Layered Pressure-Sensitive Adhesive (PSA) Joints. Materials 2021, 14, 3815. [Google Scholar] [CrossRef]
- Simões, B.D.; Marques, E.A.S.; Carbas, R.J.C.; Maul, S.; Stihler, P.; Weißgraeber, P.; Da Silva, L.F.M. Rheological and Mechanical Properties of an Acrylic PSA. Polymers 2023, 15, 3843. [Google Scholar] [CrossRef]
- Kostyuk, A.V.; Ignatenko, V.Y.; Antonov, S.V.; Ilyin, S.O. Effect of Surface Contamination on the Durability and Strength of Stainless Steel—Polyisobutylene Pressure-Sensitive Adhesive Bonds. Int. J. Adhes. Adhes. 2019, 95, 102434. [Google Scholar] [CrossRef]
- Borodulina, T.; Bermesheva, E.; Smirnova, N.; Ilyin, S.; Brantseva, T.; Antonov, S. Adhesive Properties of Liquid Crystalline Hydroxypropyl Cellulose–Propylene Glycol Blends. J. Adhes. Sci. Technol. 2014, 28, 1629–1643. [Google Scholar] [CrossRef]
- Mazzeo, F.A. Characterization of Pressure Sensitive Adhesives by Rheology; TA Instruments report RH082; TA Instruments: New Castle, DE, USA, 2002. [Google Scholar]
- Soboleva, O.A.; Semakov, A.V.; Antonov, S.V.; Kulichikhin, V.G. Surface Phenomena on a Solid-Liquid Interface and Rheology of Pressure Sensitivity. In Fundamentals of Pressure Sensitivity; Benedek, I., Feldstein, M., Eds.; Chapter 1; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2009; pp. 1–24. [Google Scholar]
- Benedek, I. Pressure-Sensitive Design and Formulation, Application; CRC Press: Boca Raton, FL, USA, 2006; ISBN 978-1-4822-8422-5. [Google Scholar] [CrossRef]
- Kostyuk, A.; Ignatenko, V.; Smirnova, N.; Brantseva, T.; Ilyin, S.; Antonov, S. Rheology and Adhesive Properties of Filled PIB-Based Pressure-Sensitive Adhesives. I. Rheology and Shear Resistance. J. Adhes. Sci. Technol. 2015, 29, 1831–1848. [Google Scholar] [CrossRef]
- ISO 25178-2:2021; Geometrical Product Specifications (GPS)—Surface Texture: Areal. Part 2: Terms, Definitions and Surface texture Parameters. International Standards Organization: Geneva, Switzerland, 2021.
- ASTM D3654/D3654M-06; Standard Test Methods for Shear Adhesion of Pressure-Sensitive Tapes. ASTM International: West Conshohocken, PA, USA, 2019.
- Chang, E.P. Viscoelastic Windows of Pressure-Sensitive Adhesives. J. Adhes. 1991, 34, 189–200. [Google Scholar] [CrossRef]
- Eisenhaure, J.; Kim, S. A Review of the State of Dry Adhesives: Biomimetic Structures and the Alternative Designs They Inspire. Micromachines 2017, 8, 125. [Google Scholar] [CrossRef]
- Feldstein, M.M.; Dormidontova, E.E.; Khokhlov, A.R. Pressure Sensitive Adhesives Based on Interpolymer Complexes. Prog. Polym. Sci. 2015, 42, 79–153. [Google Scholar] [CrossRef]
- Kostyuk, A.V.; Ignatenko, V.Y.; Makarova, V.V.; Antonov, S.V.; Ilyin, S.O. Polyethylene Wax as an Alternative to Mineral Fillers for Preparation of Reinforced Pressure-Sensitive Adhesives. Int. J. Adhes. Adhes. 2020, 102, 102689. [Google Scholar] [CrossRef]
- Kostyuk, A.V.; Smirnova, N.M.; Ilyin, S.O. Two-Functional Phase-Change Pressure-Sensitive Adhesives Based on Polyisobutylene Matrix Filled with Paraffin Wax. J. Energy Storage 2022, 52, 104797. [Google Scholar] [CrossRef]
- Ilyin, S.O.; Yadykova, A.Y. Eco-Friendly Bitumen Binders from Heavy Crude Oil and a Relaxation Approach to Predicting Their Resistance to Rutting and Cracking. J. Clean. Prod. 2024, 434, 139942. [Google Scholar] [CrossRef]
- Dahlquist, C.A. Pressure-sensitive adhesives. In Treatise on Adhesion and Adhesives, Materials, 2; Patrick, R.L., Ed.; Marcel Dekker: New York, NY, USA, 1969; pp. 219–260. [Google Scholar]
- Ilyin, S.O.; Melekhina, V.Y.; Kostyuk, A.V.; Smirnova, N.M. Hot-Melt and Pressure-Sensitive Adhesives Based on Styrene-Isoprene-Styrene Triblock Copolymer, Asphaltene/Resin Blend and Naphthenic Oil. Polymers 2022, 14, 4296. [Google Scholar] [CrossRef]
- Nifant’ev, I.E.; Vinogradov, A.A.; Vinogradov, A.A.; Sadrtdinova, G.I.; Komarov, P.D.; Minyaev, M.E.; Ilyin, S.O.; Kiselev, A.V.; Samurganova, T.I.; Ivchenko, P.V. Synthesis, Molecular Structure and Catalytic Performance of Heterocycle-Fused Cyclopentadienyl-Amido CGC of Ti (IV) in Ethylene (Co)Polymerization: The Formation and Precision Rheometry of Long-Chain Branched Polyethylenes. Eur. Polym. J. 2022, 176, 111397. [Google Scholar] [CrossRef]
- Ankiewicz, S.; Orbey, N.; Watanabe, H.; Lentzakis, H.; Dealy, J. On the Use of Continuous Relaxation Spectra to Characterize Model Polymers. J. Rheol. 2016, 60, 1115–1120. [Google Scholar] [CrossRef]
- Ilyin, S.O. Structural Rheology in the Development and Study of Complex Polymer Materials. Polymers 2024, 16, 2458. [Google Scholar] [CrossRef] [PubMed]
Component | Mw, kDa | Đ = Mw/Mn | PIB1 | PIB2 | PIB3 | PIB4 |
---|---|---|---|---|---|---|
Polybutene Indopol H1900, wt% | 4.5 | 1.8 | 40 | 40 | 40 | 20 |
PIB Oppanol B12, wt% | 51 | 3.2 | 50 | 45 | 40 | 66.7 |
PIB Oppanol B100, wt% | 1100 | 4.4 | 10 | 15 | 20 | 13.3 |
Sample | τ1, s | τ2, s |
---|---|---|
PIB1 | 1.51 | 1178 |
PIB2 | 0.74 | 2438 |
PIB3 | 0.69 | 7326 |
PIB4 | 3.74 | 21,880 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlasova, A.V.; Smirnova, N.M.; Melekhina, V.Y.; Antonov, S.V.; Ilyin, S.O. Effect of Relaxation Properties on the Bonding Durability of Polyisobutylene Pressure-Sensitive Adhesives. Polymers 2025, 17, 2297. https://doi.org/10.3390/polym17172297
Vlasova AV, Smirnova NM, Melekhina VY, Antonov SV, Ilyin SO. Effect of Relaxation Properties on the Bonding Durability of Polyisobutylene Pressure-Sensitive Adhesives. Polymers. 2025; 17(17):2297. https://doi.org/10.3390/polym17172297
Chicago/Turabian StyleVlasova, Anna V., Nina M. Smirnova, Viktoria Y. Melekhina, Sergey V. Antonov, and Sergey O. Ilyin. 2025. "Effect of Relaxation Properties on the Bonding Durability of Polyisobutylene Pressure-Sensitive Adhesives" Polymers 17, no. 17: 2297. https://doi.org/10.3390/polym17172297
APA StyleVlasova, A. V., Smirnova, N. M., Melekhina, V. Y., Antonov, S. V., & Ilyin, S. O. (2025). Effect of Relaxation Properties on the Bonding Durability of Polyisobutylene Pressure-Sensitive Adhesives. Polymers, 17(17), 2297. https://doi.org/10.3390/polym17172297